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Indocyanine green (ICG) is a Food and Drug Administration–approved near-infrared

fluorescent dye, employed as an imaging agent for different clinical applications due

to its attractive physicochemical properties, high sensitivity, and safety. However,

free ICG suffers from some drawbacks, such as relatively short circulation half-life,

concentration-dependent aggregation, and rapid clearance from the body, which would

confine its feasible application in oncology. Here, we aim to discuss encapsulation of

ICG within a nanoparticle formulation as a strategy to overcome some of its current

limitations and to enlarge its possible applications in cancer diagnosis and treatment.

Our purpose is to provide a short but exhaustive overview of clinical outcomes that

these nanocomposites would provide, discussing opportunities, limitations, and possible

impacts with regard to the main clinical needs in oncology.
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INTRODUCTION

Recently, growing attention has been addressed to nanocarriers for Indocyanine green (ICG)
delivery with the purpose of overcoming some of its current limitations and to expand its
possible applications in cancer diagnosis and treatment (Wang et al., 2018). ICG is a widely
investigated near infrared (NIR) fluorescent agent, approved for clinical use by the Food and Drug
Administration (FDA) in the 1950s (Landsman et al., 1976; Alius et al., 2018). Over the past decade,
NIR optical imaging using ICG has become determining for a variety of applications, including
lymphangiography, intra-operative lymph node (LN) identification, tissue perfusion, detection of
vital structures, and tumor imaging (Fox and Wood, 1960; Starosolski et al., 2017). ICG displays
several advantages thoroughly verified during its long clinical use: it is easy to use, cost-effective,
radiation-free, and safe. Although ICG fluorescent imaging represents a promising medical tool, its
application remains limited due to the intrinsic issues related to ICG degradation and rapid blood
clearance (Muckle, 1976; Saxena et al., 2003; Zheng et al., 2012). Therefore, many studies suggest
that the exploitation of ICG-based nano-formulations (micelles, polymeric nanoparticles, silica
nanoparticles, and liposomes) could boost the efficacy, specificity, and biosafety of this imaging
agent for potential oncological applications (Yan et al., 2016; Egloff-Juras et al., 2019).
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PROPERTIES OF ICG

ICG is an amphiphilic tricarbocyanine dye used in the biomedical
field for almost six decades for different purposes (Schaafsma
et al., 2011; Hill et al., 2015). ICG is an anionic, water-soluble,
and fluorescent molecule with a molecular weight of 751 Da
and that displays absorption and fluorescence emission in the
NIR wavelength region (Zhao et al., 2014). These properties
allow deep penetration of the signal and minimize interference
of tissues’ autofluorescence, making it suitable for bio-imaging
uses (Wang et al., 2004; Yuan et al., 2004). Moreover, since
it is an FDA-approved dye, well studied in its already known
clinical applications, its introduction to new clinical applications
is greatly simplified (Alander et al., 2012; Valente et al., 2019).
Additionally, due to its photosensitizing properties, ICG can
be used to generate oxygen species (ROS) or heat, aiming
to destroy cancer cells in photodynamic therapy (PDT) and
photothermal therapy (PTT) (Dolmans et al., 2003; Kuo et al.,
2012). Despite these compelling properties, the application of
ICG is restricted due to its concentration-dependent aggregation,
quick degradation, and poor photostability. Furthermore, its
non-specific binding to plasma proteins determines a relatively
short circulation half-life, and its non-specific targeting remains
a limitation (Kirchherr et al., 2009; Yaseen et al., 2009).

ICG AS AN NIR FLUORESCENT
CONTRAST AGENT: CLINICAL
APPLICATIONS

As previously mentioned, ICG has an excellent safety profile and,
following injection of a clinical standard dose (0.1–0.5 mg/kg),
immediately interacts with plasma proteins, acting as an excellent
vascular agent for evaluating both the blood perfusion and
lymphatic drainage (Alford et al., 2009; Marshall et al., 2010; Boni
et al., 2015). Once excited at the wavelength of about 820 nm,
ICG emits a fluorescent signal detectable by specific scopes
and cameras to allow identification of anatomical structures
where the dye localizes (Luo et al., 2011; Daskalaki et al., 2014).
Indeed, ICG is used in intraoperative angiography for assessment
of superficial eye vessels and in the evaluation of coronary
artery bypass grafts, peripheral vascular disease, and solid organ
transplantation (Reuthebuch et al., 2004; Sekijima et al., 2004;
Desai et al., 2006; Kang et al., 2010a,b; Baillif et al., 2011).
Moreover, since, once injected intravenously, ICG is excreted
exclusively via the liver, it is used to assess hepatic function
(Daskalaki et al., 2014). In addition to these applications, ICG
is employed in NIR fluorescence image-guided oncologic surgery
with the purpose of identifying structures that need to be resected
(e.g., tumor tissue, lymph nodes) and spared, contributing to
support the surgeon’s decision-making process (Boni et al., 2015;
Baiocchi et al., 2018).

Of note, NIR fluorescence imaging via ICG can provide real-
time identification of tumor margins and affected lymph nodes
(LN) in breast and skin cancers, improving local control of the
disease and allowing amore conservative surgery (Sevick-Muraca
et al., 2008; Fujiwara et al., 2009; Murawa et al., 2009). Sentinel

LN (SLN) mapping is important to detect involved LN and is
required for cancer staging, prognosis prediction, and therapy
selection (Schaafsma et al., 2011; Wang et al., 2018). Here,
ICG is injected near the tumor and flows via lymph circulation
to LN, displaying them when lit with excitation light (Tanaka
et al., 2006; Alander et al., 2012; Wishart et al., 2012; Verbeek
et al., 2014). ICG-NIR fluorescence imaging has been applied
also to intraoperative tumor detection in order to ensure a total
tumor resection (Gotoh et al., 2009; Onda et al., 2016; Rossi
et al., 2018). Indeed, exploiting ICG hepatic clearance and the
enhanced permeability and retention (EPR) effect, liver tumors
could be identified (Ishizawa et al., 2009; Huang et al., 2018).

To date, the application of ICG as an NIR fluorescence
imaging agent in oncology is an active and promising area, but
it also has limitations. Aside from the problems inherent with
some of its physicochemical properties, ICG is a non-targeted
or extremely low targeted tracer, which greatly precludes its
application for specific cancer imaging (Landsman et al., 1976;
Marshall et al., 2010; Wang et al., 2018; Egloff-Juras et al., 2019).

ICG-NPs AND CANCER: PRECLINICAL
STUDIES

Recently, the development of multifunctional ICG-NPs, offering
both diagnostic and therapeutic solutions in cancer, has captured
the attention of researchers (Han et al., 2018). To overcome
the limitations previously discussed, several ICG-NPs have been
proposed and tested, both in vitro and in vivo (Liu et al.,
2019b; ZhuGe et al., 2019), displaying increased circulation time
and improved ICG optical properties and achieving tumor-
specific accumulation. Many advantages derive from their use:
combining or encapsulating it to/intoNPs results in the extension
of ICG half-life. Additionally, functionalization with specific
cancer-related antibodies may result in preferential accumulation
of ICG at the tumor site. Furthermore, ICG-NPs may be useful
to limit ICG aggregation and photodegradation as well as
to improve its stability in aqueous solutions (Ishizawa et al.,
2009; Liu et al., 2019c; ZhuGe et al., 2019). ICG has been
loaded or conjugated to a variety of nanostructures, such
as polymer-based NPs, lipid-based NPs, and silica NPs with
different surface modifications and functionalization strategies
(Figure 1A). Among the plethora of ICG-NPs for different
targets and applications, we focused on the following main
applications for cancer treatment: PDT and PTT (i), in vivo
imaging and image-guided surgery (ii), and multimodal therapy
(iii) (Figure 1B). A summary of all significant examples of ICG-
NPs developed for these applications has been inserted inTable 1.

PDT is an emerging, minimally invasive cancer treatment
based on the production of ROS in response to a source of
light, the presence of oxygen and a photosensitizer (i.e., ICG)
(ZhuGe et al., 2019). Although this option seems promising
for many cancers (Gross et al., 2003; Ritch and Punnen, 2017),
selective delivery of the photosensitizers at target tissues/cells
remains insufficient for successful clinical use (Zhen et al.,
2013). Since PDT could generate an antitumor immune response,
ICG-loaded liposomes were studied in combination with NIR
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FIGURE 1 | (A) Some examples of the ICG-NPs obtained with different materials and conjugation techniques. (B) Main applications of ICG-NPs in cancer treatment.

irradiation, demonstrating suppression of brain tumor growth
and suggesting the potential application for the treatment of
tumors near the brain surface (Shibata et al., 2019). Super
carbonate apatite-ICG NPs improved ICG uptake in tumor
cells and its antitumor effect in a colorectal xenograft model,
serving as a useful vehicle for ICG-based PDT (Tamai et al.,
2018). Also, hydroxyethyl starch-oleic acid ICG-NPs exhibited
excellent stability and efficient ROS generation and increased
cellular uptake and tumor accumulation compared to free ICG
(Hu et al., 2019).

In addition to PDT, PTT also arose as a promising approach
for cancer treatment by using NIR-light to generate heat and
achieve tumor ablation (Li et al., 2019a). The main challenge

with PTT is that heat could also damage the healthy surrounding
tissue and fail to eradicate metastatic cells. Several NPs with
excellent NIR light absorption have been developed as PTT
agents, including gold, copper, carbon NPs, and NIR dyes (Lv
et al., 2017). Also, ICG has been exploited in a multitude of
NPs as a PTT agent (Doughty et al., 2019). ICG-conjugated
micelles have been investigated for breast and lung cancer
treatment displaying increased circulation time, accurate tumor
targeting, and efficient PTT effect compared with free ICG (Li
et al., 2019b; Zhu et al., 2019). Another work proposed the
functionalization with folic acid to achieve accumulation on
MCF-7 breast cancer cells, obtaining a significant tumor growth
inhibition (Zheng et al., 2014). A formulation of pH-responsive
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TABLE 1 | Summary of all significant examples of ICG nanoparticles studied in vivo.

ICG-NPs: preclinical research

Nanoparticle type Conjugation

technique

Target Aim/use Achievements/findings References

Calcium phosphate

nanoparticles

ICG encapsulation Breast cancer Fluoroprobing Improved half life

Improved photostability

Biocompatibility

Altinoglu et al., 2008

Water-responsive

phospholipid-calcium-carbonate

hybrid nanoparticle

ICG loading

doxorubicin

loading

Breast cancer PTT Good tissue penetration

Decreased metastatic areas

Liu et al., 2019b

Super carbonate apatite

nanoparticles

ICG loading Colorectal

adenocarcinoma

PDT Fluorescence enhancement

Significant tumor growth retardation

Tamai et al., 2018

Hydrophobic superparamagnetic

iron oxide nanoparticles

ICG loading

doxorubicin

coating

Glioblastoma MRI imaging

Chemotherapy

BBB crossing

Accumulation at the tumor site

Shen et al., 2018

Graphene oxide hybrid

nano-composites

Electrostatic

interaction with

ICG

Colorectal

adenocarcinoma

PTT Citotoxicity in cancer cells only Sharker et al., 2015

Polyamidoamine

(PAMAM)-coated silica

nanoparticles

ICG coating Sentinel lymph

nodes

Sentinel lymph

node imaging

Facilitatation of sentinel lymph node

biopsy procedures

Tsuchimochi et al., 2013

PL-PEG-mAb nanoparticles ICG-PEG

conjugation

Glioblastoma

Breast cancer

PTT

Imaging

Good targeting

Tumor reduction

Zheng et al., 2012

PLGA-PEG-R837 nanoparticles ICG encapsulation Breast cancer PTT

Immunotherapy

Great antitumor effect

Strong immune-memory effect

Chen et al., 2016

PEG-PCL-C3 hybrid

nanoparticles

ICG-PEG

conjugation

Oral squamous

cell carcinoma

PTT

PDT

In vivo safety

Active role in reducing tumor volume

Ren et al., 2017

Levan nanoparticles ICG encapsulation Breast cancer Imaging Selective targeting of cancer cells Kim et al., 2015

Silk fibroin nanoparticles

cross-linked by

proanthocyanidins

ICG encapsulation Glioblastoma PTT Stable photothermal properties

Decrease of tumor volume

ZhuGe et al., 2019

Silk fibroin nanoparticles ICG encapsulation Glioblastoma PTT Inhibition of tumor growth Xu et al., 2018

Hyaluronic acid nanoformulation ICG entrapment Pancreatic cancer Tumor detection Safe contrast agent Qi et al., 2018

Hyaluronic acid nanoformulation ICG entrapment Breast cancer Image-guided

surgery

Good contrast enhancement Hill et al., 2015

Hyaluronic acid nanogels ICG entrapment Breast cancer Imaging Improved imaging of metastatic lymph

nodes

Mok et al., 2012

Polymer-lipid nanoparticles ICG encapsulation Pancreatic cancer PTT Suppression of tumor growth Zhao et al., 2014

Mannosylated liposomes ICG encapsulation Sentinel lymph

nodes

Sentinel lymph

node imaging

Increased liposomal stability

Good optical properties

Jeong et al., 2013

Liposomes Lipid-bound ICG Healthy organism Imaging Fluorescence enhancement Kraft and Ho, 2014

Liposomes ICG-iDOPE

incorporation

Glioblastoma PDT Suppression of tumor growth Shibata et al., 2019

Gold nanorod@liposome

core–shell nanoparticles

ICG loading Liver cancer Photoacoustic

tomography

Surgery Guidance

Prolonged half-life

Preoperative detection of liver cancer

Guan et al., 2017

Micelles ICG-PEG

conjugation

Lung carcinoma PTT Tumor detection

Inhibition of tumor growth

Li et al., 2019b

Micelles ICG/retinal loading Murine breast

cancer

PTT Suppression of tumor growth Zhu et al., 2019

Lactosomes (micelles assembled

from block copolymers)

ICG loading Metastatic lymph

nodes in gastric

cancer

PDT

Imaging

Selective accumulation in metastatic

lymph nodes

Tsujimoto et al., 2015

*Phospholipid nanoprobes Folic

acid-phospholipid nanoparticles

ICG-PEG

conjugation

Glioblastoma

Breast cancer

PTT

Imaging

Selective imaging of cancer cells

Selective killing of cancer cells

Zheng et al., 2011

Folate-targeted lipid

nanoparticles

ICG/oxygen

loading

Ovarian cancer PTT

PDT

Imaging

Good targeting

Increased PDT efficacy

Liu et al., 2019c

(Continued)
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TABLE 1 | Continued

ICG-NPs: preclinical research

Nanoparticle type Conjugation

technique

Target Aim/use Achievements/findings References

Folic acid-targeted nanoparticles ICG loading Breast cancer PTT Significant targeting to MCF-7 tumors

Tumor

growth inhibition

Zheng et al., 2014

HDL nanoparticles ICG encapsulation Murine breast

cancer

PTT

PDT

Deep tumor penetration

Enhanced tumor necrosis

Sheng et al., 2019

Human ferritin Photosensitizer

encapsulation

Glioblastoma PDT High phototoxicity in tumors

Normal tissue left unaffected

Zhen et al., 2013

BSA nanoparticles ICG coating

artemisin

encapsulation

Epidermal

carcinoma

PTT

PDT

Synergistic photo-chemotherapy Ma et al., 2018

Human serum albumin ICG adsorption Murine breast

cancer

PTT

PDT

Tumor margin detenction

Tumor eradication without regrowth

Sheng et al., 2014

§Human serum albumin ICG adsorption Breast cancer Sentinel lymph

node mapping

Clinical trial Hutteman et al., 2011

*in vitro research only.
§clinical trial.

polymeric nano-complexes of graphene oxide and ICG (Sharker
et al., 2015) was effective in providing selective sensitivity to
tumor environment and tumor regression, confirming its clinical
usefulness. Also, in studies with ICG-loaded polymer-lipid NPs
against pancreatic cancer (Zhao et al., 2014) and silk fibroin NPs
addressing glioblastoma (Xu et al., 2018), the main advantages
observed, compared to free ICG, were an extended circulation
time and in vivo stability, together with the ability to specifically
target cancer cells (Sheng et al., 2019).

An assortment of ICG-NPs also has been developed for
bioimaging applications as agents for tumor identification. Since
early detection is crucial for the prompt diagnosis and successful
treatment of cancer, the benefits of using NPs as vector for
ICG to the tumor site would be significant. ICG-incorporating
liposomes provide enhanced visualization of the popliteal LN and
downstream LN, detected across 1.5 cm of muscle tissue, and
free ICG only enables 0.5 cm detection (Kraft and Ho, 2014).
Hyaluronic acid (HA) NPs allow contrast enhancement (Hill
et al., 2015), and levan NPs display good targeted imaging of
breast tumors and the suitability to encapsulate hydrophobic
drugs (Kim et al., 2015). ICG-HA–derived NPs improve the
NIR signal for intraoperative detection of pancreas and splenic
metastasis compared to ICG (Qi et al., 2018), and also nanogels
display good performance in targeted imaging of cancers and
LN metastases in addition to the feasible drug-encapsulation
in their hydrophobic core (Mok et al., 2012). ICG-doped
calcium phosphate NPs display increased deep-tissue penetration
(Altinoglu et al., 2008). Another promising strategy involves
its effectiveness as a photoacoustic-fluorescence imaging probe
in liver cancer detection (Guan et al., 2017). Overall, all the
considered formulations display a non-toxic safety profile, a
longer circulation time, and a higher tumor accumulation than
free ICG. This would provide the potential to increase the
completeness of surgery and the chances of a better outcome.
Furthermore, different ICG-NPs were suggested as contrast
agents for SLN mapping. Mannosilated ICG-liposomes show

improved stability and fluorescence signal by exploiting their
specific recognition by macrophages, making it a good agent
for SLN and LN imaging (Jeong et al., 2013). Silica NPs loaded
with technetium and ICG improve LN detection in real time
although further studies are necessary to assess the appropriate
dose (Tsuchimochi et al., 2013), and ICG-loaded lactosomes
provide an improved LN detection and a inhibited growth upon
PDT treatment (Tsujimoto et al., 2015). The only example tested
in the clinic concerns the use of ICG adsorbed to human serum
albumin (ICG:HSA) aiming to improve detection and better
retention in the SLN after intradermal injection. However, this
trial performed on breast cancer patients showed no advantage
of ICG:HSA for SLN mapping (Hutteman et al., 2011).

Very often, the applications described above have been used
in combination to obtain better therapeutic results. Indeed,
many authors consider the use of ICG for imaging-guided
PTT, allowing simultaneously tumor detection and eradication.
ICG-PL-PEG NPs were investigated in vitro for cell imaging
and selective PTT, proving to be an interesting multifunctional
system (Zheng et al., 2011), and Liu and coworkers provide
a synergistic strategy for both offering contrast enhancement
and tumor growth reduction against ovarian cancer (Liu et al.,
2019c). Furthermore, the successful application of HSA-ICG
NPs for in vivo imaging and tumor margin detection following
PDT/PTT synergic phototherapy has been reported (Sheng et al.,
2014). Many authors also insist on the strength of the synergistic
combination of PTT and PDT to obtain better therapeutic results
(Ren et al., 2017; Sheng et al., 2019; Zhu et al., 2019).

Moreover, since monotherapy, either PTT or PDT usually
suffers from incomplete tumor killing, leading potentially
to tumor relapse (Ma et al., 2018); a combination with
chemotherapy could optimize the cancer treatment. In this
context, chemotherapy drugs combined with phototherapy
have been studied. Doxorubicin has been exploited in
superparamagnetic iron oxide NPs with ICG displaying good
imaging ability, showing accumulation in the tumor site and high
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antitumor efficacy with few side effects in glioma-bearing rats
(Shen et al., 2018). Phospholipid-calcium-carbonate NPs loaded
with doxorubicin and ICG demonstrate strong tumor-homing
properties and a synergistic effect in terms of tumor growth
reduction (Liu et al., 2019b). Regarding cancer immunotherapy,
the photothermal ablation of tumors with immune-adjuvant
ICG-NPs, seems promising in activating immune responses
potentially applicable for metastasis treatment (Chen et al.,
2016). Overall, multimodal therapies appear to enhance the
therapeutic effects and prevent possible recurrences.

ICG-NPs: OPPORTUNITIES, LIMITATIONS
AND POSSIBLE IMPACTS IN ONCOLOGY

Implementing a plethora of different ICG-NPs makes the
comparison between them especially difficult. Overall, the most
promising strategies are related to actively targeted ICG-NPs, but
there is a significant gap in outcomes between preclinical cancer
models and their translation into clinical practice. As previously
discussed, several recent studies are focusing on the development
of ICG-NPs, aiming to exploit the advantages of ICG in order to
further increase cancer therapies.

First, ICG-NPs could be effective in improving the already
existing imaging techniques, either by prolonging ICG half-life
or by selectively addressing the molecule to cancer cells only; that
could be particularly relevant when trying to identify metastases
as well as being useful to early detection of cancer cells in case
of relapse. The chance to use NPs-ICG as drugs to directly treat
tumors represents an additional advantage. By exploiting the
ability of ICG to both generate heat and ROS in response to NIR,
ICG-NPs could be used for PTT, PDT, or both in order to elicit
antitumor response (Han et al., 2018; Liu et al., 2019c). Indeed,
the accumulation of ICG in tumor cells and their exposure
to light, determines a localized increase in temperature that
causes cell damage by apoptosis and necrosis, resulting in tumor
ablation (Melamed et al., 2015; Pérez-Hernández et al., 2015).
In the meantime, in the presence of oxygen, light-activated ICG
also generates ROS, leading to cell death and tissue destruction
(Allison and Moghissi, 2013). Nevertheless, recent studies are
quite misleading about the application of PTT and PDT, which
rely on different therapeutic mechanisms. However, when ICG
is used, both effects could be achieved although with a distinct
tumor cell–killing contribution by each (Liu et al., 2019a). More
clarity about which strategy is being referred to is necessary since,
through ICG, one thing does not exclude the other, and the
related side effects should be considered as well. Both PTT and
PDT are promising for the treatment of several malignancies;
however, it is important to understand which aspect to target to
design the appropriate NPs (Pinto and Pocard, 2018).

The first concern is about immunogenicity. Although it is
common opinion that ICG itself is not toxic and that ICG-NPs
can be selectively targeted to the tumor, it is still uncertain if
other tissues could be affected by the treatment. NPs must not
elicit an immune response and demonstrate not to be toxic for
the organism.

A second issue is obvious: cancer is not a single disease.
Tumors may be solid or not, have clear or irregular borders,
spread in easily reachable districts or in hard-to-treat areas.
Additionally, similar tumors may have different density,
vasculature, and tumor microenvironment. Here, the ability of
ICG-NPs to penetrate into the tumor is unclear, thus making it
hard to decide if ICG-NPs should be addressed to primary tumors
and metastases or used as adjuvants after surgery (Tsujimoto
et al., 2015; Sheng et al., 2019). Research on ICG-NPs should
develop the optimal strategy for real clinical applications on each
disease instead of just developing NPs that prove to be effective at
a preclinical stage but are difficult to translate into clinical trials.

Regarding the multitude of developed ICG-NPs, one fact is
evident: every group focuses on the NP type they are used to
working with as well as on the tumor model they know better
(Table 1). Such an approach is both useful and harmful. On
the one hand, long-term expertise in developing a specific NP
could be addressed to the production of highly effective ICG-
NPs; on the other hand, several cancer models should be tested
to evaluate the efficacy of the proposed treatment in different
contexts. Focusing on a single model could be limiting if the
purpose is to design a consistent model for the development
of new therapies. Options to design ICG-NPs are unlimited,
and many could be adjusted to target different tumors (Han
et al., 2018). NPs can be further enriched by conjugation with
other molecules: monoclonal antibodies, fluorescence probes and
drugs in order to maximize the antitumor effect of the ICG-NPs
(Zheng et al., 2011; Sheng et al., 2014; Ma et al., 2018). Here, given
that the enhancement of targeting is crucial to prevent damage of
healthy tissues, NPs should be selectively directed to the tumor,
either inserting targeting molecules or by exploiting the intrinsic
ability of some carriers to bind cancer.

Despite all the advantages deriving from ICG-NPs and
the huge amount of solutions proposed so far, a pool of
clinical applications have not been outlined yet, thus making
it impossible to determine which ones have the potential to
become actual drugs. The answer is not one and only: different
nanoparticles could be used to treat different tumors, and
different molecules could be attached to improve their selectivity.
Therefore, developing dozens of different ICG-NPs is not of help
in finding the best alternatives that could be eventually tested in
clinical trials.

On top of everything, when discussing the potentiality of
ICG-NPs in therapy, an uncomfortable yet necessary question
should be raised about the costs of clinical trials involving NPs:
developing such molecules, especially when they are combined
with chemotherapeutic drugs and/or patented monoclonal
antibodies, has been proved to be extremely expensive, thus
limiting the possibility to produce high amounts of molecules to
be used in clinical trials.

DISCUSSION

In conclusion, the potential of ICG-conjugated NPs is
undeniable, mostly because they could possibly be directed
toward several cancer types with incredibly high specificity
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(Bozkulak et al., 2009; Montazerabadi et al., 2012). Indeed, they
could overcome some of the limitations of current treatments,
especially regarding tumors that are poorly accessible by drugs
or hard to treat, and they could also limit the side effects usually
associated to conventional therapies (Montazerabadi et al.,
2012). However, obtaining specific cell targeting as well as
maintaining high drug concentration at the tumor site remain
the main challenges as they are both necessary conditions for
the implementation of ICG-NPs–based imaging, PTT, and
PDT. This is the reason why the currently known ICG-NPs
have not successfully reached the translation into clinics so
far. Therefore, an improved active targeting is required for a
major impact on human health. Moreover, since the penetration
depth of light in tissues could be limited, even with NIR lasers,
endoscope-based clinical devices equipped with a laser may
be demanded in order to reach successful outcomes in clinical
practice (Chen et al., 2016). Some sort of consensus should
also be achieved about the most promising formulations and
the real aims of the proposed interventions: PTT, PDT, and
imaging are not interchangeable terms, and more precision
is required when deciding which therapies would be worth

testing. In addition, before trying to develop new ICG-NPs,
the economic impact of a potential trial involving such NPs
must be carefully considered. Expertise and deep knowledge

in the field are mandatory, but feasibility will eventually
determine if a promising molecule will ever be translated into an
actual therapy.
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