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Due to the increasing amount of work being put into the development of nanotechnology,

the field of nanomaterials holds great promise for revolutionizing biomedicine. However,

insufficient understanding of nanomaterial-biological microenvironment (nano−bio)

interactions hinders the clinical translation of nanomedicine. Therefore, a systematic

understanding of nano−bio interaction is needed for the intelligent design of safe and

effective nanomaterials for biomedical applications. In this review, we summarize the

latest experimental and theoretical developments in the fields of nano−bio interfaces and

corresponding biological outcomes from the perspective of corona and redox reactions.

We also show that nano–bio interaction can offer a variety of multifunctional platforms

with a broad range of applications in the field of biomedicine. The potential challenges

and opportunities in the study of nano–bio interfaces are also provided.
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INTRODUCTION

In recent years, the use of nanomaterials for targeted delivering and controlled releasing
drugs, crossing biological barriers, activating immune cells, and reacting with redox species
for diseases treatment (Zhang et al., 2018; Cai and Chen, 2019; Liu et al., 2019; Yang et al.,
2019; Zhao et al., 2019) has been widely investigated. However, insufficient understanding of
the interactions of nanomaterials with biological molecules and structures (such as, proteins,
membranes, phospholipids, DNA, and free radicals) hinders the application of nanomedicine (Tian
et al., 2016; Fang et al., 2017; Li et al., 2018; Yu et al., 2019). Upon entering into biological fluids,
engineered nanomaterials can rapidly interact with various biomolecules, whichmainly contain the
three following aspects: (1) adsorption of biomolecules on the surface of nanomaterials, forming
protein corona; (2) reconstruction and change of functional proteins; and (3) redox reactions
between nanomaterials and reactive species (Scheme S1). These nano–bio interactions will not
only greatly influence the function and fate of nanomaterials, but also affect cellular biological
function (Liu et al., 2013). Therefore, it is important to evaluate the basic mechanisms of the
reactions at nanomaterial–biology (nano–bio) interfaces and find strategies to manipulate the
nano–bio reactions.

In this review, we reviewed current literature on the basic understanding of nano–bio
interactions and their biological outcomes from associated nanotoxicity to promising biomedicine
development including neurological disorders, bacterial infection, and cancer therapy. The
knowledge presented here could lead to a better understanding of the nano–bio reactions and bring
benefits to the development of nanomedicine.
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FIGURE 1 | Nanoparticle-protein interaction at the nano-bio interface. (A) AFM images and molecular modeling illustrations of SWCNTs coated by four abundant

blood proteins (Ge et al., 2011) (with permission of National Academy of Sciences of the United States of America). (B) Quantitative analysis of serum proteins

adsorption onto various carbon-based nanoparticles including GO, rGO, and SWCNTs (Chong et al., 2015) (with permission of American Chemical Society). (C) The

interaction of nanoparticle–corona complex, rather than the bare nanoparticle, with biological machinery (Monopoli et al., 2012) (with permission of The Royal Society

of Chemistry). (D) The recognition of protein coronas with diverse composition by different cell receptors, leading to the internalization via different mechanisms.

(Francia et al., 2019) (with permission of Springer Nature). (E) Disruption of GO nanosheets on the actin cytoskeleton of A549 cells (Tian et al., 2017) (with permission

of WILEY-VCH Verlag GmbH & Co. KGaA.). (F) AFM images of Aβ1-40 fibrils dissociated by GO treatment (Yang et al., 2015) (with permission of The Royal Society of

Chemistry).

NANOPARTICLE-PROTEIN INTERACTION
AT THE NANO-BIO INTERFACE

Once entering the biological environment, engineered
nanomaterials will immediately interact with surrounding
biomolecules, especially the most abundant proteins, resulting
in the formation of so-called protein corona, a term first
coined by Dawson and co-workers in 2007 (Cedervall et al.,
2007). Subsequently, we investigated the competitive binding of
single-wall carbon nanotubes (SWCNTs) with highly abundant
blood proteins [i.e., BSA, transferrin (Tf), gamma globulin (Ig),
and bovine fibrinogen (BFG)] and found that hydrophobic
interactions, especially π-π stacking interactions, are the
driving forces behind the strong adsorption of serum proteins
(Figure 1A) (Ge et al., 2011). Interestingly, two-dimensional
graphene oxide (GO) nanosheets showed a much higher protein

adsorption capacity than one-dimensional SWCNTs, although
they exhibited similar binding model features (Figure 1B)

(Chong et al., 2015). In addition, the nanoparticle-protein

interaction underwent an intrinsically dynamic exchange at the
nano-bio interface, forming “hard corona” containing higher

affinity proteins or “soft corona” composed of lower affinity

proteins (Chen et al., 2016).
The presence of protein corona could affect the internalization

and biodistribution of nanoparticles, even altering immune

system activation and the final fate of nanomaterials (Figure 1C)

(Monopoli et al., 2012). For instance, BSA corona greatly

decreased the cellular uptake of GO by limiting its penetration
into the cell membrane via the reduction of available surface
area and lipid bilayer damaging (Duan et al., 2015). Corona’s
composition induced different endocytic pathways since the
surface of nanoparticles was recognized by diverse cell receptors
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FIGURE 2 | Redox reaction at the nano-bio interface. (A) TEM images of copper/carbon nanozymes. (B) Tuning catalytic activity by the copper state for antibacterial

therapy. (C) TEM images of Pd nanocrystals. (Xi et al., 2019) (with permission of American Chemical Society). (D) Oxidation of ascorbate catalyzed by Pd

nanocrystals. (E) Tumor growth curves from HCT116 tumor with ascorbate or Pd nanocrystals (Chong et al., 2018) (with permission of Springer Nature).

(Figure 1D) (Francia et al., 2019). When nanomaterials meet
cell-conditioned media, such as, immune cells, it was found
that the secretion of several specific cytokines could be either
increased ormitigated owing to the formation of different protein
corona on the surface of nanomaterials (Dai et al., 2017). In
addition, upon the addition of graphene nanosheets, the structure
of the intracellular cytoskeleton was dramatically disrupted (Tian
et al., 2017), which retarded the cellular migration without
causing acute cytotoxicity (Figure 1E). By exploiting this strong
interaction between nanomaterials and proteins, carbon-based
nanomaterials have been developed for to inhibit the fibrillation
of amyloid-beta peptide or α-synuclein monomer, as well as
effectively clearing the mature fibrils by destructively extracting
peptide molecules from fibrils (Figure 1F) (Yang et al., 2015; Kim
et al., 2019).

REDOX REACTION AT THE NANO-BIO
INTERFACE

Redox reaction at the nano–bio interface is another critical
factor that regulates the functions and toxicities of nanomaterials.
Nanomaterials interact with these redox-related chemical species
by generating and/or scavenging reactive oxygen species (ROS),
which influences the fate of cells in vivo. Therefore, research on
the interaction between nanomaterials and ROS not only help us
to understand the mechanism of nanomaterial toxicity, but also
broadens the applications of nanomaterials in medicine.

Numerous studies have demonstrated that many types of
engineered nanomaterials are capable of accomplishing natural
enzyme-like catalytic performance. For instance, iron oxide
nanoparticles (Fe3O4) (Chen et al., 2012), graphene quantum
dots (GQDs) (Sun et al., 2014), and Au nanoparticles (Wang
et al., 2017) have oxidase- and/or peroxidase (POD)-like
activities. In addition, we have investigated GO, GQDs, silver
(Ag) nanoparticles, Pd nanoparticles, and Pd@Ir nanoparticles
that have ROS-generating abilities (Chong et al., 2016, 2017;
Ge et al., 2016; Fang et al., 2018; Cai et al., 2019; Tian et al.,
2019). The ROS-generating abilities of these nanomaterials differ
in sizes, shapes, and facets. For instance, Gao et al. have found
that the POD-like activity of cooper nanoparticles is state-
dependent (Figures 2A,B) (Xi et al., 2019). Furthermore, we
have found that Pd nanoparticles with oxidase-like activity can
catalyze the oxidation of ascorbate and generate H2O2. Pd
nanoparticles enclosed by high-index facets remarkably amplify
the oxidation of ascorbate, which is selective against cancer cells
(Figures 2C–E) (Chong et al., 2018).

The scavenging of overexpressed ROS in pathological sites has
been employed as a general therapeutic approach to pathological
abnormalities, such as, Alzheimer’s disease (Kwon et al., 2016),
hepatitis (Zhang et al., 2016), and radiation damage (Cheng
et al., 2018). Therefore, nanomaterials with catalase (CAT)-
and/or superoxide dismutase (SOD)-like activities have been
studied as therapeutic agents in ROS-related diseases. Metal-
based nanomaterials, such as, cerium oxide (CeO2), manganese
oxide (Mn3O4), Pd, and Pt, have attracted extensive attention due
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to their excellent enzyme-like activities (Chen et al., 2016; Kwon
et al., 2016; Singh et al., 2017). For instance, custom-made CeO2

nanoparticles possessed SOD-like activity and can catalyze the
reaction of O−

2 to generate O2. These nanoparticles showed an
excellent ability to protect neuronal cells from oxidative damage
(Zeng et al., 2018). It is expected that these nanomaterials with a
strong ability to scavenge ROS could be developed as a promising
therapeutic agent for oxidative stress-related diseases.

CONCLUSIONS AND PERSPECTIVES

Research on the nano–bio interfaces of engineered nanomaterials
is an important issue in the development of nanomedicine.
This is because nano–bio interfaces are related to the intelligent
design of safe and effective nanomedicine, drug delivery,
pathological site targeting, metabolism, and biocompatibility.
In this review, we summarized recent advances in nano–
bio interactions of nanomaterials from the perspective of
corona and redox reactions. With these advances, the future
use of nanomaterials in biomedicine will hold great promise,
especially in ROS-related diseases. Nevertheless, the research
of nano–bio interfaces still has many challenges: (1) A full
understanding of the catalytic mechanisms of nanomaterials
toward redox species is still lacking. (2) Regulation strategy on
the catalytic activity of nanomaterials needs to be developed
for their effective application as smarter therapeutic and
diagnostic modalities. (3) Research on nano–bio interactions

needs to consider the complex environment in vivo. (4) More
attention should be paid to theoretical simulation in order
to accurately and deeply investigate the nano–bio interactions.
Thus, more efforts should be made in the research of
nano–bio interactions.
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