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A chemo- and diastereo-selective (3 + 2) cycloaddition reacition between

Donor-Acceptor (D-A) cyclopropanes and α,β-unsaturated enamides is developed

for efficient access to spiro(cyclopentane-1,3’-indoline) derivatives. Simple, inexpensive

and readily available NaOH is used as the sole catalyst for this process. A

broad range of D-A cyclopropanes could be used as the C-3 synthons to react

with oxindole-derived α,β-unsaturated enamides. The structurally sophisticated

spiro(cyclopentane-1,3’-indoline) derivatives bearing up to 3 adjacent chiral centers are

afforded in excellent yields as single diastereomers.

Keywords: green, NaOH, donor-acceptor cyclopropane, (3 + 2) cycloaddition, spirocyclopentane, indole derivative

INTRODUCTION

Spirocyclopentanes are interesting structural units with broad applications in organic synthesis
and medicinal chemistry. They have existed as core structures in various bioactive molecules
(Boeyens et al., 1979; Tsuda et al., 2004; Mugishima et al., 2005; Zhang et al., 2019).
Specifically, spiro(cyclopentane-1,3’-indoline) derivatives are frequently found in natural products
with proven biological activities (Figure 1). For example, Citrinadin A and B are active
molecules against murine leukemia L1210 and human epidermoid carcinoma KB cells,
which have been isolated from a culture broth of Penicillium citrinum. Cyclopiamines A
and B are extracts from a toxinogenic strain of Penicillium cyclopium. The Notoamides
A and B are key members of paraherquamide family which belongs to prenylated
indole alkaloids that exhibit various bioactivities including antitumor, antibacterial, and
insecticidal properties. Therefore, the development of efficient methods for the preparation of
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FIGURE 1 | Bioactive Natural Products Containing Spiro(cyclopentane-1,3’-indoline) Units.

spiro(cyclopentane-1,3’-indoline) derivatives has attracted much
interest. Success within this field has been achieved through
both organocatalysis (Chen et al., 2009; Antonchick et al., 2010;
Tan et al., 2011; Tian and Melchiorre, 2013; Zhang et al., 2016;
Chaudhari et al., 2017) and transition metal catalysis (Trost et al.,
2007; Brazeau et al., 2012; Ball-Jones et al., 2014; Deiana et al.,
2014; Afewerki et al., 2015; Frost et al., 2015; Qiu et al., 2019).
Despite of the great achievement obtained in the synthesis of
spiro(cyclopentane-1,3’-indoline) molecules, the development of
green and economical methods for efficient and stereoselective
synthesis of them is still of great interest.

Cyclopropanes are important building blocks in organic
synthesis (Sohn and Bode, 2006; Bode and Sohn, 2007; Li
et al., 2009; Lv et al., 2011; Sparr and Gilmour, 2011; Halskov
et al., 2015; Sanchez-Diez et al., 2016; Blom et al., 2017;
Apel et al., 2019). Especially, the cyclopropanes bearing both
an electron-donating and an electron-withdrawing group on
their cyclic structures, which are commonly named as Donor-
Acceptor (D-A) cyclopropanes (Danishefsky, 1979; Wenkert,
1980; Reissig and Zimmer, 2003; Carson and Kerr, 2009;
Cavitt et al., 2014; Nanteuil et al., 2014; Schneider et al.,
2014; Grover et al., 2015; Talukdar et al., 2016; Wang and
Tang, 2016; Werz and Biju, 2019), have been extensively
studied in the construction of various functional molecules. D-A
Cyclopropanes are conventionally activated by transition metal
catalysts (Nanteuil et al., 2014), Lewis acids (Reissig and Zimmer,
2003; Carson and Kerr, 2009; Cavitt et al., 2014; Schneider et al.,
2014; Grover et al., 2015; Talukdar et al., 2016; Wang and Tang,
2016; Werz and Biju, 2019) or amine-based organic catalysts
(Halskov et al., 2015; Sanchez-Diez et al., 2016; Blom et al.,
2017) (Figure 2a). Efficient activation of D-A cyclopropanes by
simple, inexpensive and readily available bases has been much
less developed.

Very recently, we have disclosed that the D-A cyclopropanes
could be activated by simple NaOH and reacted with
α,β-unsaturated imines to give a variety of bioactive

cyclopenta(c)pyridine derivatives in generally excellent yields
and moderate diastereoselectivities (Pan et al., 2019) (Figure 2b).
This approach has provided us with a green and facile method
for the construction of structurally complex molecules from D-A
cyclopropanes with simple and inexpensive reaction catalysts.
Therefore, it is interesting and important to extend the border of
this strategy to a wide range of substrates in order to get access to
a broad scope of complex functional molecules in a green, facile,
and economic fashion.

Herein, we disclose that the D-A cyclopropanes 1 can
react with α,β-unsaturated enamide substrates 2 under basic
conditions in chemoselective fashion (Figure 2c). Heavily
substituted spiro(cyclopentane-1,3’-indoline) derivatives could
be afforded in good to excellent yields. NaOH was used as the
sole reaction catalyst. All the spirocyclic products bearing up to
3 adjacent chiral centers were afforded as single diastereomers.
It is worth noting that both an enone and an enamide motif
exist in the electrophilic substrate 2. After deprotonation of
the D-A cyclopropane substrate 1, the afforded ring-opening
intermediate I could selectively react with the electrophile 2

through an enamide 1,4-addition process and gave intermediate
II bearing a highly reactive nucleophilic carbon center. The
enamide 1,4-addition reaction was believed to go faster than
the enone 1,4-addition reaction because that there were less
steric hindrance around the enamide β-carbon. After an
intramolecular Michael addition process, the spiral cyclopentane
products 3 or 4 were afforded in excellent diastereoselectivities.
Interestingly, an additional β-elemination could happen during
this catalytic transformation when using the D-A cyclopropyl
ketone bearing gem-dicyano groups as the reaction substrate.
Spiral cyclopentenes 5 were afforded as the final products in
this case. Product 6 that might be formed from the enone
1,4-addition intermediate III were not observed. The less
nucleophilicity of the enol moiety of the intermediate III might
be another reason for the difficult formation of the enone 1,4-
addition products.
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FIGURE 2 | Catalytic Activation of D-A Cyclopropanes.

RESULTS AND DISCUSSION

Reaction Condition Optimization and
Large-Scale Reactions
The 2-cyclopropyl acetate 1a and the oxindole-derived α,β-

unsaturated enamide 2a were selected as the model substrates to

test the catalytic conditions for this (3+ 2) cycloaddition reaction

(Table 1). A variety of inorganic bases were found efficient for

this 1,3-dipolar cycloaddition reaction between 2-cyclopropyl
acetate 1a and the α,β-unsaturated enamide 2a (Table 1, entries
1 to 3). The organic bases we tested were not suitable for this
reaction (entries 4 to 5). The catalytic cyclization process could
also be carried out in several organic solvents with relatively high
polarities, although the yields were generally decreased (entries
6 to 7). Solvents with low polarities could not be used for this
transformation (entries 8 to 9). The reaction temperature could
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TABLE 1 | Optimization of Reaction Conditionsa.

Entry Cat. Solvent Yield (%)b drc

1 NaOH THF 82 >20:1

2 NaOCH3 THF 80 >20:1

3 K2CO3 THF 74 >20:1

4 DBU THF < 5

5 Et3N THF < 5

6 NaOH EtOAc 72 >20:1

7 NaOH CH3CN 25 >20:1

8 NaOH CH2Cl2 <5

9 NaOH PhCH3 <5

10d NaOH THF 83 >20:1

11e NaOH THF 90 >20:1

12e NaOH 2-Me THF 72 >20:1

13e NaOH Anisole <5

14e NaOH H2O <5

15e NaOH EtOH 75 >20:1

16f NaOH EtOH 74 >20:1

aGeneral conditions (unless otherwise specified): 1a (0.075 mmol), 2a (0.05 mmol), cat.

(0.01 mmol), THF (1.0mL), 40◦C, 24 h. b Isolated yield of 3a. cDr was determined via 1H

NMR on the crude product. dThe reaction was carried out at 30◦C for 24 h. e1a (0.1

mmol), 2a (0.05 mmol), NaOH. (0.01 mmol), solvent (1.0mL), 30◦C, 24 h. f1a (1.0 mmol),

2a (0.5 mmol), NaOH. (0.1 mmol), EtOH (10.0mL), 30◦C, 24 h.

be slightly decreased to 30◦C without erosion of the product
yield (entry 10). Finally, the yield of the spiro(cyclopentane-1,3’-
indoline) product 3a could be increased to 90% with a larger
excess amount of 1a used under the catalysis of NaOH in THF
at 30◦C (entry 11). Note that, all the products afforded in these
reactions were obtained as single diastereomers.

We were also very interested in developing a green and
efficient method for the construction of the spiro(cyclopentane-
1,3’-indoline) product 3a. Therefore, several green solvents
were further examined after obtaining the optimized reaction
condition (Table 1, entries 12 to 15). 2-Methyl-substituted THF
could give the desired product in a good yield (entry 12).
Anisole or water could not be used as the solvents for this
transformation (entries 13 to 14). To our delight, the inexpensive
and non-toxic ethanol could be used as a suitable medium for the
construction of the spiro(cyclopentane-1,3’-indoline) products
through this protocol (entry 15). Therefore, we carried out a
large-scale reaction of the substrate 1a and 2a in ethanol, with
the desired product 3a afforded in a 74% yield as a single
diastereomer (entry 16).

Reaction Scope Investigation and
Synthetic Application
With the optimized reaction conditions at hand (Table 1, entry
11), we then examined the substrate scope of this (3 + 2)

TABLE 2 | Scope of α,β Unsaturated Enamides 2a.

aReaction conditions as stated in Table 1, entry 11. Isolated yields are reported after

purification via SiO2 column chromatography. Dr was determined via 1H NMR on the

crude product.

cycloaddition reaction with respect to both D-A cyclopropyl
acetates 1 and α,β-unsaturated enamides 2 (Tables 2–4).

The R substituent on the phenyl group of the indoline motif
of the α,β-unsaturated enamides 2 could be either electron-
donating groups (Table 2, 3b and 3c) or electron-withdrawing
groups (3d to 3n), with most of the spirocyclic products being
afforded in good to excellent yields and diastereo-selectivities.

The R1 group of ketone moieties could be phenyl rings of
different substitution patterns, with the corresponding products
being afforded in excellent yields as single diastereomers (Table 3,
4a to 4i). Moreover, the R1 group could also be switched to
a heteroaromatic group or a vinylogous phenyl group without
erosion on the product yields or diastereoselectivities (4j to
4k). Interestingly, the R1 group of the ketones 2 could even
be replaced with a simple methyl or ethyoxyl group, and the
corresponding products 4l and 4m could be afforded in good
yields as single diastereomers. The N-protecting benzyl group of
indoline motif could be replaced with an N-methyl group, and
the desired product 4n could also be afforded in a good yield
as a single diastereomer. Unprotected isatin-derived enamide
substrates were not effective in this transformation.

The scope of the D-A cyclopropyl acetates 1 was also
examined (Table 4). The electron deficient 4-nitrophenol group
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TABLE 3 | Scope of α,β-Unsaturated Enamides 2a.

aReaction conditions as stated in Table 1, entry 11. Isolated yields are reported after

purification via SiO2 column chromatography. Dr was determined via 1H NMR on the

crude product.

TABLE 4 | Scope of the D-A Cyclopropanes 1a.

Entry R R’ 4 Yield (%) dr

1 4-CH3OC6H4 CH3CH2 4o 86 > 20:1

2 4-NO2C6H4 (CH3)2CH 4p 79 > 20:1

3 CH3 CH3CH2 - 0 -

4 H CH3CH2 - 0 -

aReaction conditions as stated in Table 1, entry 11. Isolated yields are reported after

purification via SiO2 column chromatography. Dr was determined via 1H NMR on the

crude product.

on 1a could be switched to an electron rich aromatic group (1b)
without erosion on the reaction diastereoselectivity, although the
yield of the product was slightly decreased to 86%. Replacing

TABLE 5 | Scope of α,β-Unsaturated Enamides 2a.

aReaction conditions as stated in Table 1, entry 11. Isolated yields are reported after

purification via SiO2 column chromatography. Dr was determined via 1H NMR on the

crude product.

the R group on ester substrate 1 with a simple methyl group
(1c) led to only trace formation of the target product. The
sterically bulkier isopropyl ester (1d) also worked well in this
transformation and afforded the desired product in a good yield
as a single diastereomer. It is worth noting that the cyclopropyl
aldehyde 1e was not a suitable substrate for this (3 + 2)
cycloaddition reaction.

To our great delight, the D-A cyclopropyl acetone 1f bearing
two cyano groups also worked well in the (3 + 2) cylcoaddition
reaction with the oxindole-derived α,β-unsaturated enamide
2 under the current catalytic conditions (Table 5). The
spirocyclopentenes 5 were afforded as the final products with
the elimination of one equiv. of HCN. Both electron-donating
and electron-withdrawing groups could be installed on the
indoline moieties of the α,β-unsaturated enamides 2, with the
corresponding products being afforded in moderate yields as
single diastereomers.

The afforded spiro(cyclopentane-1,3’-indoline) product 3a

could be used as the reactionmaterial for further transformations
(Figure 3). For example, a trans-esterification reaction of 3a

could give other ester products (e.g., 7) in moderate yields
without erosion of the diastereomeric ratio.

CONCLUSION

In conclusion, we have developed a chemo- and diastereo-
selective (3 + 2) cycloaddition between D-A cyclopropanes
and α,β-unsaturated enones. Green, inexpensive, and readily
available NaOH was used as the sole catalyst to promote this
transformation. Structurally sophisticated spiro(cyclopentane-
1,3’-indoline) derivatives bearing up to 3 adjacent chiral centers
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FIGURE 3 | Synthetic transformations of 3a.

were afforded as the final products in generally good to excellent
yields as single diastereomers. This study could provide us
with a green, facile and economic approach in preparing
complex functional molecules through simple operations.
Further investigations on the development of efficient methods
for the construction of complex molecules are in progress in
our laboratory.
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