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Chiral diketopyrrolopyrrole (DPP)-helicene polymers were synthesized to develop

efficient red circularly polarized (CP) light emitters. These original chiral dyes display

intense electronic circular dichroism (ECD) and CP luminescence (CPL) in the far-red

spectral region owing to the presence of excitonic coupling between achiral DPPs

within the chiral environment of the polymeric structure. This work affords an

interesting example illustrating the potential of π-conjugated helical polymers for chiral

optoelectronic applications.
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INTRODUCTION

Circularly polarized (CP) light has received renewed attention owing to its superior potential
over unpolarized one in a diverse range of domains such as (chir)optoelectronics (stereoscopic
displays, organic light-emitting diodes (OLEDs), optical information processing, etc.) as well
as in bio-imaging and chiral sensing (Riehl and Richardson, 1986; Berova et al., 2000, 2012;
Carr et al., 2012; Maeda and Bando, 2013; de Bettencourt-Dias, 2014; Kumar et al., 2015a;
Zinna and Di Bari, 2015, 2018; Zinna et al., 2015, 2017; Brandt et al., 2016; Longhi et al.,
2016; Li et al., 2017; Han et al., 2018; Tanaka et al., 2018). Until recently, luminescent chiral
lanthanides complexes have been the most studied molecular CPL emitters since this family
of compounds can display relatively high level of circularly polarized emission, characterized
by a luminescence dissymmetry factor glum = 2(IL-IR)/(IL+IR), of more than 1 (Carr et al.,
2012; Zinna et al., 2015; Zinna and Di Bari, 2018). However, lanthanide complexes often possess
low luminescent quantum yield (φ) and stability issues, which may difficultly render their
integration in optoelectronic devices such as CP-OLEDs, chiral photovoltaics and transistors
for example. To circumvent these aspects, the development of chiral emitting small organic
molecules (SOM) has gained increasing interest, also benefiting from their tunable photophysical
and chiroptical properties from the blue to the near-infrared spectral region (Li et al., 2017;
Han et al., 2018). One particularly appealing synthetic strategy to design efficient CPL emitters
has consisted in developing chirally perturbed π-extended achiral chromophores, mostly based
on C2-symmetric chiral moieties (chiral binaphthyl or 1,2-diamino-cyclohexane derivatives)
linked to bodipy or perylene organic dyes (Tsumatori et al., 2010; Langhals et al., 2011;
Kumar et al., 2013, 2014, 2015b; Sánchez-Carnerero et al., 2014; Sheng et al., 2016). In
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addition, helicenes have recently shown to be very good scaffolds
for the development of emissive materials with strong CPL
activity (Gingras, 2013; Chen and Shen, 2016; Dhbaibi et al.,
2018, 2020; Zhao et al., 2019; Shen et al., 2020). Following this
approach, we recently reported helical π-conjugated helicene-
diketopyrrolopyrrole (DPP) dyes [P-H6(DPP)2 and (P,P)-
DPP(H6DPP)2, Figure 1] (Dhbaibi et al., 2018) as red CPL
emitters, (Shen et al., 2014; Saleh et al., 2015; Pascal et al.,
2016; Sakai et al., 2016; Biet et al., 2017; Nishimura et al., 2017)
arising from an intramolecular exciton coupling (Berova et al.,
2012) between the achiral DPP units placed within the chiral
environment of the helicene. Based on purely π-π∗ transitions,
this design afforded promising glum factors of 6–9 × 10−4 at
610–650 nm associated with fluorescence quantum yields (φ)
of 35–40%. To our knowledge, this study remains the only
example of DPP based CPL emitters, despite the promising
potential of diketopyrrolopyrrole and its derivatives in a broad
range of applications such as OLEDs, photovoltaic devices,
organic transistors, and fluorescent probes (Nielsen et al., 2013;
Grzybowski and Gryko, 2015; Heyer et al., 2015; Kaur and Choi,
2015; Data et al., 2016).

FIGURE 1 | Chemical structures of CPL emitters based on helicene-diketopyrrolopyrrole polymers and their corresponding polarized and unpolarized luminescence

characteristics (P enantiomers are shown).

With the aim of deeper exploring this innovative and
promising synergy between chiral helicene and achiral
diketopyrrolopyrrole dye, we report here the synthesis and
chiroptical properties of novel π-conjugated helical polymeric
CPL emitters, namely rac-, (P)- and (M)-(H6DPP)n, Figure 1.
These new examples display intense electronic circular dichroism
(ECD) in the visible region and strong red CPL with glum =

1.4 × 10−3 at 660 nm, associated with a high φ of ∼35 %. This
first example of chiral helicene-DPP based polymer exhibits
higher CPL response than the molecular chiral helicene-
DPP dyes previously reported, and brings interesting aspects
for the design of efficient polymeric red and near infra-red
CPL emitters.

RESULTS AND DISCUSSION

Synthesis of Polymer (H6DPP)n
The helicene-DPP polymers were prepared using the Sonogashira
coupling between a helicene decorated with two alkynyl
functions and a DPP core substituted with two bromothiophene
units. In a first attempt to synthesize polymer (H6DPP)n, the
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FIGURE 2 | Synthesis of enantiopure P-(H6DPP)n. TMS: trimethylsilyl. Reaction conditions: (i) TBAF, CHCl3; (ii) Pd(PPh3)4, CuI, Et3N/toluene, 50
◦C; (iii) n-BuLi,

THF,−78◦C to rt, 60%; (iv) hν, I2 (1 equiv.), propylene oxide (50 equiv.), toluene, 50%; (v) TBAF, CHCl3, 52%, chiral HPLC. X-ray crystal structures of rac-4 and

rac-H6(Alkoxy)2 (octyl chains and hydrogen atoms have been omitted for clarity).

coupling was performed using enantiopure P- and M-2,15-
bis-(ethynyl)[6]helicene (P- and M-H6a) (Anger et al., 2012)
with 3,6-bis(5-bromothiophen-2-yl)-2,5-diketopyrrolopyrrole,
DPPBr2, respectively (Figure 2, where only P enantiomer is
described) (Wu et al., 2015). While the reactions seemed to
proceed efficiently, they resulted in the formation of insoluble
dark blue material (p1, Figure 2). To circumvent this solubility
issue, we introduced widely used branched 2-ethylhexyl (2-EH)

chains on the DPP unit in place of the linear octyl ones (Huo
et al., 2009; Palai et al., 2010). Although this fragment has a
chiral center, we used its racemic form since a weak influence
of these additional stereogenic centers is expected on the
photophysical and chiroptical properties of the final polymer
in diluted solution. Unfortunately, this new approach also
afforded insoluble blue solid when a stoichiometric mixture
of P-H6a and 2EHDPP 2 was subjected to the Sonogashira
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coupling conditions (p2, Figure 2). To further increase the
solubility of the obtained polymer material, the helicenic
fragment was also functionalized with additional linear
octyloxy chains through a new synthetic pathway involving
2-(octyloxy)-4-((trimethylsilyl)ethynyl)benzaldehyde, 2, as
starting material for the synthesis of the helicene fragment.
Indeed, the latter was engaged in a double Wittig reaction with
naphthyl-2,7-dimethylphosphonium bromide salt, 1, to give 2,7-
bis(2-(octyloxy)-4-((trimethylsilyl)ethynyl)styryl)naphthalene,
3, in 60% yield. The resulting cis/trans stilbene mixture was
subsequently submitted to a photocyclisation reaction with
propylene oxide as an acid scavenger to afford rac-2,15-bis-
((trimethylsilyl)ethynyl)-4,13-bis-(octyloxy)[6]helicene (4)
in 50% yield, followed by deprotection reaction of the two
remaining TMS groups to yield H6(Alkoxy)2 (Scheme 1). Fully
characterized by NMR spectroscopy and mass spectrometry (see
Supplementary Information), the structures of the two latters
were further ascertained by X-ray crystallographic analysis (see
Scheme 1 and Supplementary Information). Both rac-4 and
rac-H6(Alkoxy)2 crystallized in a P-1 space group and displayed
helicity (dihedral angle between the two terminal rings) of
41.1◦ and 54.4◦, respectively, which is in the range of classical
carbo[6]helicenes (Gingras, 2013; Chen and Shen, 2016; Dhbaibi
et al., 2019). Moreover, the lateral octyloxy chains point toward
the outside of the molecules, which may disfavor the formation
of polymer aggregates in solution.

Rac-H6(Alkoxy)2 was then submitted to chiral HPLC
separation to give P-(+) and M-(–) in 99 and 98.5% of
ee, respectively (see Supplementary Information for detailed
experimental conditions). These enantiomers, as well as the
racemic compound, were finally engaged in the polymerization
reaction with 2EHDPP 2 and gave expected soluble polymers
which were firstly filtered over a silica plug, then further
purified by size-exclusion chromatography (SEC, CHCl3) before
precipitated using CHCl3/MeOH solvent mixture to yield P-,
M-, and rac-(H6DPP)n in ∼45% yield for each polymer
(see Supplementary Information). These novel chiral dyes are
soluble in common organic solvents such as THF, CHCl3,
and CH2Cl2, and were characterized by 1H NMR and SEC
using a polystyrene standard in THF. The obtained NMR
spectrum displays characteristic signals for both helicene
and DPP starting materials: for instance, shielded H2,11 and
deshielded H6,7 helicenic protons at 6.75 and 8.50 ppm
respectively, and deshielded DPP protons H14,15 at 9.10 ppm (see
Supplementary Information). The number average molecular
mass (Mn) for rac-, P-, and M-(H6DPP)n were estimated
to be 6.9 × 103, 5.3 × 103, and 6.4 × 103, respectively,
which correspond to a low degree of polymerization, ca.
5-6 (helicene-DPP) units (see Supplementary Information).
The thermal stability of rac-(H6DPP)n was also evaluated by
thermogravimetric analysis (TGA) and resulted in an onset
decomposition temperature at 300◦C with a 10% weight loss.

UV-Vis, ECD, and Electrochemical
Characterizations
The ground state photophysical and chiroptical properties of
DPP-helicene polymers were investigated in CH2Cl2 solutions

and compared with corresponding precursors and previously
reported DPP(H6DPP)2. UV-Vis spectrum of (H6DPP)n
polymer displays two main absorption signatures between 300
and 425 nm and between 530 and 675 nm that correspond to
a combination of helicene and DPP transitions for the higher
energy region and only from DPP transitions for the low energy
part. The latter absorption region is red-shifted by 70 nm in
comparison with DPP precursor, characterized by ε = 7.0 ×

104 M−1 cm−1 at 565 nm and 35 × 104 M−1 cm−1 at 635 nm
for 2EHDPP 2 and (H6DPP)n, respectively, resulting from the
extension of the π-conjugation via the alkynyl bridges between
the DPP dye and the helicene units. These observations are
supported by comparison withDPP(H6DPP)2 UV-vis spectrum,
where contributions of both “DPP-helicene” and “helicene-
DPP-helicene” fragments are superimposed in the red region
(see Supplementary Information for additional details). Going
from oligomer DPP(H6DPP)2 to polymer (H6DPP)n does
not strongly red-shift the overall absorption signature (λmax

= 620 and 635 nm for DPP(H6DPP)2 and (H6DPP)n lowest
absorption bands, respectively), which suggests that electronic
communication between each bis(ethynyl)DPP unit through the
π-conjugated helicene is relatively limited along the polymer.
The observed difference of 15 nm results probably from the
presence of the electron donating octyloxy groups on the helicene
fragment for (H6DPP)n.

ECD of P- andM-(H6DPP)n displays expected mirror-image
spectra with intense responses ranging from 280 to 700 nm
(Figure 3). P-(H6DPP)n exhibits an intense negative ECD band
(1ε = −576 M−1 cm−1) at 309 nm which is 19 nm red-shifted
compared to helicene P-H6(Alkoxy)2, a broad strong positive
band between 347 and 500 nm with a maximum at 391 nm
(1ε = + 940 M−1 cm−1) and a shoulder at 414 nm (1ε =

+ 740 M−1 cm−1), a negative contribution at 565 nm (1ε =

−88 M−1 cm−1) followed by a positive one with a maximum
at 640 nm (1ε = + 481 M−1 cm−1). This lowest bisignate
DPP-centered signal is clearly reminiscent of what we observed
for (P,P)-DPP(H6DPP)2 (Figure 4), which was attributed to a
chiral excitonic coupling between the DPP-centered π-orbitals
in the helical arrangement (Bouvier et al., 2018; Dhbaibi et al.,
2018, 2020). Elongating the number of helicene-DPP association
within polymer P-(H6DPP)n appears as an efficient strategy to
obtain very intense ECD signature across the whole spectrum
and especially in the red region thanks to the increase of the
excitonic coupling intensity. Indeed, this higher sensitivity to
red circularly polarized light for P-(H6DPP)n is confirmed
by the evaluation of the associated dissymmetry factor gabs
= 1ε/ε = +1.8 × 10−3 at 649 nm, i.e., a 40 % increase in
comparison with (P,P)-DPP(H6DPP)2 (gabs = +1.3 × 10−3

at 610 nm).
The electrochemical behavior of (H6DPP)n was investigated

by cyclic voltammetry (CV, Figure S17 and Table S1), which
displays pseudo-reversible oxidation process at ca.+0.81V and a
reversible reduction one at−1.24V vs. SCE, respectively assigned
to the oxidation and the reduction of the DPP unit(s). The
calculated HOMO and LUMO energy level were −5.21 eV and
a LUMO level of −3.16 eV, respectively, leading to an estimated
electrochemical band gap of 2.05 eV.
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FIGURE 3 | UV-vis (top) and ECD (bottom) spectra of H6(Alkoxy)2 (black), 2EHDPP 2 (purple), DPP(H6DPP)2 (blue) and (H6DPP)n (orange) in CH2Cl2 at 298K

(∼10−5 M).

FIGURE 4 | Enlargement of 490–710 nm region of the ECD spectra of DPP(H6DPP)2 (blue) and (H6DPP)n (orange) in CH2Cl2 at 298K (∼10−5 M), with schematic

illustration of the chiral exciton coupling process in (H6DPP)n.
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FIGURE 5 | Normalized fluorescence (top) and CPL (bottom) spectra of DPP(H6DPP)2 (blue) and (H6DPP)n (orange) in CH2Cl2 at 298K. CPL spectra for P and M

enantiomers are shown, respectively, in solid and dotted lines.

Unpolarized (PL) and Circularly Polarized
Luminescence (CPL)
To our delight, (H6DPP)n displays intense unpolarized vibronic
emission arising from the DPP-ethynyl fragment with a
maximum intensity at 660 nm and a quantum yield of 35%.
Interestingly, these values suggest that embedding DPP-helicene
fragment within a polymer material is also an efficient strategy
to make deeper red emitter while keeping a high fluorescence
efficiency since DPP(H6DPP)2 exhibits similar luminescence
quantum yield (φ = 35%) but its emission is blue shifted
(λmax = 650 nm). In order to rule out the possibility of
charge transfer character the emission of the polymer was
carried out in solvents of different polarity including toluene,
tetrahydrofuran, and dichloromethane in which the polymer
was fully soluble (Figure S13). A similar spectral behavior
was found in these solvents with a structured signals and no
significant shift of the emission spectra, indicating that the
nature of the emission is mainly based on π-π∗ transitions
localized on the DPP units. The fluorescence kinetics of the
polymer was also performed at 650 nm (Figure S14) and fits a
single-exponential decay function with a decay time constant
of 2.08 ns.

Regarding circularly polarized luminescence (CPL), mirror-
image spectra were also obtained for P- and M-(H6DPP)n
with a maximum and a structural signature similar to
unpolarized emission, highlighting the synergy of the DPP-
helicene association also in the polymer chiral excited-state
(Figure 5). Moreover, glum factor of+1.3× 10−3 was determined
for P-(H6DPP)n, which suggests a relatively similar chiral
geometry of the ground and emitting excited states (glum/gabs =

0.72) and represents also a ca. 40% increase in comparison with
(P,P)-DPP(H6DPP)2 (glum = + 0.9 × 10−3). The obtained
glum values for polymers (H6DPP)n are in the same range of
reported SOM CPL emitters (10−4-10−2), and are among the
most efficient ones for the far red and near infrared region
(i.e., for λmax > 650 nm, 3 × 10−4

< glum < 4.3 × 10−3)
(Tanaka et al., 2018).

CONCLUSIONS

In summary, we have successfully prepared novel
helical conjugated polymers based on the association
between enantiopure carbo[6]helicene derivative and
diketopyrrolopyrrole dye via the Sonogashira cross-coupling.
These polymers show strong ECD signal in the visible region
(1ε × 482 M−1 cm−1 at 642 nm, for P-(H6DPP)n) and
strong CPL emission response signals (glum = +1.3 × 10−3

at 662 nm) along with high fluorescence quantum efficiency
(ϕf = 35 %). Extending the efficiency of exciton coupling
process in chiral polymers allow efficient preparation of CPL
emitters deeper in the red and near-infrared region. Our results
provide an alternative approach to the metalation and the
push-pull functionalization methodologies to extend and to
improve the chiroptical responses of the helicene molecules
by taking advantages of the strong synergy between the chiral
environment controlled by the helicene center and the interesting
photophysical properties offered by the corresponding dye. The
polymers based on the helicene unit that we presented in this
work can be used as a new class of candidates for efficient CPL
materials in optoelectronics and bioimaging applications.
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