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Organic light-emitting diodes with thermally activated delayed fluorescence emitter

have been developed with highly twisted donor–acceptor configurations and color-pure

blue emitters. Synthesized 4-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)-10H-spiro[acridine-

9,9′-fluorene] (4,6-PhPMAF) doped device with spiroacridine as a donor unit

and diphenylpyrimidine as acceptor exhibits the device characteristics such as

the luminescence, external quantum efficiencies, current efficiencies, and power

efficiencies corresponding to 213 cd/m2, 2.95%, 3.27 cd/A, and 2.94 lm/W

with Commission International de l’Eclairage (CIE) coordinates of (0.15, 0.11) in

4,6-PhPMAF-doped DPEPO emitter. The reported 10-(4-(2,6-diphenylpyrimidin-4-

yl)phenyl)-10H-spiro[acridine-9,9′-fluorene] (2,6-PhPMAF) doped device exhibit high

device performance with 1,445 cd/m2, 12.38%, 19.6 cd/A, and 15.4 lm/W, which

might be originated from increased internal quantum efficiency by up-converted triplet

excitons to the singlet state with relatively smaller 1EST of 0.17 eV and higher reverse

intersystem crossing rate (kRISC) of 1.0 × 108/s in 2,6-PhPMAF than 0.27 eV and

3.9 × 107/s in 4,6-PhPMAF. Despite low performance of 4,6-PhPMAF doped device,

synthesized 4,6-PhPMAF has better color purity as a deep-blue emission with y axis

(0.11) than reported 2,6-PhPMAF with y axis (0.19) in CIE coordinate. The synthesized

4,6-PhPMAF has higher thermal stability of any transition up to 300◦C and decomposition
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temperature with only 5% weight loss in 400◦C than reported 2,6-PhPMAF. The

maximum photoluminescence emission of 4,6-PhPMAF in various solvents appeared at

438 nm, which has blue shift about 20 nm than that of 2,6-PhPMAF, which contributes

deep-blue emission in synthesized 4,6-PhPMAF.

Keywords: organic light-emitting diode, thermally activated delayed fluorescence, blue emitter,

diphenylpyrimidine, singlet–triplet energy gap

INTRODUCTION

The organic light-emitting diodes (OLEDs) using thermally
activated delayed fluorescence (TADF) material have been widely
investigated for high-efficiency device performance or low
triplet and singlet energy levels for reduced driving voltage
by narrow host bandgap, since the Adachi group reported
the intersystem crossing (ISC) and reverse intersystem crossing
(RISC) for triplet-to-singlet state conversion (Goushi et al.,
2012; Nakanotani et al., 2014; Kim et al., 2015). It can harvest
both single and triplet excitons because TADF involves small
singlet–triplet state energy splitting by thermally activation (Tao
et al., 2014; Sun et al., 2016; Cui et al., 2017). Improvement in
device efficiency has been reported for device based on TADF
molecules that the azasiline donor unit-based intermolecular
charge-transfer exhibited deep blue TADF dye of high efficiency
of 22.3% in mixed co-host (Kwon et al., 2015), and the
methoxy substituents to replace tert-butyl substituents on the
carbazole donors have been found to decrease the singlet–
triplet state energy splitting (1EST), as well as long lifetime and
reducing the device efficiency roll-off (Wu et al., 2014; Shizu
et al., 2015). Triplet energy levels and reduction potentials of
various acceptor cyano-substituted pyrazines were reported with
combined small singlet–triplet splitting and large fluorescence
rate (Liu et al., 2019). This molecular design can be accomplished
with acridine, carbazole, and phenoxazine as electron donor
units and/or sulfone, phosphine oxide, dimesitylboryl, and
polycyclic borazine as electron acceptor units (Ganesan et al.,
2018). Furthermore, as way of improving efficiency by device
engineering, introducing the dual delayed fluorescence in the
host material exhibited the slow-efficiency roll-offs (Zhang
et al., 2019). Another device engineering technique involves
measuring transition dipole moment, where the emitter with
planar molecular structure becomes horizontally orientated,
resulting in improved light-outcoupling efficiency of more than
30% (Mayr et al., 2014; Komino et al., 2017). In other groups,
highly ordered morphology and horizontal transition dipole
moment ratio of Pt(II)-based [Pt(fppz)2] and spiro[acridine-
9,9′-fluorene] donor with varied pyridyl orientation have been
reported. High horizontal transition dipole moment ratio in
para-linked donor between the donor–acceptor orientation has
been measured using angle-dependent photoluminescence (PL)
measurement (Ganesan et al., 2018). In our previous TADF
work, we found that an m-phenyl linker between the electron-
donating and the electron-accepting units showed higher device
efficiencies; analysis of scattered X-ray intensities revealed a
weak overlap in the phenyl linker, as well as well-aligned
structure in the horizontal direction compared to those of the

p-phenyl linker (Sohn et al., 2017). Based on the reported linker
material and molecular orientation, we analyzed the properties
of synthesized emitters with spiroacridine-based electron donor
(D) and diphenylpyrimidine group of electron acceptor (A) with
different substance nitrogenous position.

RESULTS AND DISCUSSION

Synthesis and Characterization
The synthetic routes of 4,6-PhPMAF instead of 2,6-
PhPMAF are shown in Scheme S1. The intermediate
10-(4-bromophenyl)-10H-spiro[acridine-9,9′-fluorene]
and 2-chloro-4,6-diphenylpyrimidine were synthesized by
Buchwald–Hartwig amination and Suzuki coupling reaction,
respectively. The 4,6-PhPMAF was obtained by Suzuki coupling.
The chemical structure of the synthesized intermediates and
4,6-PhPMAF were characterized by nuclear magnetic resonance
(1H-NMR, 13C-NMR) spectroscopy and mass spectroscopy.
Detailed synthesis and characterization procedures are described
in the Supporting Information (Supplementary Figures 1, 2).

Computational Analysis
The ground state (So) and the excited state electronic
structures of 4,6-PhPMAF and 2,6-PhPMAF were compared
by means of density functional theory (DFT). We located
the So geometries using CAM-B3LYP/def2-SVP level of the
theory (Supplementary Figure 3). The renditions of frontier
molecular orbitals confirmed that the highest occupiedmolecular
orientation (HOMO) levels of the two compounds are localized
at the spiroacridinyl group, and the lowest unoccupied
molecular orientation (LUMO) levels are present at the diphenyl
pyrimidinyl group (Supplementary Figure 4). The computed
HOMO and LUMO energy gaps of the two molecules were
comparable: 5.61 eV for 4,6-PhPMAF and 5.70 eV for 2,6-
PhPMAF. Figure 1 summarizes the computed excited state
electronic structures of the first singlet excited state (S1) and
the triplet excited state geometries (T1). The excited state
geometries of the synthesized chromophores were optimized
using a time-dependent DFT, namely, TD-CAM-B3LYP/def2-
SVP level of the theory. The adiabatic electronic energies
of the S1 states are 3.65 and 3.55 eV for 4,6-PhPMAF and
2,6-PhPMAF, respectively, relative to those of the optimized
So geometries. The calculated vertical excitation energies of
the S1 were 3.40 eV (363 nm) and 3.30 eV (375 nm) for 4,6-
PhPMAF and 2,6-PhPMAF, respectively, which is in line with
the observation that there is a blue shift in the photoluminescent
spectrum of 4,6-PhPMAF with respect to that of 2,6-PhPMAF.
The renditions of natural transition orbitals (NTOs) of the
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FIGURE 1 | Summary of the computed excited state electronic structures and rates of intersystem crossing of (A) 4,6-PhPMAF and (B) 2,6-PhPMAF.

S1 states suggested the excited states bear charge transfer
(CT) characters (Supplementary Figure 5): the hole (e+) is
localized at the donor, and the electron (e−) is situated at the
acceptor. The CT characters explained the solvatochromism
observed experimentally (vide infra). The computed oscillator
strength (f ) for analyzing the radiative transition from S1
and to So exhibits same scale at the order of 10−3 in 4,6-
PhPMAF (f = 0.002640) or 2,6-PhPMAF (f = 0.004138).
The dipole moment was measured to analyze the molecular
orientation, as summarized in Supplementary Table 1. We also
identified the triplet excited state geometries that are responsible
for the observed TADF. The computed 1EST were 0.27 and
0.17 eV for 4,6-PhPMAF and 2,6-PhPMAF, respectively. The
visualizations of NTOs suggested the triplet excited states exhibit
the characteristic ofπ-π∗ transitions localized at the donor group
(spiroacridine). We also computed the vibrational spin–orbit
coupling (VSOC) strengths and the rates of ISC and RISC of
the two molecules, as detailed in the supporting information.
The VSOC of two molecules IS obtained as 1.511 and 1.460

cm−1, as listed in Supplementary Table 2. The computed rates
of ISCs explained the observed TADF behaviors (Figure 1 and
Supplementary Table 2). For 4,6-PhPMAF, the computed rate
of ISC (kISC) was 3.3 × 108/s, whereas that of the reverse ISC
(kRISC) was 3.9 × 107/s. For 2,6-PhPMAF, the computed rate
of ISC (kISC) was 1.5 × 108/s, whereas that of the reverse
ISC (kRISC) was 1.0 × 108/s. Of note, the computed rates of
RISC are significantly faster than the rates of phosphorescence
quenching, which progresses in a time scale of microsecond or
equivalently in a rate of 106/s. Accordingly, the singlet and the
triplet excited states are in equilibrium, and the fluorescence
quenching from the S1 is the dominant channel of PL decaying.
The PL quantum yield (PLQY) values of two molecules under
excitation at 300 nm are determined to be 16.9% and 29.5%, as
shown in Supplementary Table 2. It is measured by the absolute
method using a Hamamatsu Quantaurus-QY. The luminescence
quantum efficiencies are calculated by Quantaurus-QY Absolute
PL quantum yield spectrometer (C11347-11). The maximum
PL spectra of DPEPO:4,6-PhPMAF or DPEPO:2,6-PhPMAF in
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dilute oxygen-free chlorobenzene solution at low temperature are
observed at 467.26 and 493.48 nm (Supplementary Figure 6).

Thermal Properties
The thermal stability of 4,6-PhPMAF was studied by
thermogravimetric analysis and differential scanning
calorimetry. 4,6-PhPMAF did not show the any transition up to
300◦C, and the decomposition temperature (Td), corresponding
to 5% weight loss, was 400◦C, whereas the reported 2,6-PhPMAF
was observed in the glass transition at 158◦C and Td at 400◦C.
The results indicate that the 4,6-PhPMAF shows better thermal
stability (Supplementary Figure 7 and Supplementary Table 3).

Optical Properties
The photophysical properties of 4,6-PhPMAF in various media
are shown in Figure 2 and Supplementary Figure 8 and are
summarized in Supplementary Table 2. The PL spectroscopy of
various solution of 4,6-PhPMAF was measured in cyclohexane
(ε = 2.02), toluene (ε = 2.38), chloroform (ε = 4.8), acetone
(ε = 20.7), and DMF (ε = 36.7) (Supplementary Figure 8).
4,6-PhPMAF displayed strong solvatochromism with a red shift
of its PL peak from 400 nm in cyclohexane to 530 nm in
DMF, which indicate the charge transfer-type emission. On the
contrary, the 2,6-PhPMAF shows stronger solvatochromismwith
red shift of its PL peak from 410 nm in cyclohexane to 560 nm,
which is more than that of 4,6-PhPMAF. The absorbance and
fluorescence spectra of 10−5 M 4,6-PhPMAF in toluene are
depicted. The intense absorption in the range of 300–350 nmmay
be assigned to the absorption ofN-phenyl-spiroacridine, whereas
the relatively weak and broad absorption from 350 to 410 nmmay
be assigned to the intramolecular charge transfer excitation (Woo
et al., 2019). The absorption behavior of 2,6-PhPMAFwas similar
to that of 4,6-PhPMAF). The UV-visible (UV-vis) onset of 4,6-
PhPMAF and 2,6-PhPMAF was 3.03 and 2.95 eV, respectively.
The maximum PL emission of 4,6-PhPMAF appeared at 438 nm,
which was 20 nm blue shifted than that of 2,6-PhPMAF. From
the results, it is expected that the color purity of new synthesized
4,6-PhPMAF will be better than that of reported 2,6-PhPMAF.

Electrochemical Properties
The HOMO level of 4,6-PhPMAF was determined as −5.30 eV
from the cyclovoltametric measurement, and LUMO level was
determined as−2.27 eV by adding the optical bandgap (3.03 eV),
whereas the HOMO and LUMO levels of 2,6-PhPMAF were
determined as−5.26 and−2.31 eV by adding the optical bandgap
(2.95 eV) (Supplementary Figure 9).

Structural Properties
The synthesized dopant 4,6-PhPMAF and 2,6-PhPMAF will
be denoted as 1 and 2 from these results. The topographical
three- and two-dimensional (2D) images of 22 wt.% 1 and 2
doped DPEPO emitters with thicknesses of 50 nm are measured
using atomic force microscopy (AFM) analysis with 2 × 2-µm
scan size, as shown in Figure 3. The root-mean-square (RMS)
surface roughness (Rq), average surface roughness (Ra), and
RMS roughness values of DPEPO:4,6-PhPMAF film in Figure 3A
show uniform surface morphology of 0.2, 0.16, and 0.18 nm,

FIGURE 2 | UV-visible and PL spectra of 4,6-PhPMAF in toluene solution.

respectively, and the DPEPO:2,6-PhPMAF film in Figure 3B

shows 0.193, 0.153, and 0.15 nm, respectively. All films exhibit
very uniform surfaces with a roughness value <0.2 nm due to
strong π-π stacking with closely packed structures that yield
good electrical device properties (Sohn et al., 2017). In order
to precisely analyze the structural property of the emitters,
we measured the two-dimensional grazing-incident wide-angle
X-ray diffraction (2D GI-WAXD) to characterize the molecular
orientation, as well as the packing properties of the emitters
(Figure 4). In the patterns, qxy and qz represent the in-plane
and out-of-plane components of the scattering vector q, which
are normal to the plane of incidence and the film surface
plane. The azimuthal intensity curve is measured to analyze
the plots of orientation distribution. All films present similar
distributions with a strong and broad diffraction peak, which
might be attributed to the planar packing of random orientated
emitters along the out-of-plane direction at qz = 0.75 Å−1 in
Figures 4A,B. To compare the diffraction peak position and
crystallographic property, the in-plane (Figure 4C) and out-of-
plane (Figure 4D) intensity profiles for DPEPO:4,6-PhPMAF
and DPEPO:2,6-PhPMAF films are extracted from the 2D GI-
WAXD pattern. The azimuthal angle scan X-rays of (100)
reflection are measured to elucidate the molecular orientation
of emitter in Figure 4E. Calculated full width at half maximum
values for azimuthal intensity distributions in DPEPO:4,6-
PhPMAF and DPEPO:2,6-PhPMAF emitters are estimated as
27.2◦ and 25.3◦ by Gaussian model fitting. The FWHM of
DPEPO:2,6-PhPMAF film is relatively narrow compared to
those of DPEPO:4,6-PhPMAF film, which can improve the
outcoupling efficiency in the devices as implying horizontal
plane-on orientation (Kim et al., 2016; Sohn et al., 2018).

Transient PL Spectra Properties
Transient PL decay curve of the 4,6-PhPMAF and 2,6-PhPMAF
doped DPEPO films (22%, 40 nm) are obtained to identify
prompt and delayed fluorescent as shown in Figure 5. The
prompt PL emission (Figure 5A) exhibited similar spectral
distribution, which implied similar fluorescence emissive states,
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FIGURE 3 | Three- and two-dimensional AFM topographical images of (A) DPEPO:4,6-PhPMAF and (B) DPEPO:2,6-PhPMAF of 2 × 2-µm scan size.

whereas the lifetimes of the delayed components of 4,6-
PhPMAF and 2,6-PhPMAF doped films were 301.15 and
130.15 µs. In Figure 5B, the delayed emission of DPEPO:4,6-
PhPMAF exhibited relatively weak spectra compared to those
of DPEPO:2,6-PhPMAF, which implied reduced triplet exciton
action, as well as suppressed Dexter energy transfer in TADF
emission (Fukagawa et al., 2017; Han et al., 2019). A 1EST of
4,6-PhPMAF and 2,6-PhPMAF dopants had been calculated to
0.27 and 0.17 eV, respectively. The small 1EST can contribute
to improved internal quantum efficiency by up-converted triplet
excitons (Liu et al., 2019). However, the small1EST value of faster
RISC from triplet to singlet can result in short or similar TADF
lifetime (Zhang et al., 2019).

Device Characteristics
The energy-band diagram of the device structure is shown,
and the chemical structure of synthesized 4,6-PhPMAF and
2,6-PhPMAF dopants into DPEPO host material is attached in
Figure 6A. For effective hole and electron balancing, we have
chosen hole or electron transport layers (ETLs) carefully by
considering their HOMO and LUMO energy levels and charge
mobility. The HOMO and LUMO values of 4,6-PhPMAF and

2,6-PhPMAF are determined using DFT calculation and cyclic
voltammetry (CV) measurement for blue emitter. The HOMO-
LUMO levels of molybdenum trioxide (MoO3), TAPC, TCTA,
DPEPO, and TmPyPB materials are obtained from Ossila Co.
The normalized electroluminescent (EL) spectra are obtained for
4,6-PhPMAF and 2,6-PhPMAF doped devices (Figure 6B). The
EL spectra of all the devices show solely emission peaks with any
shoulder peaks, which could be contributed to good color gamut
OLEDs. However, the EL spectra 4,6-PhPMAF doped device is
red-shifted compared to the PL spectra, as discussed in reported
2,6-PhPMAF material (Ganesan et al., 2018). In the spectra,
the EL maximum peak of the device with 4,6-PhPMAF dopant
exhibit 458-nm emission, which is blue shifted compared to those
of 2,6-PhPMAF dopant of 471 nm. It is caused by the different
substance nitrogenous position in diphenylpyrimidine group of
electron acceptor with spiroacridine-based electron donor. The
current-density, luminance, external quantum efficiency, current
efficiency, and power efficiency vs. applied voltage of devices are
shown in Figure 7. The Commission International de l′Eclairag
(CIE) coordinates of devices are displayed. The devices with
DPEPO:4,6-PhPMAF emitter exhibit maximum luminescence of
213 cd/m2 at 8V, external quantum efficiencies of 2.95%, current
efficiency of 3.27 cd/A, and power efficiencies of 2.94 lm/W.
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FIGURE 4 | Two-dimensional grazing-incident wide-angle X-ray diffraction (2D GI-WAXD) images of scattered X-ray intensity from surface to full depth for films of (A)

DPEPO:4,6-PhPMAF and (B) DPEPO:2,6-PhPMAF on SiO2/Si substrates, y axis: in-plane scattering; x axis: out-of-plane scattering. (C) In-plane scattering spectra;

(D) out-of-plane scattering spectra. (E) Azimuthal intensity plots of orientation distributions of sets of crystallographic reciprocal lattice planes of the films.

FIGURE 5 | Transient photoluminescence characteristics of (A) prompt and (B) delay of 4,6-PhPMAF and 2,6-PhPMAF dopants in degassed CH2Cl2 solution and 22

wt%-doped in DPEPO (λex = 374 nm).

The CIE coordinates of 4,6-PhPMAF doped device have (0.15,
0.11) at x and y axes, which is close to the deep-blue TADF
OLEDs. These deep-blue emitters with CIE y coordinate <0.15
can be attributed the low-power consumption, as well as the
color gamut when it will be applied in full-color OLEDs. The
devices with DPEPO:2,6-PhPMAF emitter and TADF emitter

exhibit bright luminescence with 1,445 cd/m2 at 8V, maximum
external quantum efficiencies of 12.38%, current efficiency of
19.6 cd/A, power efficiencies of 15.4 lm/W, and cobalt blue
emitting with CIE coordinates of (0.16, 0.19). The reason that
the efficiency of the device is approximately four times different
is due to three reasons as follows: First, the improved device
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FIGURE 6 | (A) Energy-band diagram and (B) normalized electroluminescence intensity of blue-emitting TADF OLEDs with DPEPO:4,6-PhPMAF and

DPEPO:2,6-PhPMAF emitters.

FIGURE 7 | Graph of (A) current density, (B) luminance, (C) external quantum efficiency, (D) current efficiency, and (E) power efficiency as a function of applied

voltage of devices with emitting materials and (F) CIE coordinate of devices based on CIE 1931.

efficiencies in 2,6-PhPMAF doped device is caused by fast up-
converted triplet excitons to the singlet state with relatively
smaller 1EST of 0.17 eV compared to 0.27 eV in 4,6-PhPMAF
dopant. Second is that it is believed to be due to improved internal
quantum efficiency by the relatively higher PLQY value of the
2,6-PhPMAF (29.5%) emitter than 4,6-PhPMAF (16.9%) because
the device efficiency is depends on the solid-state PLQY of the
emitter, as discussed in literatures (de Sá Pereira et al., 2017;
Maasoumi et al., 2018). As mentioned in the azimuthal intensity
distributions, finally, it can be explained because the relatively
narrow FWHM of DPEPO:2,6-PhPMAF film compared with
the DPEPO:4,6-PhPMAF film has relatively horizontal plane-on
orientation to the substrate, resulting in improved outcoupling

efficiency in the emitting layer. The synthesized acridine (D)
and diphenylpyrimidine (A) based emitters can be used as high-
performance deep-blue emitters in a TADF-OLEDs.

CONCLUSION

The blue-emitting TADF materials with spiroacridine-based
electron donor and diphenylpyrimidine group of electron
acceptor with different substance nitrogenous position are
successfully synthesized. The performance of reported 2,6-
PhPMAF doped TADF device is over four times higher than
synthesized 4,6-PhPMAF doped device. It is due to improved
fast up-converted triplet excitons to the singlet state and smaller
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1EST as well as higher PL quantum yield in 2,6-PhPMAF than
the 4,6-PhPMAF. Minor reason could be due to outcoupling
efficiency in the emitting layer of the 2,6-PhPMAF-doped TADF
device with relatively horizontal plane-on orientation. Despite
the relatively low device efficiency with 4,6-PhPMAF, the y axis
in CIE coordinate exhibits 0.11, which is close to the deep-
blue OLEDs. This deep-blue 4,6-PhPMAF emitter could be
contributed to the low power consumption, as well as good color
gamut when it will be fabricated in full-color OLEDs.

EXPERIMENTAL SECTION

Materials
Detailed descriptions are given in the Supporting Information.

Instruments
1H NMR spectra were recorded using a Bruker Avance 300
MHz FT-NMR spectrometer, 13C NMR were recorded using
a Bruker Avance 300 MHz FT-NMR spectrometer. Chemical
shifts (ppm) were reported with tetramethylsilane as an internal
standard. Thermogravimetric analysis (TGA) under N2 gas
was performed using a TA instrument 2050 thermogravimetric
analyzer. Differential scanning calorimetry (DSC) under N2

gas was conducted using a TA instrument DSC Q10. Samples
for TGA and DSC were heated at 10◦C/min. UV-visible
spectra were measured using a Shimadsu UV-1065PC UV-vis
spectrophotometer. Photoluminescence spectra were measured
using a Perkin–Elmer LS50B fluorescence spectrophotometer.
The electrochemical properties of the materials were measured
by CV using an Epsilon C3 in a 0.1M solution of tetrabutyl
ammonium perchlorate in acetonitrile. The topographies of
22 wt.%-doped 1 and 2 films in DPEPO had been analyzed
using AFM (VEECO Dimension 3100+Nanoscope V) in non-
contact mode. Grazing-incident wide-angle X-ray diffraction
measurements were performed at the 9A U-SAXS beamline
of the Pohang Light Source in South Korea. Grazing-incident
wide-angle X-ray diffraction samples were prepared by the
same processing condition with active layer casting on the
<100> silicon wafer. The wavelength of X-rays was 1.12148
Å (E = 11.055 keV); the incidence angle was 0.12◦, and
the sample exposure time was 30 s. The GI-WAXD images
were recorded with a 2D CCD (Rayonix MX170-HS). The
diffraction angles were calibrated by a precalibrated sucrose
solution (Monoclinic, P21, a = 10.8631 Å, b = 8.7044 Å, c =
7.7624 Å, and β = 102.938◦). The sample-to-detector distance
was 221mm. The prompt and delayed fluorescence lifetimes are
measured by a fluorescence lifetime spectrometer, a Quantaurus-
Tau C11367-31 instrument of Hamamatsu, as measured in
literature (Han et al., 2019).

Device Fabrication and Measurements
For comparing dopant property as well as electron
and hole balancing, the devices of ITO/MoO3 (20%):
TAPC (20 nm)/TAPC (45 nm)/TCTA (5 nm)/CzSi
(2 nm)/DPEPO: 4,6-PhPMAF or DPEPO: 2,6-PhPMAF
22% (20 nm)/DPEPO (3 nm)/TmPyPB (50 nm)/lithium fluoride
(LiF) (1 nm)/aluminum (Al) (120 nm) had been fabricated on

ITO-coated glass substrates in a class-1000 cleanroom. An
ITO-coated glass was sequentially cleaned using deionized
water, acetone, and isopropyl alcohol for 15min in an ultrasonic
bath and then dried in an oven at 70◦C during 1 day to
remove residual organic solvents and moisture on the ITO
substrate. An MoO3 doped 4,4′-cyclohexylidenebis[N,N-bis(4-
methylphenyl)benzenamine] (TAPC) mixed layer was used
for improve hole injection. Tris(4-carbazoyl-9-ylphenyl)amine
(TCTA) was used as a hole-transport layer, as well as exciton
or electron-blocking layer due to its high-lying LUMO level in
the devices. 9-(4-tert-Butylphenyl)-3,6-bis(triphenylsilyl)-9H-
carbazole (CzSi) with high triplet energy (3.02 eV) and wide
bandgap (3.5 eV) was used for enhancing morphological and
electrochemical stability. To achieve efficient TADF OLEDs,
bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO) host
material was used because it has thermal and morphological
stability as well as the ETL and a hole-blocking layer with high
HOMO level (∼6.1 eV). As an ETL material, 1,3,5-tri(m-pyrid-
3-yl-phenyl)benzene (TmPyPB) was used because of its triplet
energy level with deep HOMO level (6.75 eV). The TmPyPB
can be used as a co-host material with the hole transporting
TCTA due to its high electron mobility. Lithium fluoride and
Al were, respectively, evaporated as an interlayer and a cathode.
The devices were encapsulated with glass, and then their current
density, luminance, and efficiencies vs. driving voltages of the
devices were measured using a Keithley 236 and a CS-1000
(Konica Minolta Co.) system.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

SS has written a manuscript and contributed the optoelectrical
analysis and the fabrication of the OLEDs. MH have written a
synthetic part of manuscript and characterize the synthesized
materials. Y-HK synthesized the emitting materials. JP
contributed to the computational analysis. HA analyzed the
2D GI-WAXD images using scattered X-ray beam. SJ and S-KK
have made a substantial and intellectual contribution to the
work. Y-HK proposed the idea of this manuscript and analyzed
the experiment results.

FUNDING

This research was supported by the National Research
Foundation (NRF-2019R1I1A1A01064203 and NRF-
2018R1A2A1A05078734) of Korea grant funded by the Korea
government and was supported by the Institute for Basic Science
(Grant No. IBS-R10-A1).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2020.00356/full#supplementary-material

Frontiers in Chemistry | www.frontiersin.org 8 May 2020 | Volume 8 | Article 356

https://www.frontiersin.org/articles/10.3389/fchem.2020.00356/full#supplementary-material
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Sohn et al. Spiroacridine Donor and Diphenylpyrimidine Acceptor

REFERENCES

Cui, L. S., Nomura, H., Geng, Y., Kim, J. U. K., Nakanotani, H., Adachi,
C., et al. (2017). Controlling singlet–triplet energy splitting for deep-
blue thermally activated delayed fluorescence emitters. Angew. Chem. 56,
1571–1575. doi: 10.1002/anie.201609459

de Sá Pereira, D., Data, P., and Monkman, A. P. (2017). Methods of analysis of
organic light emitting diodes. Display Imaging 2, 323–337. Available online
at: http://www.oldcitypublishing.com/wp-content/uploads/2017/04/DAIv2n3-
4p323-337Pereira.pdf

Fukagawa, H., Shimizu, T., Iwasaki, Y., and Yamamoto, T. (2017). Operational
lifetimes of organic light-emitting diodes dominated by Förster resonance
energy transfer. Sci. Rep.7:1735. doi: 10.1038/s41598-017-02033-3

Ganesan, P., Chen, D. G., Liao, J. L., Li, W. C., Lai, Y. N., Luo, D. I., et al. (2018).
Isomeric spiro-[acridine-9,9′-fluorene]-2,6-dipyridylpyrimidine based TADF
emitters: insights into photophysical behaviors and OLED performances. J.
Mater. Chem. C 6, 10088–10100. doi: 10.1039/c8tc03645d

Goushi, K., Yoshida, K., Sato, K., and Adachi, C. (2012). Organic light-emitting
diodes employing efficient reverse intersystem crossing for triplet-to-singlet
state conversion. Nat. Photonics 6, 253–258. doi: 10.1038/nphoton.2012.31

Han, S. H., Jeong, J. H., Yoo, J. W., and Lee, J. Y. (2019). Ideal blue thermally
activated delayed fluorescence emission assisted by a thermally activated
delayed fluorescence assistant dopant through a fast reverse intersystem
crossing mediated cascade energy transfer process†. J. Mater. Chem. C 7,
3082–3089. doi: 10.1039/C8TC06575F

Kim, K. H., Liao, J. L., Lee, S. W., Sim, B., Moon, C. K., Lee, G. H., et al. (2016).
Crystal organic light-emitting diodes with perfectly oriented non-doped pt-
based emitting layer. Adv. Mater. 28, 2526–2532. doi: 10.1002/adma.201504451

Kim, Y.,Wolf, C., Cho, H., Jeong, S., and Lee, T. (2015). Highly efficient, simplified,
solution-processed thermally activated delayed-fluorescence organic light-
emitting diodes. Adv. Mater. 28, 734–741. doi: 10.1002/adma.201504490

Komino, T., Oki, Y., and Adachi, C. (2017). Dipole orientation analysis
without optical simulation: Application to thermally activated
delayed fluorescence emitters doped in host matrix. Sci. Rep. 7:8405.
doi: 10.1038/s41598-017-08708-1

Kwon, S., Kim, Y., and Kim, J. (2015). Thermally activated delayed fluorescence
from azasiline based intramolecular charge-transfer emitter (DTPDDA) and a
highly efficient blue light emitting diode. Cham. Mater. 27:150914132924008.
doi: 10.1021/acs.chemmater.5b02515

Liu, J., Zhou, K., Wang, D., Deng, C., Duan, K., Ai, Q., et al. (2019). Pyrazine-
based blue thermally activated delayed fluorescence materials : combine small
singlet – triplet splitting with large fluorescence rate. Front. Chem. 7:312.
doi: 10.3389/fchem.2019.00312

Maasoumi, F., Vuuren, R. D. J., Shaw, P. E., Puttock, E. V., Nagiri, R. C. R.,
McEwan, J. A., et al. (2018). An external quantum efficiency of >20% from
solution-processed poly(dendrimer) organic light-emitting diodes. NPJ Flex.
Electron. 2:27. doi: 10.1038/s41528-018-0038-9

Mayr, C., Lee, S. Y., Schmidt, T. D., Yasuda, T., Adachi, C., and Brütting,W. (2014).
Efficiency enhancement of organic light-emitting diodes incorporating a highly

oriented thermally activated delayed fluorescence emitter.Adv. Func.Mater. 24,
5232–5239. doi: 10.1002/adfm.201400495

Nakanotani, H., Higuchi, T., Furukawa, T., Masui, K., Morimoto, K., Numata,
M., et al. (2014). High-efficiency organic light-emitting diodes with fluorescent
emitters. Nat. Commun. 5:4016. doi: 10.1038/ncomms5016

Shizu, K., Sakai, Y., Tanaka, H., Hirata, S., Adachi, C., and Kaji, H. (2015). Meta-
linking strategy for thermally activated delayed fluorescence emitters with a
small singlet-triplet energy gap. ITE Trans. Media Technol. App. 3, 108–113.
doi: 10.3169/mta.3.108

Sohn, S., Hyun Koh, B., Baek, J. Y., Chan Byun, H., Lee, J. H., Shin, D. S., et al.
(2017). Synthesis and characterization of diphenylamine derivative containing
malononitrile for thermally activated delayed fluorescent emitter. Dyes Pigm.

140, 14–21. doi: 10.1016/j.dyepig.2017.01.010
Sohn, S., Park, K. H., Kwon, S., Lee, H., Ahn, H., Jung, S., et al. (2018). Preferential

orientation of tetrahedral silicon-based hosts in phosphorescent organic
light-emitting diodes. ACS Omega 3, 9989–9996. doi: 10.1021/acsomega.
8b01358

Sun, J. W., Kim, K. H., Moon, C. K., Lee, J. H., and Kim, J. J. (2016). Highly efficient
sky-blue fluorescent organic light emitting diode based onmixed cohost system
for thermally activated delayed fluorescence emitter (2CzPN).ACS Appl. Mater.

Interfaces 8, 9806–9810. doi: 10.1021/acsami.6b00286
Tao, Y., Yuan, K., Chen, T., Xu, P., Li, H., Chen, R., et al. (2014).

Thermally activated delayed fluorescence materials towards the breakthrough
of organoelectronics. Adv. Mater. 26, 7931–7958. doi: 10.1002/adma.2014
02532

Woo, S. J., Kim, Y., Kim, Y. H., Kwon, S. K., and Kim, J. J. (2019). A
spiro-silafluorene-phenazasiline donor-based efficient blue thermally activated
delayed fluorescence emitter and its host-dependent device characteristics. J.
Mater. Chem. C 7, 4191–4198. doi: 10.1039/c9tc00193j

Wu, S., Aonuma, M., Zhang, Q., Huang, S., Nakagawa, T., Kuwabara, K., et al.
(2014). High-efficiency deep-blue organic light-emitting diodes based on a
thermally activated delayed fluorescence emitter. J. Mater. Chem. C 2, 421–424.
doi: 10.1039/c3tc31936a

Zhang, Y., Li, Z., Li, C., Wang, Y., and Wang, Y. (2019). Suppressing
efficiency roll-off of TADF based OLEDs by constructing emitting layer
with dual delayed fluorescence. Front. Chem. 7:302. doi: 10.3389/fchem.2019.
00302

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Sohn, Ha, Park, Kim, Ahn, Jung, Kwon and Kim. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Chemistry | www.frontiersin.org 9 May 2020 | Volume 8 | Article 356

https://doi.org/10.1002/anie.201609459
http://www.oldcitypublishing.com/wp-content/uploads/2017/04/DAIv2n3-4p323-337Pereira.pdf
http://www.oldcitypublishing.com/wp-content/uploads/2017/04/DAIv2n3-4p323-337Pereira.pdf
https://doi.org/10.1038/s41598-017-02033-3
https://doi.org/10.1039/c8tc03645d
https://doi.org/10.1038/nphoton.2012.31
https://doi.org/10.1039/C8TC06575F
https://doi.org/10.1002/adma.201504451
https://doi.org/10.1002/adma.201504490
https://doi.org/10.1038/s41598-017-08708-1
https://doi.org/10.1021/acs.chemmater.5b02515
https://doi.org/10.3389/fchem.2019.00312
https://doi.org/10.1038/s41528-018-0038-9
https://doi.org/10.1002/adfm.201400495
https://doi.org/10.1038/ncomms5016
https://doi.org/10.3169/mta.3.108
https://doi.org/10.1016/j.dyepig.2017.01.010
https://doi.org/10.1021/acsomega.8b01358
https://doi.org/10.1021/acsami.6b00286
https://doi.org/10.1002/adma.201402532
https://doi.org/10.1039/c9tc00193j
https://doi.org/10.1039/c3tc31936a
https://doi.org/10.3389/fchem.2019.00302
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	High-Efficiency Diphenylpyrimidine Derivatives Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes
	Introduction
	Results and Discussion
	Synthesis and Characterization
	Computational Analysis
	Thermal Properties
	Optical Properties
	Electrochemical Properties
	Structural Properties
	Transient PL Spectra Properties
	Device Characteristics

	Conclusion
	Experimental Section
	Materials
	Instruments
	Device Fabrication and Measurements

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


