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Editorial on the Research Topic

Application of Optimization Algorithms in Chemistry

Molecular structure optimization, fitting potential energy functions to ab initio and experimental
data, and spectral assignment are among the hardest optimization tasks in molecular sciences.
These are fundamental problems in chemistry, but they can also be relevant in molecular physics
and biochemistry. In past decades, several methodologies have been proposed to help in the
above mentioned tasks, and some of them are already incorporated into computational tools,
such as GMIN (Wales and Scheraga, 1999; Wales, 2010), Gradient Embedded Genetic Algorithm
or GEGA (Alexandrova and Boldyrev, 2005), OGOLEM (Hartke, 1993; Dieterich and Hartke,
2017), Birmingham Cluster Genetic Algorithm or BCGA (Johnston, 2003; Shayeghi et al., 2015),
Evolutionary Algorithm for Molecular Clusters or EA_MOL (Llanio-Trujillo et al., 2011; Marques
and Pereira, 2011), Global Reaction Route Mapping or GRRM (Ohno and Maeda, 2006, 2019),
Automated Mechanisms and Kinetics or AutoMeKin (Martínez-Núñez, 2015a,b; Martínez-Núñez,
2020), and Genetic Algorithm fitting or GAFit (Rodríguez-Fernández et al., 2017, 2020). Most of
these computational programs are interfaced with well-known packages that perform electronic-
structure calculations and, hence, allow for a direct assessment of the semi-empirical, density
functional theory (DFT) or ab initio energy of the system during the optimization process. Another
relevant methodology to explore low-energy landscapes is the parallel-tempering Monte Carlo
technique, which has been also applied in the calculation of thermodynamic properties.

Global geometry optimization studies are, now, being extended to systems of increasing
complexity. In particular, global optimization algorithms have been applied to a great diversity
of chemical systems, including atomic and molecular clusters as well as colloidal aggregates
and biomolecules. Nonetheless, optimization work needs, in general, a large number of
computational resources and, hence, improvements in algorithms to relieve the burden. Major
challenges are concerned with the treatment of systems with increasing size and incorporating
higher levels of theory in the molecular model. Also, multi-component aggregates pose an
important combinatorial problem and require novel optimization strategies. Although the use
of state-of-the-art spectroscopic techniques to probe the structure of clusters has allowed for
close collaborative work involving computational and experimental achievements, there is still
room for greater improvement in this effort. In particular, comparisons between theoretical and
experimental spectroscopic data will benefit from significant improvements in algorithms devoted
for the spectral assignment.
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Pursuing those purposes, we believe the collection of papers
for the present Research Topic illustrates the broad scope of
computational strategies for global optimization applications in
chemistry. All contributions describe optimization strategies for
a great diversity of chemical systems.

Basin-hopping (BH) is able to generate a coarse-grained
mapping of a potential energy surface (PES) in terms of local
minima, which can then be used to gain insights into molecular
dynamics and thermodynamic properties as pointed out by
Zhou et al. in their contribution. These authors also show how
unsupervisedmachine learning tools can be employed to enhance
BH searches, which result in more efficient identification of local
minima and transition states connecting them.

Jana et al. employ a particle swarm optimization (PSO)
method to search for small Cn clusters. PSO is another useful
algorithm for a stochastic search in multidimensional space.
The method has proven efficient in hard optimization problems
compared with traditional methods.

Hernández-Rojas and Calvo also employ BH method, this
time to predict low-energy structures of adamantane clusters
by using both coarse-grained and atomistic potential models.
Although coarse-grained models are appealing for the complex
clusters that are studied, the comparisonwith atomistic potentials
shows that some relevant structural details are not captured by
the former.

As for seeking conformational minima of flexible acyclic
molecules, Ferro-Costas and Fernández-Ramos propose an
algorithm that combines a systematic variation of torsion angles
with aMonte Carlo search. This methodology has been applied to
calculate multi-structural partition functions of several alcohols
ranging from n-propanol to n-heptanol and was also tested with
the amino acid L-serine.

Panadés-Barrueta et al. put forward a fully automated method
to generate highly-accurate semiempirical potential energy
surfaces. They use global optimization techniques and automated
PES sampling algorithms to refine specific reaction parameters

of semi-empirical Hamiltonians, which can be subsequently
employed in quantum dynamics studies.

In turn, Wang et al. carry out a microsolvation study of
Na+ with water by applying a genetic algorithm combined with
density functional theory to obtain low-energy structures of the
clusters. Also, a new genetic algorithm is proposed by Silva
et al. for the prediction of structures of nanoparticles. This
work explores the efficacy of new evolutionary operators to treat
Lennard-Jones and carbon clusters.

Khatun et al. develop a global optimizer which grows the
cluster by adding atoms one by one. The method is tested
by studying transition-metal clusters and binary and ternary
nanoalloys of such elements.

Cova and Pais review and discuss deep learning strategies
for optimizing the prediction of chemical patterns, which
includes accelerated literature searches, analysis and prediction
of physical and quantum chemical properties, transition states,
chemical structures, chemical reactions, and also new catalysts
and drug candidates.
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