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Oil-immersed power transformers are considered to be one of the most crucial and

expensive devices used in power systems. Hence, high-performance gas sensors

have been extensively explored and are widely used for detecting fault characteristic

gases dissolved in transformer oil which can be used to evaluate the working state

of transformers and thus ensure the reliable operation of power grids. Hitherto, as

a typical n-type metal-oxide semiconductor, tungsten trioxide (WO3) has received

considerable attention due to its unique structure. Also, the requirements for high quality

gas detectors were given. Based on this, considerable efforts have been made to

design and fabricate more prominent WO3 based sensors with higher responses and

more outstanding properties. Lots of research has focused on the synthesis of WO3

nanomaterials with different effective and controllable strategies. Meanwhile, the various

morphologies of currently synthesized nanostructures from 0-D to 3-D are discussed,

along with their respective beneficial characteristics. Additionally, this paper focused on

the gas sensing properties and mechanisms of the WO3 based sensors, especially for

the detection of fault characteristic gases. In all, the detailed analysis has contributed

some beneficial guidance to the exploration on the surface morphology and special

hierarchical structure of WO3 for highly sensitive detection of fault characteristic gases in

oil-immersed transformers.

Keywords: WO3, gas sensors, hierarchical structure, oil-immersed transformer, fault characteristic gas,

mechanism

INTRODUCTION

The safe and reliable operation of transformers is of vital importance for a stable and continuous
power supply to the power grid (Lu et al., 2018; Zhang D. Z. et al., 2018; Zhang Q. Y.
et al., 2018; Cui et al., 2019; Yang et al., 2019a,b). To date, the number of oil-immersed
transformers accounts for more than 90% of the total number of power transformers, and
the operating state of these power transformers will directly affect the condition of power
systems (Zhou et al., 2016; Zhang X. X. et al., 2019). For a long-running transformer, partial
overheating and partial discharge will lead to the decomposition of transformer oil into a
variety of fault gases, namely hydrogen (H2), carbon monoxide (CO), carbon dioxide (CO2),
methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) (Jin et al., 2017; Gao
et al., 2019; Park et al., 2019; Wang J. X. et al., 2019). Hence, the detection of these fault
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characteristic gases has been extensively applied to diagnose early
latent faults and evaluate the operation quality of oil-immersed
transformers (Zhang et al., 2018a; Cui et al., 2019; Gui et al.,
2019). In this respect, metal oxide semiconductor (MOS) gas
sensors have attracted considerable attention due to their high-
performance capability and wide range of applications for the
detection of these fault characteristic gases in transformer oil
(Zhou et al., 2013; Zhang Y. Z. et al., 2019).

Given this, various metal oxides have been investigated via
different synthesis routes (Ge et al., 2017; Zhou et al., 2018a,b;
Wei et al., 2019a). Of all the oxides, as a typical n-type metal-
oxide semiconductor, WO3 has attracted a large amount interest
due to its excellent physicochemical properties (Miao et al.,
2015; Xu et al., 2019). To improve the performance of the gas
sensors, sustainable efforts have been made to synthesize various
nanostructures such as nanoparticles, nanorods, nanosheets,
and nanoflowers (Wei et al., 2019b). Additionally, previous
researchers have confirmed that these unique structures are
closely related to its gas sensing properties (Yu et al., 2016).
Therefore, the morphology controllable synthesis of different
hierarchical WO3 nanostructures and the enhanced gas sensing
performances thereof are of great importance to explore and
discuss. In this review, we focus on the morphology controllable
synthesis of hierarchical WO3 nanostructures including 0-
dimensional (0-D), 1-dimensional (1-D), 2-dimensional (2-
D), and 3-dimensional (3-D). In addition, the enhanced gas
sensing performance and related mechanisms, especially the
detection of the dissolved gases in transformer oil, have
been introduced.

SYNTHESIS, SENSOR FABRICATION AND
MEASUREMENT

Synthesis of WO3 Materials With Different
Strategies
Up to now, various effective strategies have been proposed for
preparing special surface morphologies and then fabricating
WO3 based sensors with an enhanced gas sensing performance.
Among these synthesis routes the template route, hydrothermal
process, electrospinning method, and chemical deposition have
all been widely used. Wang M. D. et al. (2019) synthesized
three-dimensionally porous WO3 materials with different pore
sizes via the template route, and they proposed a relationship
between the pore size and the enhanced gas sensing performance.
Gibot et al. (2011) reported the template synthesis of a highly
specific surface area WO3 nanoparticle and discussed the surface
properties, morphology and crystallographic structure in detail.
Jin et al. (2019) developed different types of WO3 nanoparticles
through a facile hydrothermal process and proposed the
morphology controllable route of changing the proportion of the
reagents. Cao and Chen (2017) used a facile CTAB (Hexadecyl
trimethyl ammonium bromide)-assisted hydrothermal method
to synthesize an urchin-like WO3 nanostructure, and a sensor
based on this possessed an excellent gas sensing performance
due to its special microstructure. Giancaterini et al. (2016)
investigated the influence of thermal- and visible light-activation

on the response of WO3 nanofibers via an electrospinning
method. Jaroenapibal et al. (2018) presented the electrospinning
synthesis of Ag-doped WO3 nanofibers and demonstrated an
enhanced gas sensing mechanism.

Sensor Fabrication and Measurement
To investigate the gas sensing performances of the different
morphologies of WO3 materials, the prepared samples are used
to fabricate side-heated structures, the most common versions
of which are known as planar and tubular configurations. As
depicted in Figure 1A, both of the structures were composed of
four parts: sensing materials, wires, electrodesm, and substrate.
The sensing materials in the sensor structure are prepared by
dissolving the obtained WO3 powders into a water-ethanol
mixed solution. After forming a homogeneous slurry, the paste
is coated onto an alumina ceramic substrate evenly to obtain
a sensing film (Zhou et al., 2019a,b). The wires are used to
connect the whole measuring circuit and the electrodes are
used to measure the change in sensor resistance which directly
reflects the performance of the fabricated sensor (Zhou et al.,
2018a). The substrate is usually made of aluminum, which
can provide reliable support for sensing materials (Zhou et al.,
2018c,d).

The gas sensing properties of fabricated WO3 based sensors
are investigated using a static intelligent gas sensing analysis
platform. Figure 1B presents an example gas sensor experimental
process. In this set up the background gas and target gas are
alternately introduced into the gas chamber to measure the
characteristic dynamic response and response-recovery rate of
the prepared device. The flow controller is used to adjust the
flux and speed of gases in order to control their concentrations.
The fabricated sensors are installed in the testing chamber and
the gas sensitivity data will be directly transmitted to the central
computer for processing (Wei et al., 2019c).

MORPHOLOGY CONTROL FROM 0-D TO
3-D

In general, the change in sensor resistance caused by the redox
reaction between oxygenmolecules and test gas molecules is used
to explain the basic operating principle of gas sensors. The surface
morphology and special hierarchical microstructures have a
crucial effect on the performance of gas sensors. In this respect,
various morphologies from 0-D to 3-D with unique physical
and chemical properties have been successfully synthesized and
extensively explored via different effective strategies (Guo et al.,
2015; Yao et al., 2015). Additionally, the controllable synthesis
routes of WO3 nanostructures have been proposed to allow
further investigation into how surface morphology affects gas
sensing properties. As shown in Figure 1C, the four typical
kinds of nanostructures, from 0-D to 3-D, can be controllably
synthesized with different effective strategies. Given this, to
further optimize the performance of WO3 based sensors for
practical application, the exploration of surface morphology
and special hierarchical structure is still a challenging but
meaningful work.
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FIGURE 1 | (A) Schematic diagram of sensor structures. (B) Schematic illustration of a gas sensing experimental platform. (C) Synthesis routes of different

morphologies. Nanoparticles. Reprinted with permission from Kwon et al. Copyright (2010) American Chemical Society. Nanowires. Reprinted with permission from

Wang et al. Copyright (2008) American Chemical Society. Nanosheets. Reprinted with permission from Zhang et al. Copyright (2015) American Chemical Society.

Nanoflowers. Reprinted with permission from Liu et al. Copyright (2010) American Chemical Society. (D) Gas sensing mechanism.

0-Dimensional (0-D) WO3
As the lowest dimensional structure, 0-D WO3 has been
investigated less as it is limited by its low specific surface
area and insufficient porous structure. These disadvantages limit
the diffusion and adsorption of target gas molecules during
the sensing process, leading to unsatisfactory performances.
Additionally, during the preparation of 0-D WO3 nanoparticles
and the operation of the fabricated sensor, the coarsening
and agglomeration of the nanoparticles might decrease the
response of the device. However, variousWO3 nanoparticles have
been rationally designed and synthesized. Based on the defects
mentioned above, WO3 nanoparticles with high dispersivity
and ultra-small diameters might improve the performance of
nanoparticle based sensors. In this respect, Li et al. (2019)
synthesized highly dispersible WO3 nanoparticles with sizes
ranging from 10 to 50 nm and they found the fabricated sensor
exhibited an excellent gas sensing performance due to the highly
effective surface area and sufficient oxygen vacancies.

1-Dimensional (1-D) WO3
1-D WO3 structures, for instance, nanorods, nanofibers,
nanotubes, and nanowires, are considered to be beneficial

nanostructures with improved special surface areas compared
to. Also, the typical morphology has been applied to the
detection the fault characteristic gases dissolved in transformer
oil. Wisitsoorat et al. (2013) developed 1-D WO3 nanorods via
a magnetron sputtering method, an H2 sensor based on which
possessed prominent properties including a high response and
fast response-recovery time. To further enhance the performance
of 1-D WO3, the doping of metal ions and the introduction
of surfactants have been confirmed to be effective strategies
to improve the redox reaction and the orientation of special
structures. Atomic platinum (Pt) is considered to be an effective
doping element which can optimize the sensing properties and
this strategy can be explained by the spillover effect of oxygen
species and the enhancement of adsorption and desorption (Park
et al., 2012).

2-Dimensional (2-D) WO3
Compared with low dimensional structures, 2-D structures
possess a larger special surface area for the target gas molecules
and therefore higher gas responses (Dral and ten Elshof,
2018). In comparison to the bulk 3-D structure, freestanding
2-D structures such as nanosheets, nanoplates, and thin
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films can provide better optimization routes including the
modulation of thematerials activity, surface polarization and rich
oxygen vacancies. Additionally, the hierarchical microstructure
assembled by rigid 2-D nanosheets possesses an open and well-
defined structure which can promote the diffusion of target
gas molecules (Nasir and Pumera, 2019). Especially in the field
of the detection of fault characteristic gases in oil-immersed
transformers, 2-DWO3 based sensors have been confirmed to be
promising candidates with excellent gas sensing performances.
Huang et al. (2020) synthesized Ru-loaded WO3 nanosheets
via a facile impregnation method and they believed that the
higher activity of surface lattice oxygens in WO3 nanosheets was
activated by the introduction of Ru. Ou et al. (2012) fabricated
H2 sensors based on WO3 nanoplates at different calcination
temperatures and proved that the 2-D structure possesses a
higher surface to volume ratio which clearly increased the
number of surface interactive areas that could interact with
H2 molecules.

3-Dimensional (3-D) WO3
Hierarchical 3-D structures are always assembled from diverse
lower dimension fundamental blocks such nanoparticles,
nanorods, and nanosheets. These various assembly routes
make the hierarchical microstructures present different special
morphologies, for instance, microspheres, microflowers,
mesoporous structures, and other irregular structures. The well-
defined structures always possess a larger special surface area
and more unique microstructures, leading to better gas sensing
performances including higher response times, more prominent
selectivity, stability, and repeatability (Zhang et al., 2013).
To detect fault characteristic gases, Zhang Y. X. et al. (2019)
prepared a sea-urchin-like hexagonal WO3 structure created by
the capping effect of potassium sulfate (which can prompt the
anisotropic growth of WO3) and the H2 sensing performance
was confirmed to benefit from the special hierarchical 3-D
microstructure. Wei et al. (2017) synthesized hollow cauliflower-
like WO3 by a facile hydrothermal process and found that the
higher and faster response to CO might benefit from the hollow
porous microstructure.

GAS SENSING PROPERTIES AND
MECHANISM

To improve the performances of the detection of fault
characteristic gases in oil-immersed transformers, WO3

based sensors with different hierarchical structures have been
confirmed to be promising candidates for on-line monitoring
of oil-immersed power transformers due to their excellent gas
sensing properties. In this section, we summarize the related
works based on the recently published investigations (Table 1)
and propose a plausible gas sensing mechanism.

The gas sensing mechanism of the WO3 based sensors can be
demonstrated as the change in sensor resistance caused by the
redox reaction between the oxygen species (mainly O−) and test
gas molecules on the surface of synthesized materials, as shown
in Figure 1D. For typical n-type WO3 based sensing materials,

TABLE 1 | Summary of recent researches on WO3 based sensors for sensing of

fault characteristic gases dissolved in transformer oil.

Gas Sensing material Concentration Temp. Response Refereneces

H2 WO3 nanoparticles 200 ppm 200◦C 20 Boudiba et al.,

2013

WO3 nanoparticles 0.5 vol% R.T. 27.3 Xiao et al., 2018

Pd-doped

mesoporous WO3

5000 ppm R.T. 11.78 Wu et al., 2019

PdO-WO3

nanohybrids

40 ppm 100◦C 23.5 Geng et al., 2017

WO3 nanosheets 1% 250◦C 80% Rahmani et al.,

2017

CO Pt doped

mesoporous WO3

100 ppm 125◦C 10.1 Ma et al., 2018

Cauliflower-like

WO3

50 ppm 270◦C 16.6 Wei et al., 2017

Pt-modified WO3

films

20 ppm 150◦C 114 Lei et al., 2016

Pt-WO3 nanorods 30 ppm 300◦C 4.82 Park et al., 2012

CH4 SnO2-WO3

nanosheets

500 ppm 90◦C 1.5 Xue et al., 2019a

Rh-modified WO3

films

5 ppm 350◦C 63.1 Tan and Lei, 2019

Au-WO3 nanowire 100 ppm 250◦C 37% Vuong et al., 2015

SnO2-WO3

nanoplates

500 ppm 110◦C 2.85 Xue et al., 2019b

C2H2 Porous WO3

networks

200 ppm 300◦C 58 Zhang et al., 2018b

WO3 nanoflowers 50 ppm 275◦C 20.95 Wei et al., 2019b

rGO-WO3

nanocomposite

50 ppm 150◦C 15 Jiang et al., 2018

R.T., room temperature.

the oxygen molecules in the testing environment will be reduced
and adsorbed on the surface of the materials by capturing the
electrons from the conduction band, and the target gas molecules
will react with the oxygen ions and release the electrons back to
the conduction band. The involved reactions can be described as
follows (H2 and CO gas are taken as examples):

O2(g) → O2(ads) (1)

O2(ads) + 2e− → 2O−
(ads) (2)

H2(g) + O−
(ads)+ → H2O(ads) + e− (3)

CO(ads) + O−
(ads) → CO2 + e− (4)

CONCLUSION

In this mini review, we focus on the synthesis strategies,
morphology control, sensing experimental procedures, and gas
sensing performances of hierarchical WO3 structures from 0-D
to 3-D. The gas sensing properties of various high-performance
WO3 based sensors are summarized and discussed, especially in
regards to the detection of fault characteristic gases dissolved
in transformer oil. With an increasing requirement for high
quality gas sensors with high responses, prominent selectivity,
outstanding stability, and excellent repeatability, considerable
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efforts have been made to propose more effective synthesis
routes, more beneficial morphology control and more accurate
experiment processes. It can be foreseen that more and more
hierarchical WO3 structures will be rationally designed and
prepared due to their complicated microstructures with high
special surface areas, broad internal contact area, and well-
defined structures. These special hierarchical structures will
provide more diffusion paths, reactive sites, and micro reaction
spaces for target gas molecules adsorption, retention, and
reaction. Although some achievements have been made by
unremitting efforts, the further enhancement of the gas sensing
properties of WO3 based sensors for practical applications
is still a challenging but meaningful work. We hope that
our work can contribute some beneficial guidance to the
exploration of the surface morphology and special hierarchical
structures of WO3. Additionally, much effort should be
made to fabricate high-performance WO3 based sensors with

predictably complicated hierarchical structures for detecting

various gases, especially the fault characteristic gases dissolved in
transformer oil.
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