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Chemical synthesis is an attractive approach allows for the assembly of homogeneous

complex N-linked glycopeptides and glycoproteins, but the limited coupling efficiency

between glycans and peptides hampered the synthesis and research in the related field.

Herein we developed an alternative glycosylation to construct N-linked glycopeptide

via efficient selenoester-assisted aminolysis, which employs the peptidyl ω-asparagine

selenoester and unprotected glycosylamine to perform rapid amide-bond ligation. This

glycosylation strategy is highly compatible with the free carboxylic acids and hydroxyl

groups of peptides and carbohydrates, and readily available for the assembly of

structure-defined homogeneousN-linked glycopeptides, such as segments derived from

glycoprotein EPO and IL-5.
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INTRODUCTION

Many proteins undergo co- or post-translational modifications, including phosphorylation,
acetylation, and glycosylation to fulfill their functions (Walsh and Jefferis, 2006; Carubbi et al.,
2019). It is estimated that glycosylation modifications are associated with approximately 50%
of human proteins (Clerc et al., 2016; Oliveira-Ferrer et al., 2017) and 30% of approved
biopharmaceutical proteins (Zou et al., 2020), which are critical for important biological processes
in living systems, such as cell’s adhesion, recognition, targeting, and differentiation (Varki, 2017;
Bhat et al., 2019). Despite the importance of glycosylations, rigorous evaluation of the relationship
between the precise structure and biological function of glycoproteins is complicated by the
structural heterogeneity of the oligosaccharides in biological organisms, and the difficulty to obtain
sufficient amounts of structure-defined glycoproteins with single glycoform from natural sources
(Park et al., 2009).

In order to develop viable and efficient strategies to chemically construct homogeneous complex
N-linked glycopeptides and glycoproteins, extensive efforts and advances have been made in the
field (Payne and Wong, 2010; Wilson et al., 2013; Okamoto et al., 2014a; Wang and Amin, 2014;
Fairbanks, 2019; Li et al., 2019), such as the resin-bound glycosylation (Kunz and Unverzagt,
1988; Vetter et al., 1995; Offer et al., 1996; Mezzato et al., 2005; Kajihara et al., 2006; Yamamoto
et al., 2008; Piontek et al., 2009a,b; Chen and Tolbert, 2010; Conroy et al., 2010; Ullmann
et al., 2012; Okamoto et al., 2014b; Reif et al., 2014; Lee et al., 2016; Schöwe et al., 2019)
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and solution glycosylation (Anisfeld and Lansbury, 1990; Cohen-
Anisfeld and Lansbury, 1993; Kaneshiro and Michael, 2006;
Wang et al., 2011, 2012, 2013; Aussedat et al., 2012; Nagorny
et al., 2012; Sakamoto et al., 2012; Joseph et al., 2013; Chai et al.,
2016; Schöwe et al., 2019). However, unneglectable limitations
still remain in these strategies. Consumption of large amount
of precious materials and low coupling yields usually occurred
for the glycopeptide assembly on-resin via either the stepwise
(Scheme 1A) or the convergent (Scheme 1B) strategy. Based on
the aspartylation technology pioneered by Lansbury and co-
workers (Scheme 1C) (Anisfeld and Lansbury, 1990; Cohen-
Anisfeld and Lansbury, 1993), Danishefsky group and Unverzagt
group developed the synthetic methods and optimized the
pseudoproline dipeptide building block to construct the peptide
fragement at the site of Asn-Xaa-Ser/Thr, and this approach
significantly suppressed the formation of aspartimide byproducts
during glycosylation (Ullmann et al., 2012; Wang et al., 2012).
Although useful, requirement for additional metal catalysts or
protected C-terminal carboxylic acid derivatives may limit the
application of this strategy in glycopeptide assembly.

Notwithstanding substantial advances have been made in N-
linked glycopeptides and glycoproteins synthesis, it is still a
great challenge to efficiently achieve largeN-linked gylcoproteins

SCHEME 1 | Effective strategies for chemical construction of N-linked glycopeptides: (A) stepwise strategy via solid-phase; (B) convergent strategy via solid-phase;

(C) convergent strategy via solution phase.

bearing complex glycan forms. The desired synthetic methods
will have fewer protecting groups and modifications on the
peptide and glycan fragments, and promote efficient and selective
ligation reactions between fragments. Previously, our research
group has developed a strategy for the convergent synthesis ofN-
linked glycopeptides via peptidyl ω-Asp p-nitrophenyl thioester-
assisted glycosylation (Scheme 1C) (Du et al., 2016). This
convergent strategy with direct aminolysis provides an access to
complex N-linked glycopeptides, usually with good yields and
simple operation, and is worthy of further investigating more
reactions and applications.

Many investigators have proved that coupling of peptide
fragments via direct aminolysis is a feasible method for
preparation of peptides and glycopeptides. This method employs
direct coupling reaction between peptide fragments bearing N-
terminal free amines and peptide fragments bearing C-terminal
active esters, such as oxoesters (Kemp and Vellaccio, 1975;
Wan et al., 2008; Li et al., 2010), thioesters (Payne et al., 2008;
Agrigento et al., 2014; LingáTung and Clarence, 2015; Gui et al.,
2016) or selenoester derivatives (Grieco et al., 1981; Mitchell
et al., 2015; Raj et al., 2015; Takei et al., 2017; Temperini et al.,
2017; Du et al., 2018; Sayers et al., 2018a,b; Chisholm et al.,
2020; Wang et al., 2020), eliminates the need for N-terminal
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TABLE 1 | Optimization of the active esters for the glycosylation reactiona.

Entry Ester X R1 R2 Time (h)b Yield (%)c

1 2a O H H >40 <1

2 2b S H H >40 8

3 2c S NO2 H 10 75

4 2d Se H H 2 92

5 2e Se H CHO 1 69

6 2f Se CHO H 1 67

aReaction conditions: 1a (10 µmol), esters (5 µmol) and DIPEA (10 µmol) in 1mL of
DMSO, rt. bConsumption of >95% of the starting ester in glycosylation reaction was
determined by HPLC. cDetermined by HPLC at 40 h.

cysteine residues or thiol ligation auxiliaries, which are generally
required for the sequential native chemical ligation (Dawson
et al., 1994; Kent, 2009). Notably, the active selenoesters or
derivatives always offer enhanced reactivity compared to the
thio- or oxoesters (Mitchell et al., 2015; Raj et al., 2015; Takei
et al., 2017). Our previous studies have shown that the aminolysis
of peptidyl selenoester is an efficient strategy for peptide and
glycopeptide assembly (Yin et al., 2016; Du et al., 2018). Herein
we are interested in pursuing a highly reactive peptidyl ω-Asp
selenoester-assisted glycosylation methodology for constructing
N-linked glycopeptides without coupling reagents (Scheme 1C).
This methodology is assumed to be compatible with free
carboxylic groups and hydroxyl groups of peptides and glycans.

RESULTS AND DISCUSSION

Evaluation of the Reactivity of the Active
Esters for Glycosidic Amide Bond
Formation
To evaluate the methods for synthesizing N-linked glycopeptide
synthesis via active ester-assisted aminolysis (Du et al., 2016), the
activity and efficiency of different active esters were compared
and investigated using model reactions, in which Fmoc-Gly ester
2 and glycosylamine 1a (Likhosherstov et al., 1986; Cohen-
Anisfeld and Lansbury, 1993) were condensed in DMSO to
form β-anomer product 3 and monitored by HPLC (Table 1,
Figure 1).

For oxoester 2a, it has the lowest activity and almost no
product was observed (Table 1, entry 1). For thioesters (Table 1,
entries 2-3), phenyl thioester 2b underwent glycosidic bond
formation slightly faster than the oxoester 2a, but it is not efficient
enough to be applied in the N-linked glycopeptide synthesis;
p-nitrophenyl thioester 2c with a strong electron-withdrawing
group reacts more efficiently, providing the target product in a
yield of 75%within 10 h, which is consistent with previous studies
(Hondal et al., 2001; Du et al., 2016). Therefore, the peptidyl

FIGURE 1 | Reaction curves (yields of 3 vs. time) of the glycosidic linkage

formation between 2a−2f and 1a.

p-nitrophenyl thioester has been successfully utilized to prepare
N-linked glycopeptide in our lab (Du et al., 2016).

To improve the efficiency of glycosylation reaction, various
selenoesters were assessed under the same conditions (Table 1,
entries 4–6). For seleno-phenyl ester 2d, it underwent complete
conversion within 2 h, and afforded the target product 3 in 92%
yield; for seleno-benzaldehyde esters 2e with the o-benzaldehyde
group and 2f with the p-benzaldehyde group (Raj et al., 2015),
they underwent complete conversion in <1 h, and gave the
products in yield of 69 and 67%, respectively. We postulate that
the participation of o-benzaldehyde (neighbor-participating
group) and p-benzaldehyde, which both have electron-
withdrawing groups can increase the phenyl selenoester’s
electrophile reaction rate, but also facilitate the hydrolysis
reaction and reduce the yield of aminolysis product. Therefore,
the seleno-phenyl ester 2d affords an optimal balance between
high reactivity and sufficient stability, will be appropriate for the
selenoester-assisted aminolysis in glycosylation reactions.

As shown in Table 2, we compared the reaction kinetic
data p-nitrophenyl thioester 2c and seleno-phenyl ester 2d.
As expected, the glycosylation reaction for the product 3

between glycine-derived ester and glycosylamine follows a
second-order kinetics, with a rate constant 0.0071 ± 0.0004
M−1 s−1 for 2c and 0.0420 ± 0.0012 M−1 s−1 for 2d,
respectively. The seleno-phenyl ester is roughly 6-times faster
than the p-nitrophenyl thioester to form the glycosidic
amide bond.

Condition Optimization
As depicted in Table 3, various glycosylation reaction conditions
were evaluated for further optimization. From the results of
optimizing the solvent (Table 3, entries 1–4), the efficiency of
the glycosylation reaction was shown to be greatly boosted
in DMSO, but the aqueous solution of NMP/PB is prone to
decompose the seleno-phenyl ester 2d. The amounts of DIPEA
from 0.1 to 3.0 equivalents didn’t significantly influence the
yields (Table 3, entries 4–7). Additionally, we found that the
product 3 was achieved in optimal yield when seleno-phenyl
ester 2d was treated with 2.0 equivalents of glycosylamine 1a

Frontiers in Chemistry | www.frontiersin.org 3 May 2020 | Volume 8 | Article 396

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Du et al. N-Linked Glycopeptide Synthesis via Selenoester

TABLE 2 | Kinetic studies for glycosidic bond formationa.

Ester X R1 R2 K [M−1s−1] Relative rates

2c S NO2 H 0.0071 ± 0.0004 1

2d Se H H 0.0420 ± 0.0012 6

aReaction conditions: 1a (10 µmol), esters (5 µmol) and DIPEA (10 µmol) in 1mL of
DMSO, rt.

(Table 3, entries 4, 8–9). In order to maximize the glycosylation
and minimize the hydrolysis, we selected the optimum
conditions, i.e., 2.0 equivalents of DIPEA and glycosylamine
1a, and 1.0 equivalent of seleno-phenyl ester 2d were dissolved
in DMSO.

Substrate Scope
To explore the universal applicability of selenoester-assisted
glycosylation, we embarked on the attachment of seleno-
phenyl esters to a series of peptides to assemble peptidyl
ω-Asp selenoester substrates, and examined substrates
that incorporating the free C-terminal carboxylic groups
and unprotected glycosylamines. A series of partially
protected peptides bearing selenoesters at the ω-aspartyl
terminus (including pseudoproline dipeptides that suppress
aspartimide formation) were successfully prepared for
evaluation (Ullmann et al., 2012; Wang et al., 2012). These
peptide substrates were conducted via stepwise solid-phase
peptide synthesis (SPPS), the general synthetic procedures
for 4b-12b are outlined in Figure 2 (more details are
shown in the Supporting Information). The installation
of phenyl selenoester group at the ω-aspartyl terminus is
straightforward on the resin: firstly, the allyl esters were
removed; subsequently, the ω-aspartyl carboxyl groups were
converted to selenoesters (4a-12a); finally, these peptidyl
selenoesters were cleaved from the resin. The ω-aspartyl
selenoester peptide substrates (4b-12b) were isolated via reverse-
phase HPLC purification in 58–83% yields. In addition, the
glycosylamines (Figure 3) for the study are monosaccharide 1a,
chitobiose 1b and undecasaccharide 1c (extracted from fresh egg
yolks) (Seko et al., 1997; Sun et al., 2014).

With peptidyl selenoesters and glycosylamines in hand,
the glycosylation reactions at the site of natural ω-asparagine
linkage were evaluated. On the one hand, the coupling of
monosaccharide 1a and peptides 4b-6b gave glycosylated
peptides 4c-6c in approximately 69%-83% isolated yields
(Table 4, entries 1–3), proving the feasibility of utilizing
unprotected glycosylamines together with peptidyl selenoesters
bearing free C-terminal carboxylic groups in glycosylation

TABLE 3 | Reaction optimization and control experimentsa.

Entry 1a (equiv.) 2d (equiv.) Solvent DIPEA (equiv.) Yield (%)b

1 2 1 NMP/PB 2 52

2 2 1 NMP 2 78

3 2 1 DMF 2 76

4 2 1 DMSO 2 92

5 2 1 DMSO 3 90

6 2 1 DMSO 1 88

7 2 1 DMSO 0.1 85

8 1 1 DMSO 2 70

9 3 1 DMSO 2 93

aReaction conditions: 1a (5-15 µmol), ester 2d (5 µmol) and DIPEA (10 µmol) in 1mL of
solvent, rt. bDetermined by HPLC at 2 h. PB = phosphate buffer (pH 7.4, 0.2 M).

reactions. To our delight, peptide 7b containing two ω-
asparagine selenoesters, still gave an isolated yield of
80% of product 7c derived from multiply glycosylated
protein erythropoietin (EPO; fragment 22–43) (Park et al.,
2009; Wang et al., 2013; Wilson et al., 2013) with two
glycosylation modifications (Table 4, entry 4). On the
other hand, this strategy also afforded good results for
glycosylation of disaccharides. As shown in entries 5–7,
coupling of chitobiose 1b and peptidyl selenoesters 5b, 8b,

and 9b formed glycosidic bond at ω-asparagine residue with
excellent yields.

For this methodology, it is noteworthy that the desired N-
linked glycopeptides are synthesized rapidly only throughmixing
two substrates, without using a condensation reagent, and the
workup procedure is simple. Excitingly, the free carboxylic
groups of ω-aspartyl peptide segments were readily converted

into peptidyl selenoesters for further condensation with various

glycosylamines. Additionally, each amino acid protecting group

in glycopeptide can be easily removed in an acidic environment.

Syntheses of N-Linked Glycopeptides With
Complex-Type Oligosaccharide
As shown in Table 5, the protocol of selenoester-mediated
glycopeptide synthesis is extended to complex-type
oligosaccharide amines. Given the structural complexity of
the precious undecasaccharide amine 1c, an excessive amount
of peptidyl selenoester (1.5:1) was used, and the final products
(10e, 11e, 12e) of the peptides modified with undecasaccharides
were achieved in good yields of 59–65% (Table 5, entries 1–3).
Specially, product 12e corresponds to the truncated segment
of the glycoprotein found in human interleukin-5 (IL-5, an
eosinophil chemotactic factor, fragment 26–43) (Coffman et al.,
1989; Liu and Dong, 2018).
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FIGURE 2 | Solid-phase synthesis of peptidyl selenoesters 4b-12b.

FIGURE 3 | Structures of glycosylamines 1a-1c.

CONCLUSION

In this work we have developed a convergent and facile synthetic
methodology to construct homogeneous N-linked glycopeptides

from the peptides with ω-Asp phenyl selenoester, the use of
peptidyl selenoesters has the merits of simple operation and

obtained excellent yields of N-linked glycopeptides, such as
truncated segments derived from glycoprotein EPO or IL-5. This
selenoester-mediated glycosylation provides several advantages:
the reactivity of the peptide ester is improved, the complex
sialyloligosaccharide in its native form without protection, it
is not only compatible with free C-terminal carboxylic acid
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TABLE 4 | Scope of the peptidyl selenoester-based glycosylationa.

Entry Peptide + glycan

ratio (P:G)

Product Isolated

yield

1 4b + 1a

(1:2)

69%

2 5b + 1a

(1:2)

83%

3 6b + 1a

(1:2)

78%

4 7b + 1a

(1:2)

80%

5 5b + 1b

(1:2)

79%

6 8b + 1b

(1:2)

82%

7 9b + 1b

(1:2)

84%

aReaction conditions: 1a (10 µmol), selenoester peptides (5 µmol) and DIPEA (10 µmol) in 1mL of DMSO, rt, 2 h.
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TABLE 5 | Selenoester-mediated glycosylationa.

Entry Peptide + glycan

ratio (P:G)

Product Isolated

yield

1 10b + 1c

(1:1.5)

65%

2 11b + 1c

(1:1.5)

59%

3 12b + 1c

(1:1.5)

62%

aReaction conditions: 1c (3 µmol), 10b-12b (2 µmol), DIPEA (4 µmol) in 0.5mL of DMSO, 4 Å MS, rt, 6 h.

groups, but also rapidly forms glycosidic bond without additional
coupling reagents or catalysts. This method will be further
applied to the formation of homogenous N-linked glycopeptides
and glycoproteins with therapeutic potential.
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