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In this mini-review, a comprehensive discussion on the state of the art of hybrid

organic–inorganic mixed ionic–electronic conductors (hOI-MIECs) is given, focusing

on conducting polymer nanocomposites comprising inorganic nanoparticles ranging

from ceramic-in-polymer to polymer-in-ceramic concentration regimes. First, a brief

discussion on fundamental aspects of mixed ionic–electronic transport phenomena

considering the charge carrier transport at bulk regions together with the effect of the

organic–inorganic interphase of hybrid nanocomposites is presented. We also make a

recount of updated instrumentation techniques to characterize structure, microstructure,

chemical composition, and mixed ionic–electronic transport with special focus on those

relevant for hOI-MIECs. Raman imaging and impedance spectroscopy instrumentation

techniques are particularly discussed as relatively simple and versatile tools to study the

charge carrier localization and transport at different regions of hOI-MIECs including both

bulk and interphase regions to shed some light on the mixed ionic–electronic transport

mechanism. In addition, we will also refer to different device assembly configurations

and in situ/operando measurements experiments to analyze mixed ionic–electronic

conduction phenomena for different specific applications. Finally, we will also review the

broad range of promising applications of hOI-MIECs, mainly in the field of energy storage

and conversion, but also in the emerging field of electronics and bioelectronics.

Keywords: hybrid organic–inorganic composites, nanomaterials, mixed ionic–electronic conducting materials,

semiconductor, Raman micro spectroscopy, impedance spectroscopy

INTRODUCTION

In the last decades, mixed ionic–electronic conductors (MIECs) have beenwidely studied for energy
storage and energy conversion materials, separation membranes, and catalysts (Shao and Haile,
2004; Maier, 2005; Wachsman and Lee, 2011; Aoki et al., 2014). Both ionic (σi) or electronic (σe)
conduction obey separately and analogously to the following equation:

σ = qNµ (1)

where q is the charge, N is the number, and µ is the mobility of the charge carrier, the latter
being proportional to diffusivity (D). In the particular case of inorganic MIECs, some well-known
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examples are semiconducting compounds such as Ag2X (with
X = S, Se, or Te) as mixed silver ion (Ag+) and electronic
conducting materials (Yokota, 1961; Miyatani, 1973; Riess, 2003)
and A-doped MO2−δ (typically M = Ce or Zr, and A being
different dopants) as mixed oxygen ion (O2−) and electronic
transport materials (Goodenough, 2000; Balaguer et al., 2011;
Lin et al., 2015). However, one of the most relevant inorganic
MIEC materials gaining special attention in the recent years
are AXM2O4 (with M = Ni, Co, and/or Mn and A = Li or
Na) due to their excellent performance, particularly as cathode
materials for lithium (Li+) and sodium (Na+) ion batteries (Doeff
et al., 1993; Barker et al., 1996; Saïdi et al., 1996; Thackeray,
1997; Dokko et al., 2001; Lu and Dahn, 2001; Cao and Prakash,
2002; Levasseur et al., 2002; Sauvage et al., 2007; Berthelot
et al., 2010; Tevar and Whitacre, 2010). For instance, typical
electronic conductivities (σe) and lithium-ion diffusivities (Di)
for LiXM2O4 cathode materials are σe ∼ 10−6-10−1 S cm−1 and
Di ∼ 10−11-10−8 cm2s−1, respectively, depending strongly on
the transition metal (M), lithiation degree (x), and crystallinity
(Park et al., 2010). In the particular case of semiconducting
inorganic nanomaterials, both ionic and electronic transport
present lower charge carrier resistance at the crystalline bulk
regions but are drastically compromised by the poor charge
carrier conducting nature of grain boundaries (Park et al., 2010).
In the last decades, the addition of conducting coating materials
and secondary phases such as mixed ionic–electronic conducting
organic materials (e.g., conducting polymers), working as linkers
between inorganic nanomaterials, has attracted a lot of attention
(Judeinstein and Sanchez, 1996; Gómez-Romero and Lira-Cantú,
1997; Guizard et al., 2001; Le Bideau et al., 2011). It is well-
accepted that electronic conducting organic polymers, usually
called conjugated polymers, are semiconductors in nature and
that the most popular cases such as poly(pyrrole) (Ppy) (Della
Santa et al., 1997), poly(aniline) (PANI) (Zhang K. et al., 2012a;
Chatterjee et al., 2013; Zhang Q. et al., 2013a; Roussel et al.,
2015), poly(ethylenedioxythiophene) (PEDOT) (Crispin et al.,
2006; Udo et al., 2009; Takano et al., 2012; Kim et al., 2013;
Mengistie et al., 2013, 2015; Lee et al., 2014; Kumar et al.,
2016; Zia Ullah et al., 2016), and poly(3-hexylthiophene) (P3HT)
(Zhang Q. et al., 2012; Pingel and Neher, 2013; Glaudell et al.,
2015; Jacobs et al., 2016; Qu et al., 2016; Jung et al., 2017; Wang
W. et al., 2017; Lim et al., 2018) generally exhibit an electronic
donor behavior. In this case, the most common procedure to
enhance the electronic conduction, where charge carriers will be
mostly holes rather than electrons, is by doping these polymers
with electronic acceptor species (p-type doping) such as halide
and sulfonate salts, yielding a decrease in the electronic band
gap and an increase of the electronic conductivity up to σe
∼ 10−1-103 S cm−1 values (Della Santa et al., 1997; Crispin
et al., 2006; Udo et al., 2009; Takano et al., 2012; Zhang K.
et al., 2012; Zhang Q. et al., 2012, 2013; Chatterjee et al.,
2013; Kim et al., 2013; Mengistie et al., 2013, 2015; Pingel and
Neher, 2013; Lee et al., 2014; Glaudell et al., 2015; Roussel
et al., 2015; Jacobs et al., 2016; Kumar et al., 2016; Qu et al.,
2016; Zia Ullah et al., 2016; Jung et al., 2017; Wang W. et al.,
2017; Lim et al., 2018). The mere presence of the dopant,
typically halide, or sulfonate salts with relatively high degree of

dissociation, will trigger a non-negligible ionic conduction in
addition to the electronic transport (Riess, 2000). It is important
to mention that there are other “non-dissociable” excellent
dopants such as the case of tetracyanoquinodimethane (TCNQ)
in all of its fluorinated forms, but as it does not provide
highly mobile ionic carriers, it will not be considered in this
review. It was long observed that protons (H+), lithium (Li+),
sodium (Na+), or potassium (K+) cations yielded a considerable
ionic contribution to the total mixed ionic–electronic transport
of conjugated polymers (Nigrey et al., 1978; Aldebert et al.,
1986; Barthet and Guglielmi, 1995; Watanabe, 1996). The
voluminous dopant anions are generally more fixed to the
polymer chain, allowing the electronic exchange process (doping)
to take place but contributing in a lesser extent to the ionic
conductivity except for a few particular cases (Cheng et al.,
2005). Pursuing an increase in the ionic conduction of MIECs,
blending and co-polymerization (including functionalization of
side chains) of electronic conducting polymers with good ionic
conducting polymers [e.g., poly(ethylene oxide) (PEO)], has
shown enhancement of ionic conductivities up to σi ∼ 10−5-
10−4 S cm−1 (Li and Khan, 1991; Barthet et al., 1997; Ghosh and
Inganäs, 2000; Zhang et al., 2002; Patel et al., 2012; Ju et al., 2014;
Kang et al., 2014; Dong et al., 2019; Sengwa andDhatarwal, 2020).
Another strategy includes the simultaneous doping and blending
of electronic conducting polymers with polymeric dopants,
particularly observed for protons and lithium-ion charge carriers
(Murthy and Manthiram, 2011; Fu and Manthiram, 2012; Liu
et al., 2012). However, it is important to remark that the inclusion
of electronic-insulating polymers inevitably leads to the declining
of the electronic conductivity (σe ∼ 10−5 S cm−1, i.e., several
orders of magnitude less than the isolated conducting polymer in
its doped form), and thus, electronic-conducting polymer/ionic-
conducting polymer/dopant concentrations need to be rationally
balanced (Li and Khan, 1991; Barthet et al., 1997; Ghosh and
Inganäs, 2000; Zhang et al., 2002; Murthy and Manthiram, 2011;
Fu and Manthiram, 2012; Liu et al., 2012; Patel et al., 2012;
Ju et al., 2014; Kang et al., 2014; Dong et al., 2019; Sengwa
and Dhatarwal, 2020). Recent comprehensive reviews discussing
different types of organic MIEC classes, with particular focus
on taxonomy and electronic–ionic interactions, are given by
Paulsen et al. (2020), and a thorough discussion of morphologic
effects on organic polymeric MIEC is given by Onorato and
Luscombe (2019). On the other hand, it is well-known that the
addition of semiconducting ceramic nanoparticles, even with
negligible intrinsic electronic (or ionic) transport ability, can also
yield an enhancement of the electronic (or ionic) conduction
in conducting polymer nanocomposites. For instance, the
presence of inorganic nanoparticles, particularly transition
metal oxides, has yielded a notorious increment of electronic
conductivity for electronic–conductor polymer nanocomposites
in both ceramic-in-polymer (Mombrú et al., 2017a,b; Mombrú
et al., 2019) and polymer-in-ceramic concentration regimes
(Huguenin et al., 2004; Wang et al., 2010; Mombrú et al.,
2017a). In analogy, the presence of inorganic nanoparticles
resulted in an enhancement on the ionic conductivity for
ionic conductor polymer nanocomposites (Kloster et al., 1996;
Scrosati et al., 2000; Shin and Passerini, 2004). The presence
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of secondary phases or inorganic nanofillers induces slight
structural modifications, altering the degree of order of the
conducting polymer chains that could explain the enhancement
of the conductivity, without considering direct mediation of
charge carriers through the nanoparticle interphase. Although
it is accepted that the electronic conduction in polymer
nanocomposites is usually related to higher crystallinity (or
higher degree of order), the enhancement of the ionic conduction
is mostly associated to lower crystallinity (or lower degree
of order), but the latter case is still under recent debate
(Onorato and Luscombe, 2019). Furthermore, in the case of
ceramic nanoparticles’ interaction with conducting polymers, the
presence of an interphase between both organic and inorganic
materials adds a particular complexity to the system and can
eventually lead to important consequences in both ionic and
electronic transport properties. Leaving out drastic effects such
as voids, poor contact, or the presence of decomposition phases
due to eventual chemical reactions, it is extremely difficult to
obtain well-defined interphases between such different materials.
For instance, the presence of defects, mainly in the inorganic
nanoparticle boundaries, can lead to the presence of charge
localization at the interphase and the presence of different
crystallographic surfaces of the inorganic nanoparticle at the
interphase can exhibit different electronic interactions with the
polymer phase. Up to now, to the best of our knowledge, there
are only a few reviews of MIEC materials with particular focus
on their applications such as energy (Sengodu and Deshmukh,
2015), bioelectronics (Han S. et al., 2019), and sensing (Inal
et al., 2018), but no further insights into hOI-MIECs. In this
mini-review, charge carrier localization and transport at different
regions of hOI-MIECs including both bulk and interphase
regions is revised, focusing on the use of some powerful and
versatile instrumental techniques.

CHARGE CARRIER LOCALIZATION

There are a lot of instrumentation techniques that can provide
particularly rich information about structural features of hOI-
MIECs such as Nuclear Magnetic Resonance (NMR), X-
ray diffraction (XRD), and wide-/small-angle X-ray scattering
(WAXS/SAXS) in both transmission or grazing incidence
configurations (SanjeevaMurthy, 2016). However, it is important
to remark that X-ray scattering techniques are relatively
accessible but generally give indirect information about charge
carrier localization and on the other hand, although NMR
could be very powerful to monitor charge carrier’s location, it
is particularly less versatile than other optical spectroscopies
techniques. For instance, a relatively simple and powerful method
to monitor not only charge localization but also drift mobility
in organic MIECs is the “moving front” experiment, which
is based on visible light transmission monitoring through an
electrochromic film as it is dedoped due to lateral injection of
H+, Na+, or K+ ions from a planar junction with an electrolyte,
as shown in Figure 1A (Stavrinidou et al., 2013; Rivnay et al.,
2016). Nonetheless, one of the most popular but no less powerful
and versatile technique to study structural features of hOI-MIECs

is vibrational spectroscopy. Raman spectroscopy is particularly
interesting for inorganic materials characterization as it does
not exclude highly amorphous systems in comparison with
XRD and provides accessibility to vibrational modes with lower
wavenumbers (typically νmin ∼ 80–100 cm−1) in comparison to
infrared spectroscopy (typically νmin ∼ 200–400 cm−1). Raman
spectroscopy also has the remarkable advantage of needing little
sample preparation, allowing the study of materials in its native
conditions, as well as permitting collection of in situ and in
operando measurements. For instance, in situ/operando Raman
spectroscopy has allowed the study of the state of charge of
(Li, Na, K)XM2O4 electrodes by monitoring the broadening and
shifting of Raman peaks when lowering Li, Na, or K content from
nominal X = 1 (full charged cathode), particularly associated
to the loss of ions from the interlayer of the MO2 layered
structure (Dokko et al., 2003; Nanda et al., 2011; Nishi et al.,
2013; Chen et al., 2015; Flores et al., 2018). An example on
the use of Raman imaging to monitor the state of charge
for a Li1−x(NiyCozAl1−y−z)O2 cathode is shown and described
briefly in Figure 1B (Nanda et al., 2011). In addition, the
use of micro-Raman imaging technique is highly powerful to
study simultaneously both compositional and microstructural
features, especially for hybrid inorganic–organic materials, as
the characteristic Raman signals for inorganic and organic
compounds generally lie well-separated at lower (ν < 800
cm−1) and higher (ν > 800 cm−1) wavenumbers, respectively
(Romero et al., 2016; Mombrú et al., 2017a,b,c; Pignanelli et al.,
2018, 2019a,b). Furthermore, although Raman spectroscopy is
quite sensitive to diluted effects such as doping processes of
inorganic materials, it is on the other hand, extremely sensitive to
doping effects of organic materials such as conducting polymers
(Furukawa, 1996). Briefly, the doping process of conducting
polymers yields to drastic modifications of the Raman signature
in relation to the charge carrier formation, typically in the
form of positive polarons (–C+-C•-) or bipolarons (–C+-
C+-), particularly altering both Raman frequency and activity
of vibrational modes associated to carbon-to-carbon (C=C)
molecular bonds in conjugated polymers (Furukawa, 1996;
Kumar et al., 2012; Yamamoto and Furukawa, 2015; Francis
et al., 2017; Mombrú et al., 2018; Nightingale et al., 2018). For
instance, micro-Raman imaging has evidenced the presence of
these types of charge carriers particularly localized near the
interphase with inorganic nanoparticles; [e.g., MX2 with M being
different transition metals and X = O (for oxides) or S (for
sulfides) (Mombrú et al., 2017a,b,c; Mombrú et al., 2019)]. The
increment of conducting polymer electronic charge carriers near
the interphase could be discussed in view of at least two eventual
scenarios: (one or passive) the dopant stabilizes at the interphase
due to strong polar or coulombic interactions with nanoparticles
surface, or/and (two or active) the nanoparticles are also good
electronic acceptors, producing in both cases an enhancement
on the doping of nearby polymer chains, as schematized in
Figure 1C (upper panel). On the other hand, micro-Raman
imaging has also been useful to evidence the enhancement
of ionic-pair dissociation occurring near the interphase with
inorganic nanoparticles, in agreement with the increment of
ionic conductivity (Romero et al., 2016; Pignanelli et al., 2018,

Frontiers in Chemistry | www.frontiersin.org 3 July 2020 | Volume 8 | Article 537

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Romero et al. Organic-Inorganic Mixed Electronic-Ionic Nanomaterials

FIGURE 1 | (A) Schematization indicating the charge distribution around the dedoping front (upper panel) and evolution of dedoping front where 1T is the change of

transmitted light intensity with respect to the zero bias state during the injection of potassium cations for PEDOT:PSS film (lower panel) (Stavrinidou et al., 2013). This

figure was used and adapted/altered minimally with permission from John Wiley and Sons. (B) Optical image (upper panel) and Raman imaging (lower panel) providing

a semi-quantitative measure of the Li1−x(NiyCozAl1−y−z)O2 (NCA) cathode state of charge (SOC) where the dark region is associated to carbon-rich zone and the

colored region is associated to the NCA-rich zone ranging from blue (lower SOC) to red (higher SOC) (Nanda et al., 2011). This figure was used and adapted/altered

minimally with permission from John Wiley and Sons. (C) Raman imaging and schematization of charge carrier localization near hybrid organic–inorganic interphases

for electronic conducting polymer nanocomposite (sulfonic acid-doped polyaniline with embedded TiO2 nanoparticles; Mombrú et al., 2017a) (upper panel) and ionic

conducting polymer nanocomposite (lithium nitrate solid polymethylmethacrylate electrolyte with embedded Li0.3La0.7TiO3 nanoparticles; Romero et al., 2016) (lower

panel). References for schematization are as follows: organic polymer (blue), inorganic nanoparticles (red), dopant cation (+, in pink), dopant anion (–, in purple), and

electronic charge carriers (+, in dark blue). Micro-Raman images and spectra are portions of figures adapted/altered minimally with permission from Elsevier.

Pignanelli et al., 2019a). Analogously, two different scenarios
could be discussed for ionic charge carriers: (one or passive)
the counter-ion (in analogy to the dopant anion) stabilizes at
the interphase due to strong polar or coulombic interactions
with nanoparticles surface yielding an enhancement on the ionic-
pair dissociation, or/and (two or active) the nanoparticles may
also possess mobile ionic carriers at the surface (e.g., active
filler) that can be injected into the polymer, as schematized
in Figure 1C (lower panel). Whatever the case, the previous
micro-Raman imaging studies revealed that the interphase
of organic–inorganic nanocomposites, to a greater or lesser
extent, always play an important role in the charge carrier
transport mechanism.

CHARGE CARRIER CONDUCTION

There are several electrochemical methodologies to study the
charge carrier conduction in MIECs, but one of the most
powerful techniques to access both electronic and ionic transport
simultaneously is impedance spectroscopy (Jamnik and Maier,
1999; Vorotyntsev et al., 1999; Huggins, 2002; Atkinson et al.,
2004; Lee et al., 2009). Briefly, the impedance response as
a function of the frequency (typically 10−3-106 Hz) of an
oscillating voltage (typically 10–100mV amplitude) can provide
information about different charge carriers with different
relaxation times (τ ) depending on their q/m ratio; [i.e., the higher

the q/m ratio, the lower τ and the higher associated frequencies (f
= 2π/τ )]. In this case, the Nyquist representation of impedance
(imaginary impedance vs. real impedance, –Z′′ vs. Z′) for a
single electronic semiconductor in a continuous medium will
show a single semicircle arc. The semicircle arc associated to the
electronic carrier transport can be typically modeled using the
parallel combination of a resistor (Re) and a capacitor (Ce). In
analogy, but with probably higher associated τ (lower f ), a single
ionic conductor in a continuous medium will also show a similar
single semicircle arc associated to the ionic carrier transport that
can also be modeled using the parallel combination of a resistor
(Ri) and a capacitor (Ci), whose associated charge carrier pathway
is represented with a straight line in Figure 2A. If an additional
pathway is mediating the electronic (or ionic) transport (e.g.,
the presence of grain boundaries or depletion regions in less
crystalline solids), a second Re′Ce′ (or Ri′Ci′ ) parallel combination
connected in series with the previous one is usually necessary to
fit the total impedance response, whose associated charge carrier
pathway is represented with a zig-zag line in Figure 2A. For
simplicity, from now on, we will only consider the charge carrier
transport of ionic and electronic conductor samples assembled in
a symmetric cell configuration using ideal metallic ion-blocking
electrodes. This means that only electronic carriers will be short-
circuited and ionic species will be blocked at the interphase
with the ion-blocking metallic electrodes but the opposite will
apply in the case of using electronic-blocking electrodes. In the
case of using metallic ion-blocking electrodes, in addition to
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FIGURE 2 | Circuit model schematization for (A) separated electronic and ionic transport in a single phase, (B) mixed ionic–electronic transport in a single phase, and

(C) mixed ionic–electronic transport in hOI-MIECs ranging from ceramic-in-polymer (upper panel) to polymer-in-ceramic (lower panel). Electronic and ionic hypothetical

pathways are shown with dark blue and pink arrows. The zigzag part of the arrows indicates the presence of eventual grain boundaries or depleted regions [with

associated ionic (i′) or electronic (e′) contributions] and the curved part of the arrows indicates the presence of eventual transport pathway mediated through

organic–inorganic interfacial regions [with associated ionic (i′′ ) and electronic (e′′) contributions].

the semicircle arc observed at higher frequencies, the Nyquist
plots of single ionic conductors will also show an additional
capacitive tail at low frequencies (Cint), which is associated
to the polarization of blocked ions at the sample/electrode
interphase, as shown in Figure 2A. If now we consider the
simplest case of a MIEC material, the bi-continuous ionic and
electronic channels can be strategically represented by the parallel
combination of ionic and electronic resistances (Ri and Re,
respectively) together with a global geometrical capacitance (Cg),
with the associated pathway represented by a straight line in
Figure 2B. It is important to remark that the Cint element only
appears connected in series with the ionic resistance as we are
working with ideal ion-blocking electrodes, but the opposite
will occur (i.e., an analogous Cint element will only appear
connected in series with the electronic resistance) if we are
working with electronic-blocking electrodes. The origin of this
circuit model simplification is described thoroughly by Jamnik
and Maier and is only applicable for macroscopically thick
samples considering ideal selectively ion-blocking electrodes and
chemical capacitancemuch larger than the interfacial capacitance
of the blocked carriers (Jamnik and Maier, 1999; Lee et al.,
2009). In the case that any of the electronic or ionic transport
is mediated by the presence of a secondary pathway in a MIEC,
generally associated to grain boundaries or depleted regions, as
we discuss before, a second Re′Ce′ (or Ri′Ci′ ) parallel combination
connected in series with Re (or Ri), respectively, could be useful
to fit the total impedance response, with associated pathway
represented by a zig-zag line in Figure 2B (Huggins, 2002).
In the recent literature, both the inclusion and exclusion of

this second Re′Ce′ (or Ri′Ci′ ) parallel combination in biphasic
polymeric MIECs have been observed, depending mainly on
the electronic- and ionic-conducting phase concentration or
microstructural differences (Patel et al., 2012; Renna et al., 2017).
In the particular case of hOI-MIECs, the second contribution
(and probably a third contribution) to ionic or electronic
transport could be present due to the mere existence of the
organic–inorganic interphase, as shown in Figure 2C. However,
even for a simplified experiment configuration, (e.g., using
symmetric ion-blocking electrodes), it is important to rationalize
the number of elements in a given circuit model to avoid over-
parametrization. For instance, in the extreme case of hOI-MIECs
based on a continuous organic semiconductor, [e.g., conducting
polymer with diluted inorganic nanoparticle additives (ceramic-
in-polymer)], both electronic and ionic carriers will be mainly
transported through the organic matrix. For instance, Re′Ce′

and Ri′Ci′ elements could be eventually excluded from the
circuit model in the presence of homogeneous (full crystalline
or amorphous) polymeric phase. However, in consonance with
the non-homogeneous localization of charge carriers discussed
in the previous section, the presence of an organic–inorganic
interphase can eventually activate another electronic or/and ionic
pathwaymediated through the interphase that could be passive or
active (Irvine et al., 1990). For instance, solid polymer electrolytes
with active inorganic nanofillers are the typical case of organic–
inorganic interphase-mediated ionic transport (Zheng et al.,
2016; Yang et al., 2017; Pignanelli et al., 2019a), and a similar
behavior will be observed for the electronic counterpart, if there
are electronic interactions at the organic–inorganic interphase
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(Chen et al., 2010; Nowy et al., 2010; Cai et al., 2012; Mombrú
et al., 2017b). This effect, whose associated charge carrier pathway
is represented by a curved line in Figure 2C, can also be
eventually modeled with Re′′Ce′′ (or Ri′′Ci′′ ) elements connected
in series with the electronic (or ionic) part of the mixed ionic–
electronic circuit, in analogy to Re′Ce′ (or Ri′Ci′ ), respectively.
However, as mentioned earlier in the previous section, even when
the inorganic nanoparticles are passive or non-interacting in
nature with charge carriers, the concentration of both electronic
or ionic charge carriers at the vicinities of the organic–inorganic
interphase could also be activating a second pathway to the
charge carrier transport. Nonetheless, in the case of passive
interphases, this effect could be rather weak and both charge
carrier transport pathways are expected to be mainly through the
organic phase without interphase mediation; thus, only a global
contribution to the charge carrier transport is usually observed
and additional Re′′Ce′′ (or Ri′′Ci′′ ) elements are not necessary to
fit the global impedance response. In the other extreme case, [i.e.,
hOI-MIECs based on inorganic semiconductor nanoparticles
with diluted organic polymeric additives (polymer-in-ceramic)],
both electronic and ionic carriers are mainly transported through
the inorganic matrix. In this case, due to the inevitable presence
of grain boundaries in inorganic semiconductor nanoparticles,
Re′Ce′ (or Ri′Ci′ ) elements should always be considered, as
this contribution practically governs the global electronic (or
ionic) transport. In this case, the polymeric additions usually
act as fillers of empty spaces between nanoparticles, resulting in
an enhancement of the electronic (or ionic) conductivity, and
this is usually evaluated directly on Re′Ce′ (or Ri′Ci′ ) elements.
However, in the case of simultaneous presence of particle-to-
particle and particle–polymer–particle interphases, there will be
at least two different pathways to electronic (or ionic) transport
and additional Re′′Ce′′ (or Ri′′Ci′′ ) elements could be necessary to
fit the polymer-mediated transport contribution, as depicted in
Figure 2C.

APPLICATIONS

The successful synergistic properties between organic and
inorganic MIECs have yielded excellent performances, especially
in the field of energy storage and particularly for lithium-
and sodium-ion battery electrode materials (Sengodu and
Deshmukh, 2015). In this sense, active cathode or anode
materials embedded in polymeric hosts not only increase the
mixed ionic–electronic conduction but also act as a sort of
protection to the decomposition of activematerials (Sengodu and
Deshmukh, 2015). For instance, in the case of lithium-ion battery
cathode materials: hybrid P3HT-co-PEO/LiFePO4 has improved
the delivery of both ionic and electronic charge to active centers
(Javier et al., 2011); Ppy/LiFePO4 with different hierarchical
structures promoted both electronic and ionic transport
(Fedorkova et al., 2010; Shi et al., 2017); PEDOT/LiFePO4

offers excellent discharge capacity (Vadivel Murugan et al.,
2008); Ppy/α-LiFeO2 has improved the reversible capacity and
cycling stability (Zhang et al., 2013); PPy/MoO3, PPy/V2O5,
PPy/LiCoO2, and PPy/LiV3O8 yielded a reduction of charge

transfer resistance of the Li+ ion intercalation/deintercalation
process (Wang et al., 2010; Tian et al., 2011; Tang et al., 2012a,b;
Liu et al., 2013); and PEDOT-co-PEG/LiNi0.6Co0.2Mn0.2O2

showed high discharge capacity and enhanced transport of
Li+ ions as well as electrons (Ju et al., 2014). Furthermore,
in the case of lithium-ion anode materials, only to mention
some examples, hybrid Ppy/SnO2 yielded a more controlled
Li+ diffusion (Yuan et al., 2007; Cui et al., 2011) and hybrid
PANI-graphene/TiO2 yielded fast charge-to-discharge rate and
high enhanced cycling performance (Zhang F. et al., 2012).
In the case of sodium-ion battery cathode materials, inorganic
NaXMO2 oxides, NaMPO4 phosphates, and NaM[M’(CN6)]
hexacyanometalates (commonly known as Prussian blue analogs)
have been tested (Xiang et al., 2015; Liu et al., 2020), and to
a lesser extent, some organic MIEC polymers such as the case
of Ppy (Zhou et al., 2012, Zhou et al., 2013; Zhu et al., 2013).
However, in recent literature, hOI-MIECs started to be studied
thoroughly as cathode materials for sodium-ion batteries, (e.g.,
Ppy/NaMnFe(CN)6 (Li et al., 2015), PANI/ NaNiFe(CN)6 (Wang
Z. et al., 2017), PEDOT/ NaMnFe(CN)6 (Wang et al., 2020),
and Ppy/NaMnO2 Lu et al., 2020). In the case of sodium-
ion battery anode materials, the most frequent hOI-MIECs
are based on metallic oxides such as PANI/SnO2 (Zhao et al.,
2015) and Ppy/SnO2 (Yuan et al., 2018) and sulfides such
as PANI/Co3S4 (Zhou et al., 2016) and Ppy/ZnS (Hou et al.,
2017). It is interesting to mention that hOI-MIECs are also
extensively used as cathodes of lithium-sulfur (Li-S) batteries
such as PEDOT:PSS/S (Yang et al., 2011), Ppy/S (Han et al.,
2019), and PANI/S (Wei et al., 2019). The study of MIECs as
electrochemical transistors was reported long ago for typically
doped Ppy (White et al., 1984), PANI (Paul et al., 1985), and
PEDOT (Thackeray et al., 1985) conducting polymers, but the
exploration of conducting polymers (principally PEDOT) doped
with biocompatible materials such as hyaluronic acid, dextran
sulfonate, heparin, pectin, guar gum, and deoxyribonucleic acid
is rising fast in recent years, especially for bioelectronics purposes
(Mantione et al., 2017; Tekoglu et al., 2019). In addition, a
very recent report has shown that the preparation of an organic
mixed-conducting particulate composite material based on
PEDOT: PSS and chitosan enabled facile and effective electronic
bonding between soft and rigid electronics, permitting recording
of neurophysiological data at the resolution of individual neurons
(Jastrzebska-Perfect et al., 2020). However, to the best of
our knowledge, up to now, only carbon nanotubes (but no
biocompatible inorganic nanoparticles) have been tested with
organic MIECs to be evaluated for bioelectronics applications
(Nie et al., 2015; Liu et al., 2019; Reddy et al., 2019; Yu et al., 2019).

CONCLUSIONS AND PERSPECTIVES

Herein, the state of the art of hOI-MIECs with special focus
on charge carrier localization and transport at different regions
including both bulk and interphase regions was discussed. In this
particular case, we have mainly based our discussion by means
of useful and versatile instrumental techniques such as micro-
Raman and impedance spectroscopy, but other instrumental
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techniques can be very useful and should be considered to gain
more insight into the hOI-MIECs transport mechanism. There is
no doubt that hOI-MIECs have shown to be very promising for
different applications, ranging frommore developed applications
(e.g., lithium- and sodium-ion batteries) to more emerging
applications (e.g., bioelectronics), as mentioned in the previous
section. However, more work is still needed to understand
the charge carrier transport mechanism of such complicated
systems, in order to pursue the filling of the existent gap between
fundamental knowledge and applications. In our opinion,
in situ/operando monitoring of hOI-MIECs during working
conditions is the ideal strategy to gain more insight into this
field. However, as we have discussed in this mini-review, the
complexity of these particular systems (biphasic by definition and
sometimes intrinsically inhomogeneous) requires the rational
design of more simple devices in order tomake them accessible to
a broader range of in situ characterization experiments. We think
that the oncoming focus on these experiments is crucial to shed

some light on the structural and microstructural correlations of
hOI-MIECs with the charge carrier transport mechanism.
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