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One of the most challenging issues for the large-scale application of nanomaterials,
especially nanocarbons, is the lack of industrial synthetic methods. Sonochemistry, which
creates an extreme condition of high pressure and temperature, has been thereby applied
for synthesizing a wide variety of unusual nanostructured materials. Hydrodynamic
cavitation (HC), characterized by high effectiveness, good scalability, and synergistic
effect with other physical and chemical methods, has emerged as the promising
sonochemistry technology for industrial-scale applications. Recently, it was reported that
HC can not only significantly enhance the performance of biochar, but also preserve or
improve the respective chemical composition. Moreover, the economic efficiency was
found to be at least one order of magnitude higher than that of conventional methods.
Due to the great potential of HC in the industrial-scale synthesis of nanomaterials,
the present perspective focuses on the mechanism of sonochemistry, advances in HC
applications, and development of hydrodynamic cavitation reactors, which is supposed
to contribute to the fundamental understanding of this novel technology.

Keywords: sonochemistry, synthesis of nanomaterials, hydrodynamic cavitation, hydrodynamic cavitation reactor,

application potentiality

INTRODUCTION

The concept of nanoscience and nanotechnology was first proposed by Richard Feynman in 1959
(Feynman, 1992). Until 1974, the term nanotechnology (Taniguchi, 1974) was introduced by Nario
Taniguchi during a scientific conference. With the help of the scanning tunneling microscope,
which was invented by Gerd Binnig and Heinrich Rohrer in 1981 (Binnig and Rohrer, 1987), the
modern nanotechnology has been developing rapidly since then. Recent advances in nanomaterials
have significantly influenced various fields, e.g., material science, medical science, environmental
science, magnetics, mechanics, and optics. Because the synthesis method largely determines
the physical properties and applications of nanomaterials, developing new methods to design
appropriate synthetic routes has been the research hotspot (Wang et al., 2019; Xu et al., 2019).
Among the diverse physical and chemical synthesis methods, sonochemistry method has been
considered one of the most powerful tools for synthesizing nanomaterials (Bang and Suslick, 2010).
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Sonochemistry can be effectively induced by ultrasounds
(i.e., acoustic cavitation, AC) or local pressure drop (i.e.,
hydrodynamic cavitation, HC). AC has been utilized to achieve
a wide variety of unusual nanostructured materials at laboratory
scale, e.g., metals, metal oxides, metal chalcogenides and carbides,
carbon, protein, and polymer. However, further application in
industrial-scale may be considerably difficult as the issues of
scale-up and energy efficiency (Gagol et al., 2018). Recently,
HC, which has emerged as the promising technology for various
industrial-scale applications, was found to be an effective tool
for synthesis of nanomaterials through mechanisms similar to
that of AC. The present paper aims to discuss the mechanism
of sonochemistry, recent advances in the HC technology
development, and its application perspective for synthesis
of nanomaterials.

SONOCHEMISTRY

Unlike traditional energy sources such as heat, light, or ionizing
radiation that are required for chemical reactions to proceed,
sonochemistry is a unique energy-matter interaction that occurs
without direct interaction with molecular species (Thompson
and Doraiswamy, 1999). Sonochemistry derives principally from
cavitation which is a rapid phase-change phenomenon in liquids,
consisting of growth and collapse of cavitation nuclei during
an extremely short period (Suslick, 1990). When the bubble
collapses, a huge amount of energy, on the order of 1–1018

kW/m3, can be released into surrounding liquids (Gogate et al.,
2006). The released energy can be divided into three forms (Sun
et al., 2018b).

Mechanical effect: Generation of shock waves with
propagation velocities of 2,000 m/s in average (Holzfuss
et al., 1998), micro-jets with high water-hammer pressure (450
MPa;Vogel et al., 1989) and velocity (over 120 m/s; Benjamin
and Ellis, 1966; Lauterborn and Bolle, 1975; Shima et al., 1981),
and high shear stresses (as high as 3.5 kPa; Dijkink and Ohl,
2008).

Thermal effect: Production of local hot spots (2,000–6,000K,
depending on the distance; Hart et al., 1990; Flint and Suslick,
1991; Didenko et al., 1999) with heating/cooling rates >1010 K/s
(Suslick et al., 1986).

Chemical effect: Formation of highly active hydroxyl radicals,
with an oxidation potential of 2.8 V, by the sonolysis of water
molecules (Arrojo et al., 2007; Kuppa and Moholkar, 2010).

The combination of the above three effects creates extreme
conditions for synthesis of nanomaterials at ambient conditions
(e.g., room temperature and atmospheric pressure) and
sometimes even without the utilization of catalysts. Taking
synthesizing nanostructured carbon materials as an example,
sonochemistry effect can not only enhance the reactions which
can lead to exotic carbon nanostructures (Sun et al., 2002), but
also induce dramatic morphology changes in pre-synthesized
carbon materials (Viculis et al., 2003). However, due to the
characteristics of AC, the energy density rapidly attenuates with
increasing distance from the ultrasonic horn and disappears at
a distance of as low as 2–5 cm (Gagol et al., 2019). Therefore,

to achieve the desired energy density, a number of ultrasonic
horns have to be closely arranged in an AC reactor. This inherent
feature of AC causes the equipment prices and operational
costs rise rapidly with the scale (Gagol et al., 2018), which
indicates that AC is not suitable for industrial-scale synthesis
of nanomaterials. On the other hand, HC, which can effectively
induce sonochemistry by utilizing a mechanical approach, has
the ability to overcome the inherent defect of AC.

HYDRODYNAMIC CAVITATION

Unlike AC, which is generated by applying ultrasound waves with
a cyclic succession of expansion (rarefaction) and compression
phases on a liquid (Vajnhandl and Majcen Le Marechal, 2005),
HC is induced by static pressure drops of the flowing liquid.
When the flow passes through constricted parts or irregular
geometries, the flow velocity increases and then, a decrease in
static pressure can be caused. Once the pressure falls below the
local saturated vapor pressure, cavitation nuclei existing in water
begin to grow because their internal pressures become greater
than the surface tension. When the flow pressure recovers,
the growing nuclei become unstable and collapse (Yan and
Thorpe, 1990). The working principle of a typical HC system
(Venturi) is shown in Figure 2A (Šarc et al., 2018). The liquids
in the reservoir are pumped to the Venturi section, cavitation
phenomenon occurs in the diffusion part of the Venturi, and
then, the liquids are sent back to the reservoir. The above process
will continue for a period of time until the satisfactory treatment
effect is obtained.

The exploration of HC began at the beginning of the
20th century as a negative consequence of erosion damage.
In 1912, Silberrad reported that cavitation was associated with
severe destructive damage to the propellers of the great ocean
liners Lusitania and Mauretania (Silberrad, 1912). Since then,
the researchers have been focusing on the negative effect of
cavitation, e.g., performance losses of various fluid machinery,
noise, and erosion damage (Rahmeyer, 1981; Sun et al., 2017b).
On the other hand, Save et al. (1994) presented the first case
study for microbial cell disruption by utilizing HC in 1994. After
that, the applications of HC have begun to attract attention
in a wide variety of areas, especially in the last few years
(Figure 1). Nowadays, researchers have found that HC can be
an effective tool for a number of chemical, biological, and
other types of applications, e.g., microbial inactivation [bacteria
(Mane et al., 2020), algae (Waghmare et al., 2019), virus (Kosel
et al., 2017)], the removal of organic compounds (acids Choi
et al., 2019, antibiotics (Tao et al., 2018), pesticides (Panda
and Manickam, 2019), dyes Yi et al., 2018, pharmaceuticals
(Rajoriya et al., 2019), fuel (Torabi Angaji and Ghiaee, 2015),
phenols Chakinala et al., 2008, etc.,) decomposition of waste-
activated sludge (WAS) (Nabi et al., 2019), depolymerization
(Prajapat and Gogate, 2019), denitrification (Song et al., 2019),
desulfurization (Gagol et al., 2019), fibrillation (Kosel et al.,
2019), intensification of biogas production (Zielinski et al.,
2019), biofuel synthesis (Chipurici et al., 2019), liposome
destruction (Pandur et al., 2020), catalyst slurry preparation
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FIGURE 1 | Articles about HC application from 2000 to 2019 (based on Google Scholar available on 25.2.2020).

(Kuroki et al., 2019), flotation (Ross et al., 2019), food processing
(Terán Hilares et al., 2019), surface finishing (Nagalingam
et al., 2019), viscosity reduction (Gregersen et al., 2019),
residual stress relief, cleaning, and emulsification (Wu et al.,
2019).

Until last year, the first study on the nanomaterial preparation
by utilizing HC was reported by Albanese et al. (2019)
who utilized HC to enhance the surface area of biochar
by as much as 120%, while preserving or improving the
respective chemical composition. The increases in functionality
and porosity of the biochar were contributed to the effect
of the physical impact and oxidation (hydroxyl radicals) of
HC. Moreover, the economic efficiency was found to be
at least one order of magnitude higher than that of the
conventional method, which demonstrates that HC can be an
effective alternative approach for synthesis of nanomaterials. HC
phenomenon is induced by hydrodynamic cavitation reactor
(HCR), i.e., the container for HC reaction, therefore, the HC
generation efficiency of HCR determines the treatment effect,
economy, and applicability of HC technology. To accelerate
the development of HC-based synthetic strategies of industrial-
scale production of nanomaterials, the most important thing
is to develop new-family HCRs. Therefore, we further make
a simple overview of the development of HCR in order
to give readership more clearer understandings about this
new field.

DEVELOPMENT OF HCR

HCRs can be generally categorized into two types based on
their operational mechanism: non-rotational and rotational.
In common conventional HCRs [CHCRs, e.g., Venturi type
(Figure 2B; Jančula et al., 2014) and orifice type], low-pressure
separation region can be formed when the fluid passes through
the contractive portion where the static pressure is converted
to kinetic energy (Merzkirch et al., 2015). To understand the
mechanisms of HC treatment, CHCRs have been widely utilized
in laboratory scale in the previous studies, because of the
advantages they offer in simple design, lack of moving parts, and
ease of manufacture and use (Dular et al., 2016). Moreover, some
researchers found that CHCRs can be applied to real industrial
applications (Hirooka et al., 2009).

Recently, a few rotor-stator type HCRs (R-S HCRs) have
been introduced in the literature. R-S HCRs utilize a circular
disk or cylinder with numerous gaps to generate cavitation
(Figure 2C; Zupanc et al., 2014). Due to the viscosity, the
fluid is driven by the rotor and the flow direction is identical
to the rotational direction. The flow punches the back edge
of the gap and forms separation region with low pressure.
Cavitation bubbles can occur when the rotational speed reaches
the critical value. The results from the corresponding research
indicated the effectiveness of the treatment, economic efficiency
which is far beyond those of traditional devices in the removal
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FIGURE 2 | Schematic diagram of representative HC working principle (A) Šarc et al. (2018) and HCRs, (B) Venturi, and (C) rotor-stator type (Zupanc et al., 2014).

of microorganism (Milly et al., 2007, 2008; Šarc et al., 2018;
Sun et al., 2018a,b; Maršálek et al., 2020), WAS treatment
(Petkovšek et al., 2015; Kim et al., 2019, 2020; SeŽun et al.,
2019), organic wastewater treatment (Badve et al., 2013; Zupanc
et al., 2014), biofuel synthesis (Mohod et al., 2017; Chipurici
et al., 2019), fibrillation (Kosel et al., 2019), intensification of
biogas production (Patil et al., 2016), and delignification (Badve
et al., 2014), etc., even without geometrical optimization or in
scaled-up application. In addition, due to the extreme conditions
and the hydroxyl radicals produced by HC, effective synergic
effects between HC and heating, AC (Sun et al., 2018a), various
oxidants (Saharan et al., 2011), photocatalyst (Wang et al., 2011),
photolysis (Zupanc et al., 2014), and electrochemical (Wang et al.,
2010) have been proved. More importantly, it is worth noting
that R-S HCRs show promising scalability (Joshi and Gogate,
2019), and their performance can be easily improved by scaling
up the dimensions, which was confirmed by Sun et al. (2018a)
who found that when the rotor of the HCR doubled in size (290–
590mm), heat generation and thermal efficiency increased from
48 to 200 MJ/h and 82 to 91%, respectively.

So far, HC technology has not been widely utilized in
industrial applications around the world, even though it has
been investigated and developed for nearly 30 years. Most of
the existing research relates to applications, the characteristics
of HCRs have been rarely focused, which largely influences
the development and application of HC technology. Even
though a few researchers have made important contributions
in theoretical (Sarvothaman et al., 2019), computational (Badve
et al., 2015), and experimental (Zhang et al., 2018) aspects

of HCRs, their cavitation generation mechanism, internal
flow fields, external characteristics, and scale-up law are not
well understood by utilizing experimental flow visualization,
particle image velocimetry, and computational fluid dynamic
methods, especially for the R-S HCRs. More importantly, the
universal research and design methods (e.g., the theoretical and
numerical methods for design the rotor, stator, and flow path,
scale-up law, and optimization method) for HCRs have not
been established yet. The investigations on the internal fluid
field, geometrical optimizations, numerical simulation methods,
dimensional analyses, and similarity laws for the external
characteristics, etc., are required in future.

CONCLUSION AND PERSPECTIVE

The present paper illustrated the mechanism of sonochemistry,
advances in HC applications, and development of hydrodynamic
cavitation reactors, with the aim to contribute to the fundamental
understanding of this novel technology. With the mechanism
similar to that of AC, HC technology appears to be an
effective sonochemistry means for synthesizing nanomaterials
in industrial-scale due to its good scalability. The development
and application of HC synthetic method will be a real challenge
because of its highly interdisciplinary (related to sonochemistry,
fluid dynamics, material science, and mechanical engineering).
However, significant progress in this technology will lead
to the considerable promotion of the industrialization of
nanomaterials. Several challenges and research directions that
can be considered are outlined below:
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• To understand the HCmechanism, it is necessary to apply HC
to the preparation of various types of nanomaterials, including
metals, alloys, oxides, sulfides, carbides, carbons, polymers,
and biomaterials.

• Studying the synergistic effects between HC and traditional
synthetic methods on the structure and performance
of nanomaterials.

• Developing appropriate CFD methods to reveal the cavitation
generation mechanism and design new HCRs.

• Optimizing the geometrical structure of HCRs by advanced
algorithms (Sun et al., 2017a; Sun and Yoon, 2018).

• Establishing the universal research and design methods
for HCRs.
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