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Pharmaceutical or phytopharmaceutical molecules rely on the interaction with one

or more specific molecular targets to induce their anticipated biological responses.

Nonetheless, these compounds are also prone to interact with many other non-intended

biological targets, also known as off-targets. Unfortunately, off-target identification is

difficult and expensive. Consequently, QSAR models predicting the activity on a target

have gained importance in drug discovery or in the de-risking of chemicals. However, a

restricted number of targets are well characterized and hold enough data to build such

in silico models. A good alternative to individual target evaluations is to use integrative

evaluations such as transcriptomics obtained from compound-induced gene expression

measurements derived from cell cultures. The advantage of these particular experiments

is to capture the consequences of the interaction of compounds on many possible

molecular targets and biological pathways, without having any constraints concerning

the chemical space. In this work, we assessed the value of a large public dataset of

compound-induced transcriptomic data, to predict compound activity on a selection

of 69 molecular targets. We compared such descriptors with other QSAR descriptors,

namely the Morgan fingerprints (similar to extended-connectivity fingerprints). Depending

on the target, active compounds could show similar signatures in one ormultiple cell lines,

whether these active compounds shared similar or different chemical structures. Random

forest models using gene expression signatures were able to perform similarly or better

than counterpart models built with Morgan fingerprints for 25% of the target prediction

tasks. These performances occurred mostly using signatures produced in cell lines

showing similar signatures for active compounds toward the considered target. We show

that compound-induced transcriptomic data could represent a great opportunity for

target prediction, allowing to overcome the chemical space limitation of QSAR models.
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INTRODUCTION

Biologically active molecules rely on the interaction with one or
more molecular targets (Hughes et al., 2000). In the context of
hit discovery both in pharmaceutical or in phytopharmaceutical
industries, a major objective is to be able to screen molecule
candidates for their activity toward a target of interest, and
assessing compound activity toward off-targets, that can cause
adverse effects in vivo (Rouquié et al., 2015). Testing activity of
every candidate on a battery of targets represent a complex task
that requires major R&D costs. A potential solution to predict
candidate’s activity with a lower cost is to perform computational
methods using more general measured or calculated descriptors
(Chen et al., 2016; Vamathevan et al., 2019).

A commonly used technique is to compute descriptors from
chemical structures, like the extended-connectivity fingerprints
(ECFPs) and use them for prediction, relying on the quantitative
structure-activity relationship (QSAR) principle, i.e., molecules
sharing a similar structure may share a similar activity profile
(Rogers and Hahn, 2010; Cherkasov et al., 2014). However,
such molecule descriptors show limitations: they do not
perform well for all target prediction tasks depending on the
quantity and quality of available activity data, prediction is
limited to the applicability domain (depending on the training
set used), and a small change in chemical structure can
lead to a large change in biological response (activity cliffs)
(Cruz-Monteagudo et al., 2014).

Additional descriptors have been proposed to circumvent
such QSAR drawbacks, such as measurements from large
scale biological assays (Petrone et al., 2012; Laufkötter et al.,
2019). Results from high throughput screening (HTS) assays,
such as bioactivity experiments, can be used as fingerprints
(HTSFPs) in predictive models for specific targets. Petrone et al.
(2012) showed that models using HTSFPs were outperforming
models using ECFPs for certain targets, and that HTSFP
models’ predictions were covering a large structural diversity.
The main limiting factor of such models is the sparsity of
available activity data. Besides bioactivity data, more integrative
large-scale biological measurements, like transcriptomics or cell
morphology readouts can be used for target prediction (Aliper
et al., 2016; Pabon et al., 2018; Scheeder et al., 2018; Simm et al.,
2018; Hofmarcher et al., 2019; Kuthuru et al., 2019; Lapins and
Spjuth, 2019).

Compound-induced gene expression data are gathered from
biological experiments reflecting how the compound acted on
one or multiple targets in a specific biological context. Cancer
cell lines, being easily cultured, are a commonly used model
to generate gene expression data. Hughes et al. (2000) proved
that enough data allows to use pattern-matching algorithms to
study similarity between signatures coming from drug induction

(Hughes et al., 2000). Lamb et al. (2006) invented the concept of

Connectivity Map (CMAP), creating relationships between small

molecules, genes and diseases (Lamb et al., 2006). Since then,
transcriptomics data have been shown to be useful to identify
new molecules with biological activity (Hieronymus et al., 2006;
Wei et al., 2006). Recently, a large public CMAP L1000 dataset
was released representing more than 300,000 Gene Expression

Signatures (GESs) of cell line responses to so-called perturbagens
(Subramanian et al., 2017). GESs were produced for more than
20,000 compounds in 80 human cancer cell lines, tested at various
concentration and exposition time. The large scale of this dataset
allows the use of GESs in machine learning models for target
prediction or drug repurposing (Lee et al., 2016; De Wolf et al.,
2018).

In the current work, we investigated whether we could predict
compound activity toward a larger number of molecular targets
based on their GESs extracted from the CMAP L1000 dataset.
In addition, we were interested to reveal how machine learning
models using GESs perform compared to models using more
traditional QSAR descriptors, such as the Morgan fingerprints.

We show that random forest models built using compound-
induced GES were able to effectively predict targets, especially
if they were produced from a cell line showing similar GESs
between active compounds on the evaluated target. For 25% of
the target prediction tasks, GESs models had similar or higher
performances than models using Morgan fingerprints, offering
an opportunity to escape from the chemical space limitation
associated with QSAR approaches.

MATERIALS AND METHODS

Gene Expression Signatures (GESs)
Acquisition
The CMAP L1000 dataset was obtained from two GEO
repositories: GSE92742, corresponding to the first phase of
L1000 (pilot, 2012–2015) and GSE70138, which is the second
phase (production, on-going). GESs generation was described by
Subramanian et al. (2017).

For this study, we only used Level 5 GESs meaning that each
GES is represented by an instance, that is a combination of a
perturbagen (chemical or gene deletion), cell line, concentration
and time point, and is composed by the plate-normalized
expression z-scores of the whole genome, inferred from 978
landmark genes (measured gene that can be used for whole
transcriptome inference). We focused on landmark signatures
of compound perturbagens, which comprises 333,273 GESs for
21,300 unique compounds. GESs obtained in the exact same
condition were averaged, to have one signature per condition.

Among all obtained GESs, the ones generated at a 10µM and
24 h time point were selected (as shown in Figure 1), as this
condition was the most represented in the dataset and facilitate
the comparison of results. GESs from the 8most profiled cell lines
were used; cell line and number of GESs are presented in Table 1.
Also, only GESs generated by compounds with known structure
were selected. In total, the working dataset contains 39,544 GESs
obtained from 9,035 compounds.

Activity Data Acquisition
Annotations about activity or inactivity was retrieved from the
PubChem BioAssay database, using available CIDs documented
in the L1000 signature metadata, excepted for TUBB actives,
that were extracted from the Drug Repurposing Hub of the
LINCS (Wang et al., 2014; Corsello et al., 2017). Activity data
were compiled in a binary activity matrix (1 for active, 0 for
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FIGURE 1 | Data analysis pipeline performed in current work. Starting from the CMAP L1000 dataset, signatures produced at 10µM and 24 h from 8 cell lines were

extracted and used in t-SNE and distance plots. One dataset was built per cell line (GES and corresponding compound structure), and each of these datasets were

restricted to compounds having known annotations (active or inactive) for the evaluated target. For each target—cell line dataset, a first model was built using the

gene expression signatures (GES model). Alongside, a second counterpart model was built using the Morgan fingerprints of compounds whose signatures were used

in the first model (Morgan FP model).

TABLE 1 | The 8 core cell lines used in this work, with their corresponding

number of GESs for compounds with known structure tested at 10 µM/24 h.

Cell line Primary site Subtype Number of 10 µM−24h

signatures

A375 Skin Malignant melanoma 3,525

A549 Lung Non small cell lung

cancer| carcinoma

5,267

HA1E Kidney Normal kidney 3,646

HCC515 Lung Carcinoma 1,932

HT29 Large intestine Colorectal

adenocarcinoma

3,192

MCF7 Breast Adenocarcinoma 7,546

PC3 Prostate Adenocarcinoma 8,071

VCAP Prostate Carcinoma 6,365

inactive, empty if unknown). At least one annotation among
1,388 targets was found for 7,804 of the 9,035 compounds
(512,406 annotations were found, representing 4.8% of the full
activity matrix).

Representation of Chemical and Biological
Spaces
For each compound, binaryMorgan fingerprints were computed.
The Morgan fingerprints were employed as input of a t-SNE (t-
distributed stochastic neighbor embedding) algorithm (using the
sklearn implementation) using Dice distance as metric, to reduce

the data to a two-dimensional output that can be plotted to
represent the chemical space (Van Der Maaten and Hinton, 2008;
Pedregosa et al., 2011). Information of the number of targets per
compound was included as color-code using a blue gradient in
the plot.

The whole extracted 10 µM/24 h signature dataset was used
as input for a second t-SNE using the cosine distance metric,
representing the overall biological (response) space wherein each
cell line was color-coded in the plot. For every cell line, a t-SNE
using the cosine distance metric was performed using all GESs
profiled in the cell line, generating 2D biological space.

Machine Learning Modeling
Targets for which we know at least 50 active compounds
(representing between 1 and 63% of active per target) were
selected for machine learning modeling in order to have a
minimum number of actives in test sets to evaluate the model
performances, and for computational time purposes. Complete
information on the number of active and inactive compounds for
these selected targets is listed in Table 2.

Subsequently, for each cell line GES dataset, we created a
target—cell line GES dataset, restricting to compounds for which
target activity was known as shown in Figure 1 (this step caused
the number of possible models to drop from 1,104 to 990).
Datasets for each target prediction task were split into a training
set (67% of the data) and a test set (remaining 33% of the data).
Two models for target activity prediction were trained using
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TABLE 2 | Molecular targets used in this work, with number of active and inactive compounds in total, and in each cell line GES dataset.

Gene name Total

inactive

Total

active

Description A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active

ABCB1 801 96 ATP binding cassette subfamily B

member 1 [HGNC:40]

331 42 545 60 424 50 211 32 317 32 770 95 772 95 608 68

ABHD5 2,458 57 Abhydrolase domain containing 5

[HGNC:21396]

908 22 1,533 47 - - - - - - 2,030 57 2,045 57 1,730 52

ALOX15 1,136 101 Arachidonate 15-lipoxygenase

[HGNC:433]

508 27 764 92 808 52 496 33 498 27 1,062 97 1,066 96 804 91

AR 1,085 103 Androgen receptor [HGNC:644] 580 36 639 64 757 62 374 36 572 37 1,038 94 1,036 93 682 69

ATAD5 2,213 97 Atpase family, AAA domain containing

5 [HGNC:25,752]

1,007 43 1,466 70 1288 60 638 41 922 42 2,087 90 2,090 88 1,629 72

ATXN2 1,897 143 Ataxin 2 [HGNC:10555] 695 36 1,139 104 950 50 501 41 652 41 1556 123 1,558 129 1,243 102

BAZ2B 1,252 143 Bromodomain adjacent to zinc finger

domain 2B [HGNC:963]

516 63 873 101 653 76 319 37 470 56 1,199 135 1,197 136 974 112

BRCA1 3,008 160 BRCA1, dna repair associated

[HGNC:1100]

1,117 67 1945 116 1,519 63 800 33 1,014 50 2,537 148 2,549 150 2,134 131

CBX1 1,999 80 Chromobox 1 [HGNC:1551] 899 41 1,412 64 1,120 61 532 38 809 40 1,899 75 1,904 76 1,576 67

CHRM1 2,433 86 Cholinergic receptor muscarinic 1

[HGNC:1950]

906 49 1,544 62 1,055 59 460 39 791 48 2,036 84 2051 83 1,739 65

CHRM4 2,476 70 Cholinergic receptor muscarinic 4

[HGNC:1953]

908 45 1,552 54 1,057 55 460 40 793 45 2,049 68 2,064 67 1,751 54

CHRM5 2,478 62 Cholinergic receptor muscarinic 5

[HGNC:1954]

908 41 1,553 47 1,057 49 461 36 793 39 2,050 62 2,065 61 1,751 50

CYP1A2 307 526 Cytochrome P450 family 1 subfamily

A member 2 [HGNC:2596]

145 265 183 399 219 428 136 277 144 261 299 505 294 505 183 410

CYP2C19 717 276 Cytochrome P450 family 2 subfamily

C member 19 [HGNC:2621]

329 151 514 213 486 228 289 138 324 148 688 271 684 272 524 225

CYP2C9 708 270 Cytochrome P450 family 2 subfamily

C member 9 [HGNC:2623]

310 157 510 197 476 222 285 126 305 154 679 264 674 263 517 207

CYP3A4 1,153 164 Cytochrome P450 family 3 subfamily

A member 4 [HGNC:2637]

472 113 780 104 847 133 561 64 467 110 1,070 160 1069 161 802 118

DRD1 1,843 99 Dopamine receptor D1 [HGNC:3020] 807 54 1,295 71 1028 78 526 55 725 54 1,762 91 1,762 91 1,450 71

DRD2 2,262 95 Dopamine receptor D2 [HGNC:3023] 769 58 1,371 73 956 84 474 55 683 57 1,858 93 1873 93 1,541 74

DRD3 2,446 142 Dopamine receptor D3 [HGNC:3024] 877 76 1,432 110 1,129 114 551 78 823 75 2,004 139 2,017 139 1,569 111

EPAS1 2,443 70 Endothelial PAS domain protein 1

[HGNC:3374]

– – 1,524 52 – – – – – – 2,021 64 2,033 67 1,723 57

FEN1 2,100 53 Flap structure-specific endonuclease

1 [HGNC:3650]

961 23 1,496 29 1,213 28 – – 866 21 1,990 46 1,999 46 1,669 32

GFER 1,589 89 Growth factor, augmenter of liver

regeneration [HGNC:4236]

679 37 1,153 59 813 46 363 21 600 29 1,519 81 1,519 81 1,294 70

(Continued)
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TABLE 2 | Continued

Gene name Total

inactive

Total

active

Description A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active

GLS 2,989 66 Glutaminase [HGNC:4331] 1,240 22 1,878 46 1,515 31 – – – – 2,560 58 2,574 59 2,072 53

GMNN 2,079 161 Geminin, DNA replication inhibitor

[HGNC:17493]

969 67 1,392 121 1,224 72 569 43 884 63 1,972 146 1,974 153 1,552 128

HPGD 1,464 92 15-Hydroxyprostaglandin

dehydrogenase [HGNC:5154]

575 38 1,000 74 962 62 618 39 567 37 1363 89 1,363 86 1,060 71

HSD17B10 1,211 107 Hydroxysteroid 17-beta

dehydrogenase 10 [HGNC:4800]

516 48 827 84 858 81 548 47 506 48 1,134 99 1,135 95 866 81

HSP90AA1 666 56 Heat shock protein 90 alpha family

class A member 1 [HGNC:5253]

295 25 453 39 419 38 – – 288 25 640 50 637 50 502 40

HSPB1 876 76 Heat shock protein family B (small)

member 1 [HGNC:5246]

461 40 522 45 600 53 304 26 454 41 837 72 837 71 558 47

HTR1A 412 60 5-Hydroxytryptamine receptor 1A

[HGNC:5286]

186 34 279 49 232 55 122 37 180 34 401 58 400 58 315 50

IL1B 1,773 206 Interleukin 1 beta [HGNC:5992] 589 54 1,005 165 768 78 382 54 541 54 1,385 190 1,391 196 1,122 163

JAK2 895 80 Janus kinase 2 [HGNC:6192] 378 39 663 58 478 43 248 29 364 40 867 71 867 74 723 55

JUN 842 97 Jun proto-oncogene, AP-1

transcription factor subunit

[HGNC:6204]

442 49 491 67 570 72 279 41 435 49 801 91 799 91 523 70

KCNH2 363 190 Potassium voltage-gated channel

subfamily H member 2 [HGNC:6251]

174 119 212 136 250 161 128 104 173 119 331 183 329 184 228 139

KDM4A 1,607 192 Lysine demethylase 4A

[HGNC:22978]

693 76 1,130 125 834 87 379 42 603 69 1,529 173 1,536 175 1,286 140

KDM4E 1,389 124 Lysine demethylase 4E

[HGNC:37098]

543 43 999 88 880 70 547 40 530 42 1,320 109 1,321 110 1,057 95

MITF 3,626 132 Melanogenesis associated

transcription factor [HGNC:7105]

1,170 42 2,238 91 1,562 51 858 42 1,083 37 2,832 116 2,871 120 2,460 93

MLLT3 14,566 101 MLLT3, super elongation complex

subunit [HGNC:7136]

– – 2,244 26 – – – – – – 3,002 33 3,461 50 3,095 46

MPHOSPH8 506 52 M-Phase phosphoprotein 8

[HGNC:29810]

278 21 365 39 403 41 253 29 278 21 490 48 485 50 382 43

MYC 2,069 121 MYC proto-oncogene, bHLH

transcription factor [HGNC:7553]

– – 1,067 113 – – – – – – 1,230 114 1,249 117 1,151 115

NFE2L2 2,850 226 Nuclear factor, erythroid 2 like 2

[HGNC:7782]

1,142 94 1,816 148 1,355 153 620 83 1,013 95 2,425 204 2,439 204 2,023 152

NFKB1 2,875 107 Nuclear factor kappa B subunit 1

[HGNC:7794]

730 23 1,608 91 1,237 37 814 29 716 22 1,978 100 2,000 101 1,742 94

NOD1 1,056 51 Nucleotide binding oligomerization

domain containing 1 [HGNC:16390]

– – 754 43 – – – – 409 21 1,010 47 1,010 49 844 40

NOD2 2,578 59 Nucleotide binding oligomerization

domain containing 2 [HGNC:5331]

952 23 1,629 53 1,124 21 – – 836 23 2,152 57 2,165 59 1,837 48

NPSR1 1,007 55 Neuropeptide S receptor 1

[HGNC:23631]

– – 712 44 554 21 – – – – 959 52 956 54 777 50

(Continued)
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TABLE 2 | Continued

Gene name Total

inactive

Total

active

Description A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active

NR3C1 925 54 Nuclear receptor subfamily 3 group C

member 1 [HGNC:7978]

– – 636 38 692 34 451 25 – – 896 54 890 54 659 47

NR5A1 419 69 Nuclear receptor subfamily 5 group A

member 1 [HGNC:7983]

190 22 285 50 239 29 – – – – 408 60 407 64 322 50

OPRK1 1,122 51 Opioid receptor kappa 1

[HGNC:8154]

455 29 805 41 564 34 – – 428 29 1,068 51 1,070 50 895 41

PIP4K2A 1,898 88 Phosphatidylinositol-5-phosphate

4-kinase type 2 alpha [HGNC:8997]

609 31 1,082 66 812 34 – – 566 23 1,486 84 1,501 83 1,206 72

PLA2G7 1,907 57 Phospholipase A2 group VII

[HGNC:9040]

828 27 1,367 37 995 37 – – 737 28 1,825 52 1,826 51 1,534 37

PLK1 1,935 108 Polo like kinase 1 [HGNC:9077] 631 45 1,125 82 836 39 431 23 590 36 1,531 100 1,542 102 1,241 88

POLB 1,166 53 DNA polymerase beta [HGNC:9174] 480 22 850 37 646 30 – – 462 21 1,113 50 1,113 50 932 39

POLH 2,202 70 DNA polymerase eta [HGNC:9181] 858 26 1,342 44 1,015 37 – – 749 23 1,827 61 1,838 64 1,532 48

POLI 1,726 79 DNA polymerase iota [HGNC:9182] 775 29 1,210 52 945 43 448 24 689 27 1,629 71 1,637 72 1,359 55

POLK 2,895 79 DNA polymerase kappa [HGNC:9183] 1,248 30 2,048 49 1,799 43 986 27 1,154 26 2,713 69 2,722 70 2,225 54

PRMT1 2,886 80 Protein arginine methyltransferase 1

[HGNC:5187]

1,114 28 1,704 59 1,073 23 – – – – 2,394 74 2,415 74 2,081 68

RAD52 14,593 132 RAD52 homolog, DNA repair protein

[HGNC:9824]

– – 2,291 25 – – – – – – 3,043 40 3,496 54 3,121 49

SIRT5 14,103 141 Sirtuin 5 [HGNC:14933] – – 2,086 30 – – – – – – 2,769 40 3,211 44 2,844 42

SLC6A3 1,006 94 Solute carrier family 6 member 3

[HGNC:11049]

461 49 773 71 584 72 252 54 453 49 976 91 973 90 823 73

SMN2 1,633 53 Survival of motor neuron 2,

centromeric [HGNC:11118]

– – 1,136 44 1,059 28 – – – – 1,520 49 1,521 49 1,209 45

STK33 3,358 423 Serine/threonine kinase 33

[HGNC:14568]

1,127 101 2,077 304 1,458 163 776 131 1,034 102 2,660 329 2,663 360 2,268 328

TARDBP 1,802 60 TAR DNA binding protein

[HGNC:11571]

– – 1,044 50 748 25 – – – – 1,409 58 1,418 59 1,156 52

TNFRSF10B 2,429 80 TNF receptor superfamily member

10b [HGNC:11905]

– – 1,510 66 1,056 26 – – 786 27 2,008 73 2,021 75 1,718 58

TP53 2,310 198 Tumor protein p53 [HGNC:11998] 974 97 1,554 137 1,380 130 737 84 891 98 2,172 179 2,174 181 1,714 137

TSHR 2,259 70 Thyroid stimulating hormone receptor

[HGNC:12373]

968 25 1,579 58 1,317 43 727 35 – – 2,133 68 2,131 67 1,739 64

TUBB 697 51 Tubulin beta class I [HGNC:20778] – – 503 32 373 32 – – – – 692 48 693 49 563 32

USP1 2,356 64 Ubiquitin specific peptidase 1

[HGNC:12607]

877 30 1,425 46 1,260 45 697 29 833 30 1,972 55 1,985 58 1,557 44

VDR 2,696 140 Vitamin D receptor [HGNC:12679] 1,161 44 1,901 101 1,673 80 915 50 1,076 43 2,530 127 2,536 128 2,059 107

YES1 138 101 YES proto-oncogene 1, Src family

tyrosine kinase [HGNC:12841]

106 89 99 86 117 89 77 76 106 89 132 97 131 99 90 67
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each subset: a first model used the 978-landmark GES as input
(referred as GES models), and the second one used the Morgan
fingerprints of corresponding compounds to fairly compare
model performances (referred as Morgan FP models). Models
were trained using random forest classifiers (Breiman, 2001).

The training was performed using a 4-fold cross-validation on
training set to tune the maximum depth of tree, before assessing
prediction performances on the test set. The number of trees
per model was set to 200. Models were built in Python 2.7
using the sklearn package: to account for unbalanced dataset,
the “class_weight” parameter was set to “balanced_subsample,” to
increase the weight of the under-represented class samples when
training the trees (Pedregosa et al., 2011). A first step of feature
selection was performed using an initial random forest classifier,
computing the feature importance (Breiman, 2001). Sum of
importance of all feature was 1, with each feature importance
between 0 (non-important) and 1 (important). This step was
performed 5 times, feature importance was averaged by feature,
and only the 20 most important features were selected to be
loaded into a final random forest model. This whole modeling
pipeline, from train-test split to final model was performed 10
times per task, to account for variable performances depending
on the dataset split.

Models were evaluated by counting the numbers of true
positive (TP), true negative (TN), false positive (FP) and false
negative (FN). These parameters were combined in the following
metrics in order to compare model performances:

• Sensitivity = TP/(TP + FN)

• Specificity = TN/(TN + FP)

•Balanced accuracy (BA) :BA = (Sensitivity+ Specificity)/2

•Matthews correlation coefficient (MCC) :

MCC =
TP∗TN− FP∗FN

√
(TP+ FP) (TP+ FN) (TN+ FP) (TN+ FN )

Balanced accuracy allows for a fair evaluation of model
performances when using unbalanced datasets, by averaging
accuracy for each class (here active and inactives).

Quadrant Plots
Between each possible pair of compounds active on the same
target and in each cell line, Dice distance between Morgan
fingerprints, and cosine distance between GESs in given cell
line were computed. These 2 distances were plotted in a 2D
plot (referred as distance plot), Dice distance on X-axis and
cosine distance on Y-axis. These plots were theoretically split in
4 quadrants.

Quadrant I in the top-right corner contains active compound
pairs having different structures (Morgan fingerprints Dice
distance > 0.5) and presenting different GESs (cosine distance
> 0.5); quadrant II in top-left corner contains active compound
pairs having similar structures (Morgan fingerprints Dice
distance < 0.5) and presenting different GESs (cosine distance
> 0.5); quadrant III in bottom-left corner contains active
compound pairs having similar structures (Morgan fingerprints

Dice distance < 0.5) and presenting similar GESs (cosine
distance < 0.5); quadrant IV in bottom-right corner contains
active compound pairs having different structures (Morgan
fingerprints Dice distance > 0.5) and presenting similar
GESs (cosine distance < 0.5). Number of active compound
pairs in each quadrant were counted for each distance
plot. Similar calculations were made using not only active
compounds, but all compounds having an annotation (active
or inactive) for considered target and profiled in the same
cell line.

RESULTS

In the present work, we investigated the link between compound
structure information (n = 9,035) and their corresponding
induced biological responses captured by GESs (n = 39,544) in
human tumor cell lines and evaluated the potential of machine
learning approaches to infer about molecular targets involved
in the compound bioactivity. In addition, we compared these
machine learning models using GESs with counterpart models
using Morgan fingerprints.

Exploration of Chemical and Biological
Spaces
As a first step, to observe the diversity of the 9,035 compounds
profiled in the 10 µM/24 h L1000 signature dataset, the
corresponding chemical space was visualized. Figure 2A is a
2-dimensional t-SNE representation of the chemical space,
illustrating the variability in terms of Morgan fingerprints.
The 9,035 compounds form a broad chemical space, with a
mean Dice distance between compound pairs of 0.81 (ChEMBL
has a mean pairwise Dice distance of 0.82). The center of
the chemical space is mostly composed by small molecules
having on average a molecular weight lower than 500 Da
whereas the outer part is populated by clusters of compounds
with higher molecular weights (>500 Da). Overall, we were
able to retrieve, in the public domain, at least one activity
information for 7,837 compounds, from which 4,872 were active
in at least one target. The majority of those compounds were
found active in a low number of targets, on average 6 per
compound, with a median of 2. Not surprisingly, a set of
23 kinase inhibitors were found to be active in more than
100 targets.

Figure 2B shows a t-SNE plot created using all GESs induced
by the 9,035 compounds in the different cell lines to examine
the complete biological space. This t-SNE is color coded by
the different cell lines used to generate the gene signatures.
Each cell line is represented by a set of 4 to 5 main clusters
of GESs differing in size and some overlap of the cluster
indicates similar GESs derived from different cell lines. In
order to better appreciated the differences and communalities
in GESs obtained with the selected compounds, t-SNE plots
were created highlighting the clusters derived for cell lines
originating from the same tumor type namely prostate tumor
(VCAP and PC3 in Figure 2C) and lung tumor (A549 and
HCC515 in Figure 2D). GESs derived from cell lines coming
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FIGURE 2 | Exploration of the 2D chemical space, along with the corresponding 2D biological space formed by all GES. (A) t-SNE on Morgan fingerprints from the

9,035 compounds in working dataset, representing the chemical space. Points corresponding to compounds for which there is no known target are represented by

gray points (n = 4,163). Points corresponding to compounds for which there is at least one known target are in blue (n = 4,872), with darker blue depending on the

increasing number of targets. (B) t-SNE on all GESs in the working dataset, representing the biological (transcriptomic response) space. Points corresponding to

GESs are colored by cell line. (C) Biological space highlighting only PC3 and VCAP signatures, 2 cell lines originating from prostate cancer. (D) Biological space

highlighting only A549 and HCC515 signatures, 2 cell lines originating from lung cancer.

from the same tissue present very little overlap as can be observed
in Figures 2C,D.

These results illustrate the variability in the cellular
modifications occurring during carcinogenesis (Hanahan
and Weinberg, 2011) and show that each cell line represent
a distinct biological space even if the cell lines are derived
from the same tissue type. Interestingly, when comparing, for
a set of compounds showing GESs in a single cluster in VCAP,
GESs of these compounds in PC3 are spread across various
clusters from the PC3 biological space (data not shown). This
shows that each cell line explores different biological responses
to compounds.

After having described the global variability of GESs in the
different cell lines, we explored the chemical and biological spaces

corresponding to active and inactive compounds on different
targets. Since each compound-induced GES obtained in each cell
line was shown to represent a unique biological space, t-SNE plots
were computed per cell line in order to further explore the link
between the different biological spaces and the corresponding
chemical ones. For this, we decided to focus on three cell lines
derived from different tissues and among the largest GES dataset
generated that is to say A549 (lung cancer), MCF7 (breast
cancer) and PC3 (prostate cancer). In addition, we selected 3
representative molecular targets showing different chemical and
biological space profiles: compounds active on the glucocorticoid
receptor (NR3C1) have similar structures, and similar GESs in
some cell lines (Figures 3A–D); tubulin beta I (TUBB) actives
have more diverse structures but show similar GESs in each
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cell line considered in this work (Figures 4A–D); and dopamine
receptor D1 (DRD1) actives have diverse structure and GESs in
every used cell line (Figures 5A–D).

NR3C1 actives compounds are mostly grouped together in
the chemical space, as shown in Figure 3A (n = 54; mean Dice
distance = 0.67). Most of NR3C1 active GESs are also grouped
in a cluster in the A549 biological space (n = 38; mean cosine
distance = 0.76), visible in Figure 3B, and remaining NR3C1
active GESs are spread across this biological space. Following
the similarity principle, we could conjecture that other GESs
that are close to this cluster are responses from other NR3C1
actives, especially in the PC3 biological space where the cluster
contains compounds known to be active. The same phenomenon
can be observed in the biological space of PC3 (Figure 3D),
HCC515, HA1E and VCAP (data not shown). Surprisingly, the
GES clusters populated by numerous known NR3C1 actives in
the biological spaces of A549 and PC3 also contain some known
inactive compounds. In the biological spaces of MCF7, A375
and HT29, there is no such clustering, like shown in Figure 3C

representing the MCF7 biological space (n = 54; mean cosine
distance= 0.92). Overall, these results show that compounds that
are known to be active on the NR3C1 target can show a similar
response in only certain cellular contexts.

TUBB actives compounds are spread in the chemical
space (represented in Figure 4A), indicating that they have
diverse chemical structures (n = 51; mean Dice distance
= 0.76). Most importantly, in each cell lines used in this
work, GESs induced by TUBB actives compounds were similar
(as illustrated in Figures 4B–D), with a rather low mean
cosine distance between active compounds ranging between
0.61 and 0.75 depending on the cell line dataset. Moreover,
GESs of TUBB actives tend to be similar across all cell lines
used in this work (highlighted in Supplementary Figure 1).
This conserved pattern in GESs induced by tubulin binding
compounds likely illustrate certainly the ubiquitous role of
tubulin polymerization of the eukaryotic cytoskeleton (Chaaban
and Brouhard, 2017).

Finally, DRD1 actives compounds, that are represented in the
chemical space t-SNE, have diverse chemical structures (n =
99; mean Dice distance = 0.81), associated with diverse GESs
for the 3 cell lines presented (mean cosine distance between
0.88 and 0.92 depending on the cell line), as illustrated in
Figures 5A–D. Since GESs of active compounds in any cell lines
are not similar, nor their chemical structures, actives cannot
be easily discriminated from inactives using these two types of
descriptors, as opposed to what was observed with NR3C1 actives
that have similar structures, or TUBB actives having similar GESs
in every cell line used in this study.

Model Performances: GES Vs. Morgan
Fingerprints
Based on the observed GES similarity of compounds sharing
target activity in appropriate cellular contexts, we tested building
predictive machine learning models using GESs as descriptors
and compare their performances with the ones of the models
using Morgan fingerprints.

In order to avoid building models with too unbalanced
datasets and to ensure a minimum of active compounds when
testing model performances, we first pre-selected targets having
at least 50 active compounds in the total dataset (representing
between 1 and 63% of active compounds per target). We
obtained one dataset per cell line—target combination (restricted
to compounds having signatures in the considered cell line,
as shown in Figure 1) and carried out a second selection by
performing prediction tasks using datasets containing at least
20 active compounds for the considered target (representing
between 1 and 69% of active compounds per dataset). For
each selected cell line—target dataset, one model using GESs
(referred as GES model) was computed. In order to perform
a fair comparison per task, one counterpart model using
corresponding compound Morgan fingerprints (referred as
Morgan FP model) was built using the same set of compounds as
the one used in the corresponding GES models. Performances of
models were evaluated using the balanced accuracy (BA) metric
on a test set, to account for class imbalance in datasets. In total,
990 models were built for a total of 69 different targets. BAs of
all built models are presented in Table 3. MCC of all built models
are presented in Supplementary Table 1.

Overall, GES model performances appeared to be variable
depending on the predicted target and on the cell line that
was used to generate the GESs, with a BA ranging from 0.49
to 0.88. Counterpart models trained with Morgan fingerprints
also had variable performances, with a BA ranging from 0.50 to
0.98. On average, Morgan FP models (mean BA = 0.65) yielded
better performances for the target activity prediction than their
counterpart GES models (mean BA = 0.58). On the 495 cell
line—target combinations, BA of GESmodels was higher than BA
of counterpart Morgan FP models for 124 combinations (25%).

On the 990 models, 208 models reached a BA higher than
0.7 (21%) for 40 targets (59 GES models for 18 targets; 138
Morgan FP models for 28 targets), and 33 models reached a
BA higher than 0.8 (3%) for 10 targets (10 GES models for 4
targets; 21 Morgan FP models for 7 targets). For all 138 Morgan
FP models reaching BA higher than 0.7, BA was superior to
counterpart GESmodels, and for the 59 GESmodels reaching BA
higher than 0.7, only 6 had counterpart Morgan FP model with
higher BA.

For NR3C1 activity prediction, Morgan FP models yielded
a BA between 0.93 and 0.98 depending on the cell line
dataset. It is not surprising considering that that NR3C1 actives
have similar structure as shown in Figure 3A. On the GES
models, a BA of 0.77 was reached using the A549 signature
dataset, correlating to similar GESs that were observed in the
A549 biological space (Figure 3B), whereas a BA of 0.6 was
obtained using the MCF7 signature dataset (no GES cluster
in MCF7 biological space, shown in Figure 3C). A549 and
MCF7 signature model performances cannot be fairly compared
because they were built using different sets of compounds.
In fact, performances of different GES models cannot be
compared across cell lines nor across targets, performances
can only be compared to observed similarity between active
compounds in either chemical and biological space plots for a
given target.
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FIGURE 3 | NR3C1 active and inactives compounds in the chemical space and the different biological spaces formed by GES produced in a single cell line. (A)

Chemical space; (B) t-SNE on all A549 signatures (A549 biological space); (C) t-SNE on all MCF7 signatures (MCF7 biological space); (D) t-SNE on all PC3 signatures

(PC3 biological space). Points corresponding to NR3C1 actives are red (n = 54), NR3C1 inactives (n = 925) are blue, gray points have no available label concerning

NR3C1 activity. Orange circles point out clustering of active compounds.

For TUBB activity prediction, GES models yielded BA
between 0.81 and 0.88 depending on the cell line dataset,
which was among the 10 best GES models. Interestingly,
their counterpart Morgan FP models were not significantly
underperforming (BA ranging from 0.78 to 0.82). Even though
the TUBB active structures are diverse, the models still managed
to identify structural fragments that could produce such
predictive performance.

For DRD1 activity prediction, Morgan FP models yielded BA
between 0.68 and 0.74 depending on the cell line dataset, and
were always better than their counterpart GES model, with a BA
ranging from 0.58 to 0.64.

Overall, we conclude that it was possible to build GES models
with acceptable performances, performing similarly or better
than their counterpart Morgan FP models in 25% of the target
prediction tasks. Moreover, we see an important advantage in the
GES models: they are theoretically performing independently of
the chemical space considered, allowing target identification of

new compounds even if their corresponding structural diversity
is not represented in the training set.

Rationalizing Model Performances Using
Distance Plots
To further describe and understand the reasons for the
differences in performances between GES model and Morgan
FP model, for every dataset used in each cell line—target
combinations, Morgan fingerprints Dice distance was plotted
against GES cosine distance between each pair of active
compounds in the given dataset.

Generated distance plots were split in 4 quadrants separated
by a 0.5 threshold for Dice distance (dotted vertical line) and a 0.5
threshold for cosine distance (dotted horizontal line). Data points
in top right (Quadrant I) represent pairs of active compounds
showing diverse structures and different GESs in the considered
cell line and containsmost of compound pairs (average of 95.1%).
Data points in top left (Quadrant II) represent pairs of active
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FIGURE 4 | TUBB active and inactives compounds in the chemical space and the different biological spaces formed by GES produced in a single cell line. (A)

Chemical space; (B) A549 biological space; (C) MCF7 biological space; (D) PC3 biological space. Points corresponding to TUBB actives (n = 51) are red, TUBB

inactives (n = 697) are blue, gray points have no available label concerning TUBB activity. Orange circles point out clustering of active compounds.

compounds showing similar structures while showing diverse
GESs in the considered cell line (average of 1.9%). Data points in
bottom left (Quadrant III) represents pairs of active compounds
showing similar structures and similar GESs in the considered
cell line and contains least compound pairs (average of 0.5%).
Data points in bottom right (Quadrant IV) represents pairs of
active compounds showing similar GESs while having different
structures (average of 2.5%). Intuitively, we think that sample
similarity within the same class (here: actives) is a good indicator
to know if a machine learning model will be able to properly
predict samples from this class.

Overall, the mean percentage of compound pairs (active and
inactives) were 99.3, 0.3, 0.01 and 0.4% for quadrants I, II, III and
IV respectively. Based on this dataset, compounds active toward
a molecular target have on average more similar structures and
GESs than the totality of the compounds.

We expected to reach good Morgan FP model prediction for
combinations having a high proportion of points in quadrants II
and III (similar structures), and good GES model prediction for

combinations having a high proportion of points in quadrants
III and IV (similar GESs). We evaluated the use of distance
plots on the three targets and three cell lines used in previous
space plots (Figures 3, 5). Similar work was performed using
not only active compounds, but all compounds having at least
one annotation for each of the three previously described targets,
shown in Supplementary Figure 2.

For NR3C1 distance plots, there are approximately 10%
of compound pairs in quadrants II and III of the 3
plots (Figures 6A–C), coherent with good Morgan FP model
performances. However, depending on which cell line the
GESs were generated from, there were different proportions of
compound pairs in quadrants III and IV: there are 20% of pairs
for A549, and only 1% of pairs in MCF7. This is in agreement
with what was observed in model performances: performance
of GES models using the A549 dataset (BA = 0.77) was much
better than performances using MCF7 dataset (BA = 0.60).
Surprisingly, prediction using GESs from the PC3 dataset showed
good performances (BA = 0.73), even though the proportion
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FIGURE 5 | DRD1 active and inactives compounds in the chemical space and the different biological spaces formed by GES produced in a single cell line. (A)

Chemical space; (B) A549 biological space; (C) MCF7 biological space; (D) PC3 biological space. Points corresponding to DRD1 actives (n = 99) are red, DRD1

inactives (n = 1843) are blue, gray points have no available label concerning DRD1 activity.

of active compound pairs in quadrants III and IV was around
1% (similar to the proportion observed for the MCF7 dataset
that showed worse performances). This suggests that the GES
model built with PC3 was able to capture a subset of genes to
discriminate active compounds from inactives, even with active
compounds showing different GESs.

For TUBB distance plots (Figures 6D–F), between 7 and
10% of compound pairs was observed in quadrants II and
III, matching the good Morgan FP model performances with

the 3 cell line datasets (BA ranging from 0.80 to 0.82). Most
importantly, there are between 26 and 40% of compound pairs

in quadrants III and IV, echoing the better performances of the
GES models in these cell lines (BA ranging from 0.81 to 0.88).

For DRD1 distance plots (Figures 6G–I), 98% of compound
pairs are in quadrant I, leaving low number of active compound
pairs in the other quadrants (with similar Morgan fingerprints

and/or GESs). This is coherent with the average performances of

GES (BA ranging from 0.68 to 0.74) and Morgan FP models (BA
ranging from 0.58 to 0.64) built for this target.

Among the 50 best GESmodels, the mean percentage of active
pairs in quadrants III and IV was 5.2% (vs. 2.3% in quadrants II
and III). For the 50 best Morgan FP models, the mean percentage
of active pairs in quadrants II and III was 4.0% (vs. 2.2% in
quadrants III and IV). This suggests a positive relationship
between sample similarity between active compounds using a
given set of descriptors for active compounds and performances
of models using these descriptors.

In the current work, GESs were shown to be effective
descriptors to predict compound activity toward molecular
targets. In 25% of target prediction tasks, GES models
outperformed their counterpart Morgan FP models, especially
when using GES produced in a cell line exhibiting similar GESs
between compounds active toward the target of interest. Such
GES models performs independently of the structural diversity
of compounds that were used to produce GESs, offering a great
opportunity to escape the classical chemical space limitations
associated with QSAR models. In addition, t-SNE plots, along
with 2D distance plots, can give insights to assess the predictive
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TABLE 3 | Mean BAs of models (mean per condition).

Cell line A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Target class Target name Target/

Descriptor

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

Enzyme 15-Hydroxyprostaglandin

dehydrogenase

HPGD 0.5 0.65 0.51 0.7 0.52 0.67 0.5 0.72 0.51 0.68 0.5 0.71 0.52 0.67 0.52 0.64

Arachidonate 15-lipoxygenase ALOX15 0.54 0.74 0.57 0.75 0.54 0.67 0.5 0.63 0.5 0.73 0.56 0.74 0.65 0.75 0.53 0.75

ATP binding cassette B1 ABCB1 0.54 0.62 0.51 0.61 0.5 0.54 0.5 0.5 0.51 0.5 0.56 0.62 0.59 0.63 0.51 0.63

BRCA1, dna repair associated BRCA1 0.74 0.69 0.69 0.62 0.67 0.57 0.6 0.52 0.71 0.6 0.78 0.64 0.75 0.64 0.67 0.65

Cytochrome P450 1A2 CYP1A2 0.54 0.6 0.56 0.6 0.57 0.61 0.59 0.58 0.5 0.59 0.59 0.63 0.6 0.63 0.56 0.61

Cytochrome P450 2C19 CYP2C19 0.52 0.57 0.55 0.59 0.5 0.55 0.52 0.55 0.51 0.57 0.56 0.58 0.56 0.59 0.53 0.58

Cytochrome P450 2C9 CYP2C9 0.55 0.57 0.52 0.61 0.52 0.6 0.51 0.6 0.53 0.58 0.55 0.58 0.6 0.58 0.54 0.6

Cytochrome P450 3A4 CYP3A4 0.51 0.55 0.52 0.59 0.52 0.58 0.49 0.6 0.51 0.54 0.52 0.6 0.54 0.6 0.53 0.57

DNA polymerase beta POLB 0.5 0.66 0.5 0.69 0.51 0.82 – – 0.5 0.69 0.5 0.69 0.53 0.73 0.5 0.69

DNA polymerase eta POLH 0.55 0.71 0.51 0.74 0.66 0.82 – – 0.5 0.76 0.51 0.73 0.55 0.72 0.52 0.69

DNA polymerase iota POLI 0.5 0.7 0.5 0.71 0.54 0.71 0.5 0.6 0.51 0.65 0.51 0.72 0.51 0.73 0.5 0.68

DNA polymerase kappa POLK 0.58 0.77 0.51 0.78 0.56 0.83 0.52 0.79 0.5 0.76 0.54 0.81 0.56 0.83 0.5 0.83

Flap structure-specific endonuclease

1

FEN1 0.5 0.72 0.5 0.68 0.5 0.77 – – 0.5 0.74 0.5 0.77 0.51 0.75 0.5 0.7

Glutaminase GLS 0.5 0.64 0.51 0.64 0.53 0.58 – – – – 0.51 0.74 0.51 0.69 0.51 0.7

Growth factor, augmenter of liver

regeneration

GFER 0.51 0.72 0.5 0.72 0.59 0.74 0.5 0.71 0.5 0.72 0.52 0.72 0.56 0.71 0.5 0.7

Hydroxysteroid 17-beta

dehydrogenase 10

HSD17B10 0.51 0.57 0.54 0.62 0.55 0.63 0.51 0.63 0.49 0.58 0.54 0.65 0.53 0.64 0.5 0.62

Janus kinase 2 JAK2 0.71 0.57 0.73 0.63 0.69 0.56 0.63 0.56 0.68 0.56 0.8 0.63 0.73 0.59 0.65 0.58

MDM2 proto-oncogene MDM2 0.77 0.69 0.71 0.61 0.7 0.62 0.76 0.53 0.67 0.59 0.83 0.65 0.81 0.64 0.76 0.66

Phosphatidylinositol-5-phosphate

4-kinase type 2 alpha

PIP4K2A 0.51 0.69 0.54 0.75 0.53 0.66 – – 0.5 0.58 0.53 0.76 0.5 0.76 0.52 0.74

Phospholipase A2 group VII PLA2G7 0.5 0.71 0.51 0.65 0.57 0.72 – – 0.5 0.69 0.54 0.69 0.57 0.71 0.51 0.69

Polo like kinase 1 PLK1 0.5 0.62 0.52 0.64 0.54 0.52 0.49 0.56 0.5 0.52 0.52 0.68 0.52 0.67 0.49 0.68

Serine/threonine kinase 33 STK33 0.78 0.58 0.68 0.62 0.78 0.59 0.74 0.6 0.7 0.56 0.72 0.61 0.71 0.64 0.66 0.65

Ubiquitin specific peptidase 1 USP1 0.5 0.54 0.51 0.58 0.51 0.53 0.51 0.53 0.5 0.55 0.52 0.57 0.57 0.59 0.5 0.57

YES proto-oncogene 1, Src family

tyrosine kinase

YES1 0.7 0.72 0.67 0.7 0.71 0.72 0.63 0.69 0.66 0.71 0.66 0.75 0.7 0.72 0.54 0.68

Epigenetic

regulator

Bromodomain adjacent to zinc finger

domain 2B

BAZ2B 0.6 0.66 0.54 0.68 0.63 0.69 0.52 0.6 0.5 0.65 0.55 0.67 0.6 0.66 0.53 0.68

Chromobox 1 CBX1 0.56 0.57 0.55 0.62 0.6 0.6 0.57 0.61 0.54 0.55 0.61 0.6 0.57 0.62 0.55 0.61

Lysine demethylase 4A KDM4A 0.64 0.62 0.56 0.67 0.65 0.7 0.57 0.63 0.6 0.65 0.58 0.68 0.6 0.65 0.53 0.63

Lysine demethylase 4E KDM4E 0.59 0.76 0.52 0.75 0.61 0.75 0.53 0.75 0.5 0.72 0.53 0.73 0.57 0.74 0.52 0.72

M-phase phosphoprotein 8 MPHOSPH8 0.52 0.53 0.52 0.64 0.54 0.64 0.51 0.65 0.5 0.54 0.63 0.63 0.54 0.64 0.51 0.65

Protein arginine methyltransferase 1 PRMT1 0.5 0.65 0.51 0.71 0.5 0.54 – – – – 0.52 0.7 0.51 0.71 0.51 0.72

Sirtuin 5 SIRT5 – – 0.51 0.65 – – – – – – 0.51 0.62 0.5 0.61 0.5 0.6

(Continued)
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TABLE 3 | Continued

Cell line A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Target class Target name Target/

Descriptor

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

Survival of motor neuron 2,

centromeric

SMN2 – – 0.5 0.62 0.51 0.56 – – – – 0.52 0.63 0.52 0.6 0.5 0.62

Ion channel Potassium voltage-gated channel H2 KCNH2 0.72 0.82 0.64 0.8 0.66 0.79 0.65 0.76 0.74 0.8 0.65 0.84 0.65 0.8 0.67 0.8

Membrane

receptor

5-hydroxytryptamine receptor 1A HTR1A 0.5 0.72 0.51 0.75 0.54 0.75 0.53 0.75 0.51 0.7 0.55 0.77 0.52 0.76 0.55 0.79

Cholinergic receptor muscarinic 1 CHRM1 0.6 0.69 0.64 0.69 0.66 0.71 0.7 0.69 0.67 0.62 0.59 0.71 0.6 0.73 0.65 0.72

Cholinergic receptor muscarinic 4 CHRM4 0.63 0.71 0.67 0.75 0.64 0.72 0.7 0.68 0.63 0.66 0.66 0.7 0.62 0.73 0.62 0.72

Cholinergic receptor muscarinic 5 CHRM5 0.6 0.69 0.62 0.76 0.64 0.72 0.69 0.72 0.63 0.68 0.64 0.73 0.59 0.71 0.61 0.68

Dopamine receptor D1 DRD1 0.64 0.68 0.6 0.73 0.63 0.7 0.58 0.72 0.62 0.69 0.62 0.74 0.61 0.72 0.59 0.74

Dopamine receptor D2 DRD2 0.61 0.74 0.61 0.79 0.61 0.79 0.6 0.79 0.61 0.73 0.65 0.79 0.62 0.79 0.63 0.8

Dopamine receptor D3 DRD3 0.6 0.66 0.58 0.72 0.56 0.71 0.58 0.71 0.58 0.66 0.63 0.72 0.57 0.72 0.58 0.73

Neuropeptide S receptor 1 NPSR1 – – 0.59 0.64 0.5 0.55 – – – – 0.63 0.66 0.57 0.66 0.58 0.63

Opioid receptor kappa 1 OPRK1 0.5 0.61 0.52 0.65 0.5 0.61 – – 0.54 0.63 0.57 0.65 0.53 0.64 0.55 0.68

Thyroid stimulating hormone receptor TSHR 0.51 0.64 0.5 0.56 0.56 0.52 0.57 0.5 – – 0.56 0.61 0.56 0.6 0.55 0.61

TNF receptor superfamily member

10b

TNFRSF10B – – 0.69 0.61 0.56 0.52 – – 0.7 0.56 0.71 0.61 0.78 0.58 0.65 0.56

Other cytosolic

protein

Heat shock protein 90 alpha A1 HSP90AA1 0.53 0.65 0.5 0.67 0.59 0.73 – – 0.53 0.67 0.55 0.67 0.59 0.65 0.51 0.64

Heat shock protein family B1 HSPB1 0.58 0.58 0.54 0.53 0.63 0.58 0.54 0.51 0.5 0.55 0.66 0.59 0.66 0.61 0.55 0.57

Secreted protein Interleukin 1 beta IL1B 0.62 0.55 0.65 0.6 0.65 0.55 0.65 0.55 0.66 0.57 0.68 0.63 0.69 0.62 0.63 0.62

Structural protein Tubulin beta class I TUBB – – 0.81 0.8 0.82 0.78 – – – – 0.88 0.82 0.84 0.8 0.82 0.8

Transcription

factor

Androgen receptor AR 0.51 0.63 0.58 0.75 0.55 0.71 0.53 0.75 0.51 0.62 0.61 0.77 0.55 0.74 0.67 0.76

Jun proto-oncogene, AP-1

transcription factor subunit

JUN 0.6 0.69 0.54 0.63 0.58 0.65 0.56 0.61 0.59 0.67 0.6 0.65 0.57 0.67 0.6 0.63

Melanogenesis associated

transcription factor

MITF 0.81 0.64 0.7 0.61 0.73 0.57 0.73 0.56 0.68 0.57 0.82 0.65 0.79 0.68 0.69 0.61

Nuclear factor kappa B1 NFKB1 0.51 0.51 0.5 0.66 0.51 0.5 0.5 0.51 0.55 0.5 0.5 0.63 0.51 0.64 0.51 0.63

Nuclear receptor 3C1 NR3C1 – – 0.77 0.96 0.67 0.94 0.76 0.98 – – 0.6 0.93 0.73 0.95 0.69 0.95

Nuclear receptor 5A1 NR5A1 0.55 0.53 0.65 0.56 0.64 0.57 – – – – 0.72 0.62 0.73 0.62 0.65 0.6

Tumor protein p53 TP53 0.72 0.57 0.62 0.55 0.65 0.55 0.7 0.57 0.62 0.58 0.71 0.58 0.7 0.57 0.6 0.56

Vitamin D receptor VDR 0.5 0.57 0.5 0.6 0.52 0.6 0.51 0.54 0.53 0.53 0.58 0.62 0.55 0.59 0.53 0.59

Transporter Abhydrolase domain containing 5 ABHD5 0.51 0.57 0.51 0.66 – – – – – – 0.55 0.68 0.54 0.68 0.53 0.69

Solute carrier family 6 member 3 SLC6A3 0.64 0.65 0.62 0.66 0.65 0.65 0.67 0.62 0.61 0.65 0.66 0.66 0.66 0.67 0.64 0.68

Unclassified

protein

Ataxin 2 ATXN2 0.78 0.5 0.7 0.62 0.74 0.52 0.7 0.53 0.69 0.58 0.72 0.62 0.72 0.61 0.7 0.61

ATPase family, AAA domain

containing 5

ATAD5 0.58 0.56 0.52 0.67 0.59 0.62 0.55 0.62 0.52 0.6 0.6 0.65 0.64 0.65 0.52 0.68

(Continued)
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power of GESs and Morgan fingerprints for target prediction,
based on a limited dataset depending on biological (GES and
bioactivity assay) data availability.

DISCUSSION

Our results show that compound-induced transcriptomic
responses derived from cell lines have the potential to support
target prediction of unknown compounds with large structural
diversity. Interestingly, we observed that compound induced
biological responses are mostly cell line specific even when cell
lines are derived from the same tissue. Nevertheless, machine
learning models using GESs were shown to perform well as long
as the appropriate cell line was used. Exploring biological spaces
can help to overcome the limitations derived from a restricted
chemical space when using traditional QSAR. To improve the
predictivity of GESmodels, we have identified several limitations,
and discuss possible improvements.

Data Acquisition
First limitations come from gene expression data preprocessing.
Gene expression values were obtained through multiple
preprocessing steps from the initial generated raw data. For
instance, there is a first peak deconvolution step to determine
the gene expression levels, that as well as the plate-normalized z-
scoring to obtain the normalized (“Level 5”) can still be improved
as already stated by Li et al. (2017). Using GESs obtained with
different preprocessing methods could potentially give more
accurate normalized values leading to increased performances in
machine learning models.

Secondly, the CMAP L1000 technology relies on the
measurement of 978 landmark genes, representing about 5%
of the human transcriptome (Pertea, 2012). The gene values of
the remaining transcriptome can be inferred through different
computational methods (Subramanian et al. (2017) method
reached good prediction for 81% of inferred genes), that are still
under improvement (Blasco et al., 2019). We decided to only
use the 978 landmarks as input data for the machine models
generated, to reflect real measured gene expression. Doing so,
we might have missed some valuable information captured by
a change of expression of the non-measured genes. Therefore,
it would be interesting to explore the potential added value of
expanding the number of descriptors by adding the inferred gene
information to the target prediction models.

Data Restrictions
Another limitation is also coming with the activity dataset that
was used. Since compound activity is a selective interaction, there
is for each target a low number of active compounds compared
to the number of inactive compounds. As a consequence, the
training sets used for model building were highly unbalanced
favorizing the prediction of the category inactive. Moreover, not
every compound was tested for activity in all targets, leading
to a sparse dataset (5% of total compound target interactions
are known).

On top of this activity data limitation, not all available
compounds were profiled in all the 8 cell lines used in this work.
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FIGURE 6 | Morgan fingerprints Dice distance vs. GES cosine distance (distance plots). Different panels show information for pairs of NR3C1 (A–C), TUBB (D–F),

and DRD1 (G–I); active compounds in A549 (A,D,G), MCF7 (B,E,H), and PC3 (C,F,I) cell lines.

There were only about 600 compounds profiled in all the cell
lines, which is too limited to build predictive models, with regard
to available activity data. Consequently, one dataset per cell line

was created, formed by compounds profiled in this cell line and

resulting GESs. For each target prediction, the cell line datasets

were restricted to compounds having a known label for the target
of interest. Since each task used a different dataset, performances
of models across cell lines or targets the comparison across
GES models was not possible. The difference in dataset sizes is
explaining at least partly the variation of performances of GES
models across targets, ranging from models close to a random
predictor (BA= 0.50) to good GESmodels (BA= 0.88), as well as

the variation of performances of counterpart Morgan FP models
(BA ranging from 0.50 to 0.98).

Biological Response Constraints
Biologically, variation of GES model performances can also be
caused by the difference in the pathway representation in the
cell lines and consequently to compound induced signatures.
Compounds active on a given target might show GESs with
different degree of similarity or no similarity among the
considered cell lines. as illustrated by the cases of NR3C1, TUBB
and DRD1. Gene expression responses depend on the cellular
context as shown in this work and elsewhere (Chen et al., 2013;
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Yu et al., 2019). Thus, the biological system in which the GESs are
generated is of utmost importance for target prediction.

Due to practical aspects (scalability, low price, etc.), biological
systems such as in vitro immortalized cell cultures (like cancer
cell lines used in this work) are widely used, but they come
with some disadvantages: they show limited physiological
representativity and have been shown to drift along passages
(Hughes et al., 2007). Even within the same cell line, it was shown
that strains show different responses to the same compounds,
indicating a reduced reproducibility between generated GESs
(Ben-David et al., 2018). Ideally, the GESs should be derived from
biological systems mimicking as much as possible the biological
responses observed in the corresponding target organ.

The advantage of transcriptomic evaluations over single
endpoint assays is that in theory they have the potential to capture
integrative responses from compound treatments, ranging from
on target activity at high potency to off-target activities at
lower potencies, depending on the tested concentrations. GESs
responses are also known to be variable depending on time
exposition (Aguayo-Orozco et al., 2018). That is the reason
why we selected data sets originating from the same study
design. GESs measured at a concentration of 10µM after 24 h
of treatment of the cell lines were extracted, as this is the most
represented experimental condition (De Wolf et al., 2016; Lv
et al., 2017).

GES Models Versus Morgan FP Models
We showed that using GES datasets produced by the Broad
Institute with the CMAP L1000 technique (Subramanian et al.,
2017), random forest models outperformed counterpart Morgan
FP models for target prediction in 25% of the cases. Evidently,
the outcome of this comparison is depending on the available
data for the different targets to build the models as illustrated
by the wide range of differences of BA between the two types
of predictive models. Practically, both QSAR and transcriptomic
descriptors represent good opportunities for target prediction,
but each come with advantages and constraints that needs to be
considered when building predictive models.

QSAR models for target prediction are widely used because of
the wide dataset available, with existing databases like PubChem
or ChEMBL. Most QSAR descriptors are discrete unambiguous
values extracted from the chemical formula of compounds,
thus easily computed. In the context of hit discovery, a major
drawback of QSAR models is that they show significant error
rate when trying to predict activity for compounds that are too
structurally different from the training set (Cherkasov et al.,
2014). Using a new set of descriptors, like compound bioactivity
such as GESs extracted from in vitro experiments, can help in
target prediction while escaping from the classical chemical space
limitation observed in QSAR approaches.

On the other hand, GESs represents a number of changes
on a certain number of genes (the 978 landmarks), capturing
the effect of compounds. These data could be used to make
inference about biology (i.e., finding targets or biomarkers). Each
cell line shows a unique biological space that can be explored.
However, these biological experiment data are prone to technical
and biological variability like discussed earlier. Gene expression

can be measured in different dose and time conditions, adding
dimensions to explore in order to find the conditions reaching
best performances in GES models. Finally, the gene expression
measurements are more and more cost effective, making the use
of such data at a large scale possible.

When exploring a new chemical class in hit discovery,
evaluating chemical-induced biological responses in appropriate
cell-lines using transcriptomic profiling can support chemical
prioritization. This biologically-based approach present the
advantage in a given biological space of being in principle
chemical space independent as opposed to QSAR modeling
that is constrained by the chemical space of the training set.
Furthermore, during lead optimization, biological spaces inform
about the direct activity of candidates, which can help fine-
tuning their desired activity profile, by optimizing the on-target
activity. It has been recently shown that this type of data can
be used for de novo chemical design fulfilling a specific GES
(Méndez-Lucio et al., 2020). In a chemical safety approach, it
can be used to detect compound interaction with off-targets.
However, a difference between these 2 applications would be the
conditions in which the GESs are generated: on-target effects are
observable at low concentrations (Kd often in the nanomolar
range), while off-target effect are known to typically appear at
higher concentration as illustrated by Li et al. (2019).

In conclusion, in this work, we evaluated the use of a
large public dataset of compound-induced transcriptomic data,
to predict compound activity on 69 molecular targets. We
compared machine learning models built with transcriptomics
data with counterpart models built using Morgan fingerprints.
Active compounds on a given target could exhibit similar
signatures in one or multiple cell lines, independent from the
chemical structure similarity between these active compounds.
For 25% of the tasks, random forest models using transcriptomics
signatures performed similarly or better than counterpart
models built with Morgan fingerprints, occurring mostly
using signatures produced in cell lines that showed similar
signatures for active compounds on a given target. Compound-
induced transcriptomic data could offer a great opportunity
for target prediction based on cell response similarity and
allows to circumvent the applicability domain limitation of
QSAR models.
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