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Cancer became recently the leading cause of death in industrialized countries. Even

though standard treatments achieve significant effects in growth inhibition and tumor

elimination, they cause severe side effects as most of the applied drugs exhibit only

minor selectivity for the malignant tissue. Hence, specific addressing of tumor cells

without affecting healthy tissue is currently a major desire in cancer therapy. Cell surface

receptors, which bind peptides are frequently overexpressed on cancer cells and can

therefore be considered as promising targets for selective tumor therapy. In this review,

the benefits of peptides as tumor homing agents are presented and an overview of the

most commonly addressed peptide receptors is given. A special focus was set on the

bombesin receptor family and the neuropeptide Y receptor family. In the second part, the

specific requirements of peptide-drug conjugates (PDC) and intelligent linker structures

as an essential component of PDC are outlined. Furthermore, different drug cargos

are presented including classical and recent toxic agents as well as radionuclides for

diagnostic and therapeutic approaches. In the last part, boron neutron capture therapy

as advanced targeted cancer therapy is introduced and past and recent developments

are reviewed.

Keywords: peptide, GPCR, cancer, peptide-drug conjugate, boron neutron capture therapy

NEED FOR TARGETED CANCER THERAPY

For a long time, cardiovascular diseases were the leading cause of death among middle-aged adults
globally. This changed recently in high-income countries, where cancer is now responsible for twice
as many deaths as cardiovascular diseases (Dagenais et al., 2019). In 2018, cancer was responsible
for 9.6 million deaths and 18.1 million new cases were diagnosed globally (Bray et al., 2018). The
most frequently occurring cancer in women is breast cancer and in men, prostate cancer is most
common. Notably, the leading cause of death is lung cancer in both sexes (Siegel et al., 2019). It
is predicted that these numbers will rise in the future and 27.5 million new cases of cancer will
be diagnosed worldwide each year by 2040 (Bray et al., 2018). This trend clearly demonstrates that
novel therapeutic approaches have to be developed and efforts have to be strengthened in the future
to improve the efficacy of already existing treatments.

For the last 60 years, chemotherapy remained the trademark of cancer treatment (Gilman, 1963;
DeVita and Chu, 2008). In this approach, highly cytotoxic drugs are systemically administered,
which seek into rapidly dividing cancer cells. However, these chemotherapeutic drugs affect also
healthy cells that exhibit high proliferation rates like intestinal epithelium cells. This peripheral
toxicity is the reason for frequently occurring side effects, which can vary from hair loss,
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anemia, bruising and bleeding to neuropathy and many
more (Strebhardt and Ullrich, 2008). The occurrence of
undesired effects depends highly on the patient and the
applied chemotherapeutic drug. This holds not only true for
chemotherapeutics, but rather for any therapeutically active
molecule that is administered systemically without bearing any
selectivity providing features.

One possibility to reduce side effects is to waive a systemically
administered drug and only apply the tumor harming treatment
locally to the affected tissue. Radiation therapy can provide
this local harm even though the radiation doses are delivered
to all cells within the irradiation area. Nevertheless, radiation
therapy remains an important curative treatment modality, with
more than 50% of the patients benefiting from this treatment
(Barton et al., 2006; Chen and Kuo, 2017). In principle, high-
energy radiation is used to destroy cancer cells by depositing
energy that damages the genetic material and prevents further
cell proliferation. The type of radiation and the chosen method
for delivering the energy to the malignant tissue is highly
dependent on the type of tumor. Radiation canmainly be divided
into two classes: X-rays and gamma-rays belong to the group
of electromagnetic radiation whereas electron, neutron, proton
and hole atom irradiation can be assigned to particle radiation
(Gianfaldoni et al., 2017). Even though radiation therapy is
often used in combination with surgery and chemotherapeutic
modalities to increase the anti-tumor effect, long term cancer
survivors have a higher risk for developing second malignancies
because the radiation does also harm genetic material of healthy
tissue (Dracham et al., 2018). Thus, the delivered dose has to
be as low as possible to prevent harm to healthy tissue but it
has to be effective enough to eliminate cancer cells. Various
approaches were developed to increase the radiation sensitivity of
tumor cells, but all of them require the administration of drugs,
which selectively seek into cancer cells. This can be achieved
by exploiting biochemical characteristics, which mark cancer

FIGURE 1 | Schematic structure of receptor targeting drug conjugates. The drug conjugates are comprised of three modules: payload, linker, and carrier.

cells differently from healthy tissues (Hanahan and Weinberg,
2011). For example, the dysregulation of translational regulators
(Bhat et al., 2015), altered epigenetic regulation mechanisms
(Pfister and Ashworth, 2017), the overproduction of enzymes
(DeBerardinis and Chandel, 2016) or changes in the cellular
microenvironment such as a lower pH (Kato et al., 2013) can
be facilitated for selective therapeutic drug delivery. Moreover,
cancer cells frequently overexpress cell surface proteins, which
bind ligands of different nature, allowing the targeting of tumor
cells by various molecule classes (Vhora et al., 2014).

The idea of targeted therapy was envisioned over 100 years
ago by the German scientist Paul Ehrlich, who was awarded with
the Nobel Prize in Medicine in 1908. Originally, he proposed the
concept of specifically killing pathogens, which cause diseases
in the body, without harming the body itself. Ehrlich named
the hypothetical agent, which could facilitate this “magic bullet”
(Ehrlich et al., 1956). His idea evolved over the time and his
concept was transferred into cancer therapy where malignant
cells have to be eliminated. Therefore, apoptosis inducing agents
are combined with molecules, which selectively bind tumor cells.
Although this concept seems to be quite simple, the fine-tuning
is fairly elaborate and still challenging nowadays.

Various approaches have been investigated to achieve a
selective delivery of different effector molecules to cancer cells. In
principle, all conjugates used for selective drug delivery consist
of three modules (Figure 1). The first component is the carrier,
which facilitates tumor targeting. Besides aptamers also small
molecules and biologics such as peptides, proteins and antibodies
have been investigated intensively to facilitate sufficient tumor
selectivity (Yoo et al., 2019). The second component is the drug
itself, which can induce a variety of biological functions, but
in context of cancer treatment mostly cytotoxic molecules or
radionuclides are used. The thirdmodule links the former two. In
dependence of the used payload, either cleavable or non-cleavable
linkers can be applied to enable a controlled drug release, if

Frontiers in Chemistry | www.frontiersin.org 2 July 2020 | Volume 8 | Article 571

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Hoppenz et al. PDCs in Cancer Therapy

necessary. Since all three components contribute to the overall
biological efficacy and selectivity, they are described separately in
more detail in the following sections.

TUMOR-HOMING AGENTS: ANTIBODIES
VS. PEPTIDES

The first component is the tumor-homing molecule. Multiple
classes of molecules were investigated, including small molecules
(Fitzgerald et al., 2016; Kue et al., 2016; Fernández et al., 2018),
aptamers (Kaur et al., 2018; Kim et al., 2018), and polysaccharides
(Choi et al., 2011). Even though these molecule classes led to
promising results in preclinical studies, monoclonal antibodies
(mAbs) evolved as fastest-growing drug class, with more than 30
mAbs being approved andmore than 100 in clinical development
over the past years (Carter and Lazar, 2018). So far, five antibody-
drug conjugates (ADC) have received regulatory approval of the
US Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) (Chau et al., 2019). All of them bind
to cell surface receptors such as the CD22, CD30, CD33 or
the human epidermal growth factor receptor 2 (HER2), which
internalizes together with the ADC. After degradation of the
ADC in the lysosome, the attached cytotoxic payload is released
and the desired effect is induced. Although these conjugates
reached the market and proved the feasibility of this approach,
antibodies have serious limitations. Most mAbs do not penetrate
into tumors. With a molecular weight of about 150 kDa, they are
too big to diffuse efficiently into malignant tissue (Dreher et al.,
2006; Jain and Stylianopoulos, 2010). Monoclonal antibodies can
be immunogenic, even when they have been humanized and they
tend to aggregate in excretory organs like liver and kidneys (Borsi
et al., 2002; van Schouwenburg et al., 2010; Carrasco-Triguero
et al., 2013). Moreover, the generation of mAbs is very expensive
as well as time-consuming and non-selective payload conjugation
can lead to reduced product homogeneity (Nejadmoghaddam
et al., 2019).

Most of these drawbacks can be eliminated by using smaller
biomolecules like peptides. In fact, peptide-drug conjugates
(PDC) comprise several advantages as carrier molecules. Peptides
with up to 50 amino acids can be easily synthesized in
large scale to a reasonable price and modifications as non-
natural amino acids can be directly introduced in the synthesis
process (Firer and Gellerman, 2012; Mäde et al., 2014). The
straightforward synthesis allows a rational optimization of
side chains and backbone structures, which can result in
increased binding affinities and physicochemical properties can
be directly influenced (Erak et al., 2018). Furthermore, peptides
are considered to be rapidly cleaved by proteolytic enzymes
and quickly cleared from the blood circulation by liver and
kidney. Those pharmacodynamic properties can be modulated
by different modification and stabilization approaches (Vlieghe
et al., 2010). One of the most known concepts of peptide
stabilization is lipidation, which involves the incorporation of
fatty acids into the peptide (Zhang and Bulaj, 2012). Fatty
acids bind to serum albumin, preventing proteolytic cleavage
in the blood by proteases and leads thereby to a prolonged

circulation time (Frokjaer and Otzen, 2005). The long-acting
glucagon-like peptide-1 (GLP-1) receptor agonists liraglutide
(Victoza R©) (Guryanov et al., 2016) and semaglutide (Ozempic R©)
(Marso et al., 2016), which are used to treat type-2 diabetes
and obesity, are recent examples for this approach. Peptides are
generally considered safe, since they feature low immunogenicity
and produce non-toxic metabolites (Ahrens et al., 2012).
Furthermore, their low molecular weight leads to an enhanced
penetration into solid tissues resulting in better anti-tumor effects
(Firer and Gellerman, 2012; Hock et al., 2015).

Peptides used in PDCs can be divided into two categories: cell-
penetrating peptides (CPPs) and cell-targeting peptides (CTPs).
The uptake mechanisms of CPPs across the cell membrane
are not fully understood yet. Some CPPs are reported to cross
the cell membrane by an energy-dependent cellular process
like endocytosis- or receptor-mediated uptake, whereas others
use energy-independent non-endocytic translocation pathways
(Derossi et al., 1996; Thorén et al., 2005). Nevertheless, a
significant increase in drug delivery was reported for small
toxophores as well as for proteins being attached to CPPs like
the TAT peptide, Pep-1 or Transportan (Morris et al., 2001;
Muratovska and Eccles, 2004; Duong and Yung, 2013). However,
extensive application of CPPs is limited due to its low cell
specificity (Regberg et al., 2012).

In contrast, CTPs are ideal carrier molecules as they possess
the same ability as mAbs. They bind with high affinity to
overexpressed receptors on the tumor cell surface without
exhibiting the disadvantages of mAbs. However, the conjugation
of payloads to the peptide molecules is more critical because
receptor binding and selectivity can be affected due to the
steric demand of the payload, which can interfere with receptor
recognition. Therefore, extensive knowledge of the interaction
between peptide and receptor is needed to introduce drug cargos
rationally. Amino acids like lysine, cysteine, glutamate, serine,
which are not involved in the receptor recognition, can be
used directly for payload conjugation at the sidechain or not
required positions can be exchanged by those to introduce
possiblemodification sites (Mäde et al., 2014).Many peptides also
allow simple N-terminal modification because their N-terminus
is not involved in the receptor recognition. Ideally, peptide
carriers contain multiple modification sides, which allow the
incorporation of multiple payloads per peptide molecule. The
increased payload loading can enhance the therapeutic effects
due to the increased drug concentrations at the tumor site
(Dubowchik et al., 2002; Böhme et al., 2016).

PEPTIDE RECEPTORS AS TARGETS IN
CANCER THERAPY

A major challenge in the development of novel and highly
effective anti-cancer drugs is the selective drug-delivery to the
tumor site while healthy tissue is spared. Cell surface receptors
are of high interest in the targeted cancer therapy approach
as they provide the desired properties to allow selective tumor
targeting (Table 1) (Reubi, 2003; Vhora et al., 2014). One of these
requirements is the ectopical overexpression in high amounts
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TABLE 1 | Overview of peptide-binding receptors studied for anti-cancer drug delivery.

Targeted receptor Tumor expression References

Integrin (αvβ3) Activated endothelial cells and tumor cells (such as U87MG glioblastoma cells), ovarian

cancer cells

Desgrosellier and Cheresh, 2010;

Chen and Chen, 2011

EGFR Lung, breast, bladder, and ovarian cancers Li et al., 2005; Yarden and Pines,

2012

NPY (hY1R) Breast cancer, Ewing sarcoma Söll et al., 2001; Körner et al., 2008;

Li et al., 2015

Bn receptors (GRPR) Lung, prostate, breast, pancreatic, head/neck, colon, uterine, ovarian, renal cell,

glioblastomas, neuroblastomas, gastrointestinal carcinoids, intestinal carcinoids, and

bronchial carcinoids

Jensen et al., 2008; Sancho et al.,

2011

Somatostatin (SSTR2) Small cell lung, neuroendocrine tumor, prostate cancer, breast cancer, colorectal

carcinoma, gastric cancer, hepatocellular carcinoma

Volante et al., 2008; Sun and Coy,

2011

GnHR-R Ovarian, breast, prostate, lung cancer Schally and Nagy, 1999; Limonta

et al., 2012

VIP receptors Endocrine tumors, colon, breast cancer Reubi, 2003; Tang et al., 2014

MC1R Melanoma tissues Froidevaux and Eberle, 2002;

Froidevaux et al., 2005

Neurotensin receptors (NTSR1) Breast, colon, pancreatic, lung, prostate cancer Kokko et al., 2003; Wu et al., 2012

on the malignant tissue to facilitate a sufficient selectivity. A
tumor-to-normal-cell expression ratio of 3:1 or higher is usually
desired. Secondly, the amounts of overexpressed receptors have
to be sufficient to ensure drug delivery in appropriate amounts to
obtain the desired therapeutic effect (Reubi, 2003; Vrettos et al.,
2018). The determination of these expression levels is not trivial
since tissue sampling and processing is difficult to standardize.
Expression levels can vary not only within biopsies, but also over
the time course of the therapy and therefore each treatment plan
has to be tailored for every patient.

Even though two peptide-drug conjugates have already been
approved by the FDA for treatment and diagnosis of cancer,
the development of novel peptide-drug conjugates targeting
overexpressed receptors is still very challenging. In the following
section, comprehensively studied peptide binding receptors will
be presented, which are considered as promising targets in
targeted cancer therapy.

Integrins
A frequently used peptide carrier is the tripeptide motif
arginine-glycine-aspartic acid (RGD), which was identified
in the 1980s within fibronectin that was known to bind
integrins (Pierschbacher and Ruoslahti, 1984; Plow et al., 2000;
Kapp et al., 2017). The membrane-bound receptor family
appears as heterodimers of non-covalently connected α- and
β-subunits. Integrins link the extracellular matrix with the
intracellular cytoskeleton to mediate cell adhesion, migration,
and proliferation (Hynes, 1987; Schwartz et al., 1995). Since all of
these processes are highly relevant for carcinogenesis, the integrin
αvβ3 evolved as important anti-cancer target primarily because it
is associated with tumor angiogenesis and metastasis (Cox et al.,
2010). It is overexpressed also in activated endothelial cells, new-
born vessels, and various other tumor cells but is not found in
most adult epithelial cells (Cai and Chen, 2006; Desgrosellier and
Cheresh, 2010).

Targeting of these cancer types is mostly accomplished by
using the cyclic RGD variant c(RGDfK) owing to its improved
affinity for the integrin receptors (Ryppa et al., 2008; Chen
and Chen, 2011; Gilad et al., 2016a). Recently, internalizing
RGD (iRGD) conjugates gained considerable attention due
to its improved vascular and tumor-tissue permeability
(Sugahara et al., 2009). The sequence CRGDKGPDC, in
which the cysteines at the C- and N-terminus are connected
through a disulfide bond, allowed a proteolytic cleavage
after integrin binding. The cleaved peptide gains affinity for
neuropilin-1 (NRP-1), which is then involved in a not fully
understood internalization mechanism (Sugahara et al., 2009;
Kadonosono et al., 2015). However, using this peptide as
carrier allows the generation of smart delivery vehicles that
facilitate an active and directed uptake of the drug into tumor
cells (Cho et al., 2016).

Epidermal Growth Factor Receptor (EGFR)
Another highly interesting transmembrane protein is the
epidermal growth factor receptor (EGFR), which belongs to
the ErbB family. Apart from EGFR/HER1 (ErbB-1), HER2/neu
(ErbB-2), HER3 (ErbB-3), and HER4 (ErbB-4) belong also to this
tyrosine kinase family (Wieduwilt andMoasser, 2008). EGFR was
found to be overexpressed in very high amounts in various cancer
types and is associated with a strongly enhanced proliferation
rate of cancer cells (Yarden and Pines, 2012). Therefore, many
monoclonal antibodies and small molecule inhibitors target the
EGFR in a clinical setting, inhibiting EGFR and decelerating
tumor growth (Seshacharyulu et al., 2012).

EGFR is also considered as a uptake system for targeted
drug delivery owing to its internalization behavior upon ligand
binding and receptor dimerization (Grandal andMadshus, 2008).
Several short peptides have been identified by phage display
libraries (Li et al., 2005; Ai et al., 2013). For example, the GE11
peptide (YHWYGYTPQNVI) was conjugated to liposomes (Zou
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et al., 2018), nanoparticles (Li et al., 2019), or toxophores like
doxorubicin (Fang et al., 2017).

G Protein-Coupled Receptors (GPCRs)
G protein-coupled receptors form the biggest class of
transmembrane proteins with more than 800 receptors.
Approximately 15% of these are targeted by ca. 35% of all FDA
approved drugs, demonstrating the tremendous pharmacological
potential of this receptor class (Sriram and Insel, 2018). GPCRs
share the common structure of seven transmembrane (TM)
helices, which are linked by three intra- and three extracellular
loop regions, an extracellular N-terminus, and an intracellular
carboxyl-terminal domain (Rosenbaum et al., 2009). Classical

FIGURE 2 | Schematic outline of targeting a tumor-expressed G

protein-coupled receptor for anti-cancer drug delivery with a peptide-drug

conjugate. The drug can be released intracellularly by intentionally using a

cleavable linker or just by endo-lysosomal degradation of the peptide-drug

conjugate.

GPCR signaling is initiated by an extracellular ligand binding,
which induces a conformational change in the receptor that
initiates binding and activation of intracellular heterotrimeric
G proteins (Gαi, Gαq, Gαs) (Weis and Kobilka, 2018). The
physiological response depends strongly on the activated G
protein. Since the induced signaling cascades control elementary
processes within the cell, malfunctions in this system are
often associated with cancerogenesis (Nieto Gutierrez and
McDonald, 2018). In these cases, GPCRs are frequently found to
be overexpressed, allowing the specific targeting of tumor cells
with peptide-drug conjugates (Insel et al., 2018).

Besides the overexpression, GPCRs are known to desensitize
after activation by intracellular phosphorylation mediated
by GPCR kinases (GRKs). The subsequent recruitment of
adaptor proteins such as arrestin induces the clathrin-mediated
endocytosis (Moore et al., 2007). The entire receptor-ligand
complex is internalized in this process and translocated to the
lysosome. Some GPCRs are separated from the ligand in the
endosome and recycle back to the cell membrane, where they can
be reactivated and internalized. This mechanism can be exploited
to actively accumulate drug molecules inside the cell making
peptide-drug conjugates a highly interesting and suitable class of
molecules as a cellular drug delivery system (Figure 2) (Vrettos
et al., 2018). In this review, the gastrin-releasing peptide receptor
and the human Y1 receptor will be presented in more detail.

NPY Receptor Family
The human Y1 receptor (hY1R) is a member of the neuropeptide
Y (NPY) receptor family, which is comprised of three additional
receptors, namely the Y2 receptor (hY2R), the Y4 receptor
(hY4R), and the Y5 receptor (hY5R) (Michel et al., 1998). The
human Y receptors (hYR) are recognized and activated by the
neuropeptide Y peptide hormone family including the 36-amino-
acid NPY, peptide YY (PYY), and pancreatic polypeptide (PP)
(Figure 3). All native peptides are composed of a flexible N-
terminus, a C-terminal amphipathic α-helix and an amidated
C-terminus (Larhammar, 1996; Monks et al., 1996). The Y
receptor/NPY hormone family forms a multi-ligand/multi-
receptor system in which NPY and PYY display high affinity
for the hY1R, hY2R, and hY5R, whereas PP has the highest
affinity for the hY4R (Pedragosa-Badia et al., 2013). However,
all three peptides bind and activate all four receptors to some
extent. While NPY is mainly expressed in the central nervous
system (CNS) where it acts as a neurotransmitter regulating
energy homeostasis and anxiety (Colmers and Bleakman, 1994;

FIGURE 3 | (A) Three-dimensional solution structure of human NPY determined by nuclear magnetic resonance spectroscopy (PDB: 1RON). Substituted amino acids

in [F7,P34 ]NPY are indicated in blue. (B) Amino acid sequences of pNPY, hPYY, hPP, and the hY1R-preferring [F7,P34]-NPY.
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Wettstein et al., 1995), PYY and PP were found in peripheral
tissues acting as hormones regulating the vasoconstriction
(Michel and Rascher, 1995), insulin release (Wang et al., 1994),
and gastrointestinal and renal epithelial secretion (Playford
and Cox, 1996). The association with metabolic diseases like
diabetes, obesity, hypertension, and dyslipidemia led to the
development of various selective small molecules, which bind
and activate only one of the Y receptors (Yulyaningsih et al.,
2011; Tan et al., 2018; Yi et al., 2018). hY1R-selective molecules
were particularly interesting, not only because inhibition of the
hY1R leads to an anorexic effect (Brothers and Wahlestedt,
2010) but also because the hY1R was found to be present in
certain tumor tissues. While ovarian sex cord-stromal tumors,
nephroblastomas, gastrointestinal stromal tumors and testicular
tumors were found to express the hY1R in combination with the
hY2R, adrenal cortical tumors, Ewing sarcoma tumors, and renal
cell carcinomas display exclusive hY1R expression (Körner and
Reubi, 2007; Körner et al., 2008).

An outstanding hY1R expression profile was identified
in breast cancer by Reubi et al. (2001). He demonstrated
that the hY1R is expressed in very high density in 85% of
investigated primary human breast tumors and in 100% of
breast cancer-derived metastases (Reubi et al., 2001). In contrast
to the previously described tumors, the non-neoplastic breast
tissues showed no hY1R expression. Instead, the hY2R was
predominantly found in non-malignant tissue. This switch in the
expression profile from hY2R in healthy tissue to hY1R in breast
tumors allows the selective targeting of these cancer cells if a
hY1R-preferring ligand is used (Figure 3).

The use of selective agonists is favored because agonists exploit
the desensitization mechanism of the Y-receptors to deliver
certain payloads to intracellular compartments. All Y receptors
desensitize by clathrin-mediated endocytosis in complex with the
bound ligand after activation. While the internalization process
for the hY5R is relatively slow, the other Y-receptors internalize
rapidly within fewminutes (Gicquiaux et al., 2002). The recycling
of the hY1R and hY2R back to the cell membrane has been
observed by fast and slow endosomal routes (Gicquiaux et al.,
2002; Mörl and Beck-Sickinger, 2015). These recycling processes
are essential for an active drug accumulation inside the cell.

In order to use this drug shuttle system, many studies focused
on the development of hY1R preferring agonists, which turned
out to be challenging due to the great similarities between the
receptors and native peptides (Zhang et al., 2011). Nevertheless,
the shortened, C-terminally derived analog [Pro30, Nle31, Bpa32,
Leu34]NPY(28-36) was identified as a hY1R-selective agonist in
2009 (Zwanziger et al., 2009). Another hY1R-selective agonist
is the full length NPY analog [F7,P34]-NPY, which exhibits
nanomolar potency at the hY1R and a highly reduced affinity
for the hY2R (Söll et al., 2001). This derivative was already
used in in vivo studies and serves as a first proof of concept
for this receptor targeting approach. A fluorine-18 (18F)-labeled,
fluoroglycosylated [F7,P34]-NPY analog was synthesized and
enabled the visualization of hY1R-expressing MCF-7 tumor cells
in a xenograft mice model (Hofmann et al., 2015). Furthermore,
four breast tumor patients received a technetium-99m labeled
[F7,P34]-NPY conjugate. While no significant peptide uptake was

observed in healthy volunteers, the primary tumor in all four
patients as well as the metastatic sites were clearly visualized
by whole-body scintimammography (Khan et al., 2010). These
studies demonstrated the tremendous potential of the hY1R as a
target in a selective drug delivery system for breast cancer.

Bombesin Receptor Family
The mammalian bombesin (Bn) receptor family consists of three
GPCRs: the neuromedin B (NMB) receptor (NMBR or BB1-
receptor), the gastrin-releasing peptide (GRP) receptor (GRPR
or BB2-receptor) and the orphan bombesin receptor subtype 3
(BRS-3 or BB3-receptor) (Jensen et al., 2008). All three receptors
are widely expressed in the CNS where they are associated
with processes including satiety, thermoregulation, stress and
fear responses (Roesler et al., 2006; González et al., 2008).
They are also found in the gastrointestinal tract, where they
are mainly involved in smooth muscle contraction and gastrin
release (Uehara et al., 2011).

These receptors form together with their natural ligands
a multi-ligand/multi-receptor system. While NMB binds with
high affinity to the NMBR, GRP prefers the GRPR. The
endogenous ligand of the BRS-3 could not be identified so far.
Nevertheless, all three receptors are combined in one family
because the amphibian 14-mer peptide homolog Bn (Sequence:
Pyr-QRLGNQWAVGHLM-NH2), which was isolated from the
skin of the European fire-bellied toad, binds and activates all
three receptors (Anastasi et al., 1971; Erspamer et al., 1972).
All bombesin-like peptides share two common features: their
C-terminus is amidated and the last seven C-terminal amino
acids are highly similar (McDonald et al., 1979; Erspamer, 1988;
Kroog et al., 1995; Hellmich et al., 1997). The Bn receptors
(BnR), especially the GRPR, have been extensively studied and
found to be overexpressed in several human cancers including
breast, colon, non-small cell lung cancer, gliomas, meningiomas,
head/neck squamous cell, ovarian, pancreatic, and prostate
cancers, and neuroblastomas (Table 2) (Gugger and Reubi, 1999;

TABLE 2 | Incidence of bombesin receptor subtype expression in various human

cancers (Reubi et al., 2002b).

Tumor type n cases Receptor incidence

NMBR GRPR BRS-3

Prostate carcinomas 12 0/12 12/12 0/12

Breast carcinomas 57 0/57 41/57 0/57

NEa GEP tumors

Gastrinomas 5 0/5 5/5 0/5

Intestinal carcinoids 24 11/24 0/24 0/24

Thymic carcinoid 1 1/1 0/1 0/1

NE lung tumors

Bronchial carcinoids 26 1/26 0/26 9/26

Small cell lung cancers 9 0/9 3/9 4/9

LCNEC 1 0/1 0/1 1/1

Renal cell carcinomas 16 0/16 6/16 4/16

Ewing sarcomas 10 0/10 0/10 2/10

aNE, neuroendocrine; GEP, gastroenteropancreatic; LCNEC, large cell neuroendocrine

carcinoma.
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FIGURE 4 | Chemical structure of a stable GRPR-selective agonist.

Markwalder and Reubi, 1999; Reubi et al., 2002a,b; Moody et al.,
2004; Pu et al., 2015; Moreno et al., 2016). Since the BnR are
expressed in a number of common tumors, increasing interest
rose not only to target the BnR for tumor localization and
visualization but also to deliver cytotoxic agents (Schroeder et al.,
2009; Sancho et al., 2011; Yu et al., 2013).

More than 200 reports were published focusing on the
investigation of various Bn-like peptides conjugated primarily
with radionuclides, including 9mTc, 111In, 67Ga, 68Ga, 64Cu,
177Lu, 90Y or 213Bi, which were either used for tumor diagnostic
or peptide receptor radionuclide therapy (PRRT) (Dash et al.,
2015).

A number of these studies reported excellent visualization of
BnR overexpressing tumors like prostate cancer in vivo as well as
in humans (Scopinaro et al., 2002, 2004; van Essen et al., 2009).
Thereby, radiolabeled BnR antagonists were found to be more
suitable for tumor visualization applications then BnR agonists
because they showed higher tumor uptake and better imaging
properties (Ginj et al., 2006; Cescato et al., 2008; Mansi et al.,
2013). This might be explained by better plasma stability of BnR
antagonists compared to agonists, and their higher selectivity
for the GRPR. In many studies the synthetic Bn peptide agonist
[D-Phe6, β-Ala11, Phe13, Nle14]Bn(6–14) and its D-Tyr6 analog
were used due to their high affinity for the GRPR (Mantey et al.,
1997; La Bella et al., 2002; Schroeder et al., 2009). However, the
NMBR and the BRS-3 were bound with similar potencies (IC50,
0.3–2 nM) leading to off-target effects and reduced effective
concentrations at the tumor side (La Bella et al., 2002). Thus, the
potential tumor uptake is theoretically lower in comparison to a
stable antagonist, which features comparable binding properties.
Moreover, the rapid degradation of common Bn agonists in blood
plasma reduces the potential uptake by tumor cells even further
(Bläuenstein et al., 2004). A stable and selective GRPR-agonist
could potentially feature similar or even better tumor uptake
values compared to antagonists. Nevertheless, the development
of GRPR-selective peptide agonists, which feature sufficient

plasma stability is still challenging and was addressed only in
few studies (Darker et al., 2001; Valverde et al., 2013). Recently,
we could identify the peptide [D-Phe6, β-Ala11, NMe-Ala13,
Nle14]Bn(6–14), which displays high activity at the GRPR, more
than 4,000-fold selectivity and > 75% blood plasma stability after
24 h (Hoppenz et al., 2019) (Figure 4).

By using agonistic Bn peptides, the desensitizationmechanism
of the GRPR can be exploited for an active drug shuttling into
the tumor cells. Following the clathrin-mediated internalization,
the GRPR is separated from the endosome and recycles back
to the cell membrane rapidly, where it can be activated again
(Slice et al., 1998). Based on this approach, different bombesin
conjugates were synthesized bearing toxophores (Stangelberger
et al., 2006; Moody et al., 2007), siRNA (Rellinger et al.,
2015), nanoparticles (Jafari et al., 2015), or liposomes (Accardo
et al., 2012) demonstrating great results in preclinical and
clinical studies.

Somatostatin Receptors (SSTRs)
Another very intensely studied receptor family is the
somatostatin receptor (SSTR) family, which is comprised
of five members (SSTR1–5). Their natural ligand is the disulfide-
cyclized oligopeptide somatostatin (SST), which occurs in two
active isoforms, the SST-14 and SST-28 (Reisine and Bell, 1995).
Both of these isoforms bind and activate the SSTRs, which
are widely expressed in different tissues in the body including
nervous, pituitary, kidney, lung and immune cells (Patel, 1999).
The interaction of SST and its receptors not only controls the
endocrine system and neurotransmission but also provides
potent antisecretory and antiproliferative activities (Patel,
1999; Olias et al., 2004). Owing to these features, metabolically
stabilized derivatives of somatostatin including octreotide
(Sandostatin R©), lanreotide, or pasireotide are directly used to
treat growth hormone-producing tumors (Keskin and Yalcin,
2013). The SSTR2 and SSTR5 are thereby primarily targeted
because they have been found in various neuroendocrine tumors
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as well as other tumors such as breast, ovarian and lung cancer
(Reubi et al., 1992; Volante et al., 2008). Besides the direct
targeting of the SSTRs, peptide-drug conjugates were intensely
studied to even further boost the antiproliferative effect of these
peptides. For example, Paclitaxel (Shen et al., 2008), Doxorubicin
(Nagy et al., 1998), and Camptothecin (Sun et al., 2008) were
conjugated to octreotide analogs and provided impressive
toxicities and selectivity for SSTR2 and SSTR5 expressing
cells in vivo. Furthermore, the conjugation of 111Indium to
octreotide led to the first FDA approved peptide-drug conjugate
(Octreoscan R©), which can be used for diagnostic tumor imaging
(Forssell-Aronsson et al., 2004).

Other Receptors
In addition to the already introduced receptor targets, a number
of other peptide receptors are also investigated as potential targets
for anti-cancer drug delivery and will be covered briefly in
this section.

The first example is the gonadotropin-releasing hormone
receptor (GnRH-R), also known as luteinizing hormone-
releasing hormone (LHRH) receptor, which is primarily
expressed on gonadotrope cells in the pituitary but also found in
lymphocytes, breast, ovary, and prostate (Harrison et al., 2004).
The activation of the GnRH-R causes the release of follicle-
stimulating hormone (FSH) and luteinizing hormone (LH),
which are known as gonadotropins. Over the past decade, the
GnRH-R emerged as promising drug delivery systems owing
to its ectopic overexpression in a variety of human tumors
such as prostate, endometrial, epithelial ovarian, bladder, breast,
lymphomas, and lung cancers (Halmos et al., 2000; Keller
et al., 2005; Gründker et al., 2011). This receptor can be
addressed by agonistic peptides or small molecules in cancer
therapy (Gründker and Emons, 2017). For the generation of
drug conjugates, the selective GnRH analog [D-Lys6]-GnRH-
I is frequently used and reached as a doxorubicin derivative
(AEZS-108) clinical phase III (Kovács et al., 2007; Yu et al., 2017).

Another example are the vasoactive intestinal peptide (VIP)
receptors 1 and 2, which were found to be overexpressed in colon,
breast, and endocrine tumors. The natural ligand VIP and its
analogs are considered to be a valuable target for the molecular
imaging of tumors and therapeutic interventions (Moody et al.,
2007; Tang et al., 2014).

The melanocortin receptor 1 (MC1R) is also a highly
attractive target as it has been found to be highly expressed
in the majority of melanomas (Miao and Quinn, 2008). Since
traditional chemotherapy treatment of metastatic melanoma is
not very effective, MC1R targeting peptide-drugs are highly
desired (Helmbach et al., 2001). Apart from the natural ligand α-
melanocyte-stimulating hormones (α-MSH), the short agonistic
peptide NAPamide is used as a base for the development of potent
peptide-drug conjugates (Froidevaux et al., 2005).

Furthermore, the neurotensin receptor 1 (NTSR1) was found
to be overexpressed in breast, prostate, colorectal, lung, liver,
and pancreas cancers among others. Since the metabolic stability
of the natural ligand neurotensin was not sufficient for the use
as peptide-drug conjugate, tetra-branched neurotensin peptides
were synthesized and conjugated with various toxic agents such

as 5-fluorodeoxyuridine (5-FdU), MTX and a chlorambucil
alkylating agent (Falciani et al., 2010). Moreover, pseudo-
neurotensin derivatives [Lys8−9]NT(8-13) were used as carrier
molecules targeting the NTSR1 (Kokko et al., 2003; Gaviglio et al.,
2012).

INTELLIGENT LINKER TECHNOLOGIES

Another very crucial aspect in the design of PDCs is the selected
linker technology, which connects the carrier molecules and the
payload. The linker structure has to provide distinct properties
that ensure the greatest possible selectivity and biological efficacy
of the payload (Figure 5). While, for example, radionuclides
do not require the release after reaching the tumor cell, it
is crucial for toxic payloads to be released to exploit their
full potential. PDC prodrugs can fulfill this requirement by
utilizing a linker structure, which controls the activity of the
toxophore as long it is conjugated to the carrier peptide. As
the tumor site is reached, the linker is selectively cleaved and
the toxophore is released and thereby activated (Kratz et al.,
2008). However, the linker must be stable during the circulation
in the blood to avoid a premature release of the toxic agent,
which would result in undesired peripheral toxicity. Different
linker strategies have been reported for PDCs using various
changes in the biological environment of cancer cells to facilitate
the controlled release (Bildstein et al., 2011; Joubert et al.,
2017).

One possibility to realize a selective release of toxophores
is the use of pH-sensitive linkers. Since tumor cells grow
and metabolize rapidly, tumor vessels are often unable to
provide sufficient nutrients and oxygen. Anaerobic glycolysis
inside the tumor cells produces lactic acid, which causes an
acidification of the tumor tissue (pH 6.2–6.8) (Kato et al., 2013).
A more significant difference in the pH-value was found in
lysosomes, which features values between 4.5 and 6.0 (Ohkuma
and Poole, 1978). Since agonistic PDCs are internalized into
these compartments, a selective release of payloads can be
achieved by using pH-sensitive linkers. The most frequently
used pH-sensitive linker is a hydrazone bond, which is stable in
neutral environments but easily hydrolyzed under weak acidic
conditions. This concept has been demonstrated for antibodies
(Ducry and Stump, 2010) as well as for peptides (Langer et al.,
2001). Beside hydrazone bonds also imine, oxime, acetal, or
cis-aconityl linkages were used (Chang et al., 2016).

Another approach uses redox-sensitive linkers. This is based
on the high concentrations of antioxidants like glutathione
(GSH) in the cytoplasm, which are 1,000-fold higher than in
the plasma (15mM intracellular vs. 15µMextracellular) (Meister
and Anderson, 1983). The concentration of GSH in cancer cells
was found to be even higher due to hypoxia, which is caused
by the abnormal blood flow in tumor tissue (Bansal and Simon,
2018). Therefore, disulfide bonds have been extensively used in
targeted drug delivery (Wang et al., 2012). These bonds can be
readily integrated in PDCs by reaction of a cysteine-containing
peptide with a thiol-including toxic agent or a prodrug (Saito
et al., 2003). Recently, thioesters and azo-bond derivatives have
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FIGURE 5 | Overview of different linker structures used for payload conjugation and their cleavage mechanism.

been investigated as cleavable linker structures (Chen et al., 2013;
Medina et al., 2013).

An exquisite way to facilitate a selective linker cleavage is
the use of structures, which can be cleaved by specific enzymes.
For example esters and carbamates, which are either hydrolyzed
by the low lysosomal pH or enzymatically by esterases and
cytochrome P450 (Patterson et al., 1999; Cha et al., 2000).

These structures can be introduced during peptide synthesis,
but their extracellular stability needs to be carefully controlled
because they are prone to hydrolysis in serum (Coin et al., 2007).
However, great interest was gained by using short amino acid
sequences as linkers, which are recognized explicitly by proteases
being overexpressed in tumor tissues. Peptide bonds in these
linkers are stable during circulation in plasma as the activity
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FIGURE 6 | Representative examples of suitable toxic agents for the generation of peptide-drug conjugates. Frequently used conjugation sites in the toxophores are

marked with red cycles.

of the exploited protease is reduced due to the unfavorably
high pH in plasma (Ciechanover, 2005). A wide range of short
peptide sequences have been identified, including the short Val-
Cit (Szlachcic et al., 2016) and Gly-Phe-Leu-Gly (GFLG) linkers
(Naqvi et al., 2010), which are cleaved by the protease cathepsin
B. Another very interesting protease is legumain because it is the
only asparaginyl endopeptidase in mammals featuring very high
substrate specificity for the amino acid sequence Ala-Ala-Asn
(Chen et al., 1997; Dall and Brandstetter, 2016). The recognition
sequence is cleaved C-terminally after Asn allowing a traceless
release of the attached payload if the cargo is conjugated to the
C-terminus, while the N-terminus of the linker is coupled to the
carrier (Stern et al., 2009; Bajjuri et al., 2011; Mai et al., 2017).
Therefore, enzymatically cleavable linkers are ideal structures to
utilize a controlled release of toxic payloads within tumor cells
especially because legumain and cathepsin B were found to be
overexpressed in solid tumors (Liu et al., 2003; Gondi and Rao,
2013).

PAYLOADS IN TARGETED CANCER
THERAPY

The heart of every PDC is the drug cargo. While the peptide
carrier and the linker structure provide the selectivity of the PDC,
the drug is the component that facilitates the actual purpose of
the conjugates. In many cases, the term “drug” refers to cytotoxic
(chemotherapeutic) anti-cancer agents, but a broad spectrum
of therapeutically active moieties can be meant. Conjugation
of radionuclide complexes to peptides can result in molecules,

which can be used for cancer diagnostics or PRRT. Moreover,
non-radioactive molecules like boron can be used as cargo to
generate PDCs for boron neutron capture therapy (BNCT).

Chemotherapeutic Agents
Currently, more than 250 FDA approved drugs (Cancer.gov)
are used to treat malignant cancers. Many of these classical
chemotherapeutic drugs feature strong pharmacological activity
owing to their great cytotoxicity. However, a disadvantage of
these small molecules is their uncontrolled toxicity, which results
in severe side effects. By attaching these molecules to targeting-
moieties like peptides can enhance their pharmacokinetic and
increase the therapeutic window of the parent cytotoxic agent
(Chen et al., 2014). The selected drugs must comply with
certain design principles in order to serve as suitable compounds
for the generation of a PDC. Most importantly, intrinsic
functional groups have to be available to enable the attachment
to the peptide carrier by a cleavable linker. Fortunately, many
toxic agents provide hydroxy, carboxy, or amine groups that
can be used (Figure 6). In some cases, these groups are
necessary for their biological response, enabling the generation
of inactive prodrugs, which have to be released without a
trace to facilitate their action at the tumor side (Kratz et al.,
2008). Furthermore, the drug has to be chosen to exhibit
sufficient and potent cytotoxicity vs. the malignant cells, as
drug resistance mechanisms of cancer cells are frequently found
(Housman et al., 2014).

Chemotherapeutic agents used in PDCs can be classified by
their general mode of action (Malhotra and Perry, 2003). The
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first group of molecules bind and interact with the cellular DNA
or DNA-protein complexes. Thus, the transcription and DNA
replication are disturbed, leading to the induction of apoptosis.
Highly potent molecules including metal complexes (Weidmann
et al., 2014), camptothecin (CPT) (Wall and Wani, 1996), and
anthracyclines like daunorubicin (DAU) or doxorubicin (DOX)
(Minotti et al., 2004) are broadly applied in PDCs (Figure 6).
For example, the SSTR2 targeting octreotide was conjugated to
DOX or 2-pyrrolino-DOX by ester linkers and exhibited selective
toxicity against receptor-expressing tumors in vivo (Nagy et al.,
1998; Huang et al., 2000; Engel et al., 2005; Shen et al., 2008;
Seitz et al., 2009). Moreover, the integrin-targeting cyclic peptides
c(RGDfK) and c(RGDfS) were conjugated to CPT and the
alkylating agent chlorambucil by a carbamate and ester linkage,
demonstrating growth inhibition in cancer cell lines expressing
the integrin αvβ3 (Gilad et al., 2016b). In addition, CPT was
coupled to the Bn analog [D-Tyr6,β-Ala11,D-Phe13,Nle14]Bn(6–
14) by a carbamate linker exhibiting great cytotoxicity in Bn-
receptor overexpressing cells while cells without these receptors
were not affected (Moody et al., 2006). Until now, the most
progressed receptor-targeting PDC for selective chemotherapy is
Zoptarelin Doxorubicin (AN-152, AEZS-108, ZoptrexTM), which
is composed of a GnRH analog and doxorubicin conjugated
through an ester bond with a glutaric acid spacer (Figure 7)
(Nagy et al., 1996). This derivative reached clinical phase 3
for the treatment of endometrial cancer, and the results were
disclosed in May 2017. Even though very encouraging results
were obtained before, Zoptarelin Doxorubicin neither extended
overall survival nor improved the safety profile compared to the
classical chemotherapy with DOX (ZoptEC, 2013).

The second class of frequently used toxophores convey
their cytotoxicity by inhibiting the DNA-biosynthesis.
These antimetabolites, for example the nucleoside analog
of deoxycytidine, gemcitabine (Galmarini et al., 2002), or
the folate derivative methotrexate (MTX), which inhibits the
enzyme dihydrofolate reductase (Chan and Cronstein, 2013)
demonstrated great potency on cancer cells. Notably, MTX
was specifically delivered to tumor cells by exploiting the
hY1R-preferring peptide [F

7,P34]-NPY. The modified conjugates
[K4(GFLG-MTX),F7,P34]-NPY displayed high extracellular
stability, paired with a fast uptake into cancer cells and the
rapid release of MTX led to high cytotoxicity values in hY1R
expressing tumor cells (Böhme and Beck-Sickinger, 2015). This
potent cytotoxic effect was even further increased in MDA-
MB-468 breast cancer cells by generating a double modified
[K4(GFLG-MTX),F7,K18(GFLG-MTX),P34]-NPY conjugate
(Böhme et al., 2016).

The third group of chemotherapeutics is formed by anti-
mitotic agents, which act on microtubules. Drugs like paclitaxel
(PTX), which inhibit microtubule depolymerization (Xiao et al.,
2006), and vinca alkaloid analogs, which inhibit tubulin
polymerization (Zhou and Rahmani, 1992), belong to this group.
Even though PTX is highly hydrophobic and often associated
with multidrug resistance owing to the P-glycoprotein-mediated
efflux (Vargas et al., 2014; Barbuti and Chen, 2015), a PTX
containing PDC reached phase 3 in clinical trials. The blood-
brain barrier (BBB)-penetrating peptide angiopep-2 was loaded

with three PTX molecules by ester linkers (ANG1005) (Régina
et al., 2008). This highly loaded conjugate demonstrated higher
brain uptake than free PTX and significant antitumor activity
in vivo in glioblastoma-bearing mice (Régina et al., 2008). This
conjugate also reached therapeutic concentrations in the tumor
site and was well-tolerated in humans (Drappatz et al., 2013).
Although no results of phase 2 were published yet, a phase 3
study was started in December 2018 (ANGLeD, 2018). Another
very promising group of molecules is formed by kinesin spindle
protein (KSP/Eg5/KIF11) inhibitors (KSPi), which affect the
spindle formation during mitosis. When this process is impaired,
cell cycle arrest is induced, which leads subsequently to apoptosis.
Since these KSPis were found to be highly potent in various
cancer types (Knight and Parrish, 2008; El-Nassan, 2013) their
specificity has to be improved to transfer them into a clinical
setting (Wakui et al., 2014). So far, only KSPi conjugated to
antibodies were generated, which demonstrated high potency in
vitro and in vivo (Lerchen et al., 2019).

Radionuclides
Among chemotherapeutic drugs, radionuclides are the second
major group of payloads in PDCs. They can be used for
two main purposes related to cancer. The first field is
their application in cancer diagnosis. Therefore, PDCs are
labeled either with positron-emitting radioisotopes such as
fluorine-18 (18F), copper-64 (64Cu), and gallium-68 (68Ga) to
generate PET imaging agents or gamma-emitting radioisotopes
including technetium-99m (99mTc) and iodine-123 (123I),
which can be used in single-photon emission computed
tomography (SPECT). By binding to the targeted receptors on
tumor cells, the malignant tissue can be precisely localized.
The incorporation into the peptides is mostly facilitated
by bifunctional chelating agents (BFCA), which provide the
chelating group for the incorporation of the radiometals and
a functional group allowing the conjugation to the peptide
(Liu, 2008; Jamous et al., 2013). The most frequently applied
BFCAs are diethylenetriaminepentaacetic acid (DTPA) and
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)
enabling the generation of PCDs with various radiometals
and –lanthanides (León-Rodríguezn et al., 2008; Liu, 2008).
Many reviews focused on the use of PDCs as molecular
imaging agents and a huge variety of PDCs including a 68Ga-
labeled bombesin analog (RM2), [18F]Galacto-RGD, 99mTc-
labeled [Phe7,Pro34]NPY and many more were investigated in a
clinical setting (Schottelius and Wester, 2009; Sun et al., 2017).

Besides the diagnostic approach, radionuclide-labeled PDCs
can also be seen in a therapeutic setting, if β-emitting, Auger
electron-emitting or α-emitting nuclides are used (Karagiannis,
2007; Bhattacharyya and Dixit, 2011). The peptide receptor
radionuclide therapy (PRRT) allows a directed and tissue-
specific irradiation of tumor cells based on their overexpressed
receptors. Many different radioactive metals are naturally or
synthetically available and each of them features different
properties. Therefore, the choice of the radionuclide strongly
depends on the size of the targeted tumor or metastases
(O’Donoghue et al., 1995).
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FIGURE 7 | Chemical structure of OctreoScan® and ZoptrexTM.

The most commonly used radionuclides are indium-
111 (111In), yttrium-90 (90Y), and lutetium-177 (177Lu)
(Thundimadathil, 2012). While 90Y emits β-radiation
with tissue penetration depths of up to 11mm, 177Lu
exhibits medium energy β-particles, which allow a tissue
penetration range of max. 3mm. Therefore, the use of 90Y
is preferred for pronounced tumors due to the potential

“cross-fire” effects, which can compensate for frequently
occurring receptor heterogeneity (Goffredo et al., 2011).
Nevertheless, 177Lu was found to eradicate small metastases
better than 90Y because 177Lu emits besides β-particles
also low-energy Auger electrons and conversion electrons
(CEs) that deposit their dose over a short distance (Michel
et al., 2005; Hindié et al., 2016). Another advantage of
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177Lu is its low abundant gamma radiation, which enables
post-therapeutic dosimetry.

These features are also provided by 111In, which is part of the
first FDA approved radiopharmaceutical peptide-drug conjugate
111In-DTPA-octreotide (Octreoscan R©) (Figure 7) (Kwekkeboom
et al., 2010). Even though the use of high doses of Octreoscan R©

in patients with metastasized neuroendocrine tumors led to
symptom relief, the tumor size regression was unsatisfactory
(Ochakovskaya et al., 2001; Anthony et al., 2002). Therefore,
Octreoscan R© is only approved for diagnostic imaging of SSTR-
positive tumors. To increase the biological effect of Auger
electron-emitting isotopes, a delivery close to the nucleus has
to be ensured. However, the most successful therapeutic peptide
radiopharmaceutical so far is 177Lu-DOTA-TATE. This conjugate
has been investigated intensively as PRRT-agent in several
clinical centers in Europe (Hirmas et al., 2018). Treatment
with 177Lu-DOTA-TATE resulted in longer progression-free
survival and a significantly higher response rate than high-
dose octreotide long-acting repeatable among patients with
advanced midgut neuroendocrine tumors (Strosberg et al.,
2017). The European Commission approved 177Lu-DOTA-TATE
(Lutathera R©) in October 2017, followed by the FDA in January
2018. This development demonstrates the enormous potential of
the receptor-mediated drug delivery approach in cancer and is
considered as amajormilestone on the way toward peptide-based
and personalized medicine.

BORON NEUTRON CAPTURE THERAPY

Over the past decades, different approaches of targeted cancer
therapy have been developed and reached the clinics. Even
though these therapy approaches demonstrated excellent anti-
tumor efficacy, the expected reduction in severe side effects was
only partially achieved. Especially antibody-drug conjugates that
target specific cell surface receptors display side effects including
fever, nausea, infection, vomiting, stomatitis, and skin rashes
(Hansel et al., 2010; Donaghy, 2016). These undesired unspecific
effects are frequently mediated by the carrier molecules, which
deliver their payload not only to the addressed tumor site but
also to healthy tissues, which express the targeted markers as
well. One possibility to overcome this issue is the use of non-
toxic payloads, which have to be converted into their active form
within the tumor cells. If the second step is also tumor-selective,
the toxic payload will be generated only in tumor cells, whereas
all healthy cells are not harmed because they contain only the
inactive payload. This principle is used in a binary radiotherapy
approach called boron neutron capture therapy (BNCT).

Principles and General Requirements of
BNCT
The idea of BNCT was already described by Locher (1936). In
principle, BNCT offers the possibility to combine molecular drug
targeting with the regional beam positioning of radiation therapy
to achieve a double-selective therapeutic effect. This binary
approach requires the accumulation of the non-radioactive
isotope 10B, which comprises 19.9% of the naturally occurring

FIGURE 8 | Schematic representation of the neutron capture reaction on

boron neutron capture therapy (BNCT).

FIGURE 9 | Chemical structures of boron cluster. (A) Structures of

L-boronophenylalanine (BPA) and sodium borocaptate (BSH). (B) Chemical

structures of ortho-, meta-, and para-carborane isomers.

boron in tumor cells. The subsequent local irradiation with
thermal neutrons or epithermal neutrons (0.025 eV) induces the
nuclear fission reaction [10B(1n,α)7Li] resulting in an excited
[11B]∗ nuclei, which decays immediately in high linear energy
transfer (LET) particles (Locher, 1936). Due to the limited path
lengths of the generated α and 7Li nuclei in tissues (5–8µm), the
destructive effects of those are limited to boron-containing cells
(Figure 8) (Barth et al., 2005).
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In order to achieve sufficient biological effects, the boron
delivery agents must fulfill several critical requirements. (a) The
uptake by tumor tissue has to be highly specific. To ensure no
harm for non-neoplastic tissues, tumor to normal tissue and
tumor to blood ratios of 3:1 and 5:1 are required, respectively.
(b) Even though 10B features a remarkably high neutron capture
cross-section of 3,840 barns, which is more than 3,000-fold
higher than the neutron capture cross-section of 14N (1.82 barn)
and 1H (0.332 barn) (Schmitt et al., 1960), a boron amount of
20µg/g tumor is needed to achieve sufficient biological effects.
This amount corresponds to about 109 10B atoms per cell,
which could be lower if the boron is concentrated near or in
the nucleus (Hawthorne, 1993; Hartman and Carlsson, 1994;
Soloway et al., 1998). (c) The boron delivery agents have to retain
within the tumor tissue over the period of neutron irradiation.
(d) Simultaneously, the drug has to be rapidly cleared from the
blood and healthy tissue. (e) The 10B-loaded agents must be
chemically and metabolically stable and (f) must not feature
any systemic cytotoxicity. (g) Moreover, they should have an
appropriate water solubility.

Each of these demanding perquisites and especially their
combination challenge the development of suitable boron
delivery agents, limiting the establishment of BNCT as a viable
cancer treatment modality in the clinic so far (Kreiner et al.,
2016).

Past and Recently Developed Boron
Delivery Agents
After the first efforts, during the 1940s and 1950s, using the
simplest boron salts including disodium tetraborate and sodium
pentaborate, it became clear that a selective and high boron
accumulation in tumor cells is crucial for an application in BNCT
(Farr et al., 1958). Around the 1960s, L-boronophenylalanine
(BPA) (Snyder et al., 1958) and sodium mercaptoundecahydro-
closo-dodecaborate (BSH) (Soloway et al., 1967) were found
to accumulate in the desired tissues in sufficient amount
(Figure 9A).

BSH is a small hydrophilic molecule and has the advantage
over BPA to deliver 11 boron atoms per molecule to the
tumor. Although BSH has been applied for the treatment
of glioblastomas demonstrating no toxic effects prior to
irradiation, the efficacy has been limited due to low tumor
boron concentrations (Kageji et al., 1997). To increase the
boron concentration, various studies have been conducted in
combination with other boron compounds (Barth et al., 2012).

Nowadays, BPA is the most applied drug in BNCT and is
actively taken up into tumor cells by the L-type amino acid
transporter system, which is highly expressed in tumor cells
(Wittig et al., 2000). This results in higher boron concentrations
within the tumor compared to BSH, which accumulates only
passively in tumor tissue and cannot cross the cell membrane
due to its net charge (Sköld et al., 2010). However, BPA has very
limited water solubility (1.6 g/L) requiring the formulation as
fructose complex, which demonstrated favorable biodistribution
properties (Mori et al., 1989; Coderre et al., 1997). Even though
BPA is considered to be a better boron delivery agent than BSH, it

features some critical disadvantages. BPA consists of only a single
boron atom per molecule requiring the administered of very
high doses (500 mg/kg) and the rather modest tumor selectivity
results in suboptimal BNCT efficiency (Luderer et al., 2015).
Despite some promising results achieved by treating patients
with recurrent head and neck cancer, high-grade gliomas and
advanced melanomas, the development of novel boron delivery
agents would lift this technology to the next level and support the
implementation as advanced cancer treatment in clinics (Barth
et al., 2018b). Although linear accelerator-based neutron beams
have been developed, allowing the generation of neutrons in
hospitals, boron delivery agents with high boron loading and
excellent selectivity are still needed (Suzuki, 2019).

Multiple molecule classes have been investigated to find novel
BNCT agents including low molecular weight compounds such
as boronated nucleosides, amino acids, sugars, and porphyrin
derivatives. Moreover, huge polymers like polyanionic and -
cationic polymers and polyamines, as well as lysosomes and
nanoparticles filled with boron were designed to facilitate
extensive boron loading (Luderer et al., 2015; Barth et al., 2018a).
To increase the selectivity of these polymers, biomolecules
including peptides, proteins, and antibodies were attached to
these structures allowing the directed targeting of cancer cells.
EGFR has been studied extensively as a target in BNCT
owing to its elevated expression in gliomas. Heavily boronated
polyamidoamine dendrimers (around 1,000 boron atoms) were
linked to the natural ligand EGF (Capala et al., 1996; Yang et al.,
2009a) and the monoclonal antibodies Cetuximab (Wu et al.,
2004, 2007) and L8A4 (Yang et al., 2006, 2008). In vivo studies of
the latter two revealed that the combination of both antibodies is
recommended to achieve a reasonable increase in mean survival
times after irradiation in rats bearing tumors expressing both
isoforms (EGFR and ERGFRvIII) of the EGFR (Yang et al.,
2009b).

Besides EGF, peptides have also been investigated as potential
boron delivery systems. In a number of studies, carboranes
were used due to their favored properties. These icosahedral,
hydrophobic C2B10H12 clusters have a high boron content, while
they occupy a rather small amount of space, slightly larger than
a rotating phenyl ring (Scholz and Hey-Hawkins, 2011). Three
different isomers exist, which are defined by the position of the
carbon atoms in the cluster (Figure 9B). Moreover, they can be
chemically functionalized to readily allow the facile conjugation
to peptides by peptide chemistry and they display high biological
stability and relatively low cytotoxicity (Valliant et al., 2002).

In 2011, dimeric integrin targeting PDCs were designed
(Kimura et al., 2011), which featured ortho-carboranes as
center and two cyclic c(RGDfK) peptides that were separately
conjugated via a butanoic acid linker to each carbon atom in the
cluster (Figure 10A). The resulting conjugate, named GPU-201,
displayed a high integrin αvβ3 binding affinity, dose-dependent
tumor uptake in squamous cell carcinoma (SCCVII)-bearing
mice and longer tumor retention time than BSH. Even though
it showed a stronger tumor growth inhibition after irradiation
compared to BSH alone, GPU-201 also demonstrated higher
toxicity than BSH to both proliferating and quiescent cancer cells
without irradiation (Masunaga et al., 2012).
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FIGURE 10 | Chemical structure of boronated peptide-drug conjugates (A) Chemical structures of the dimeric carborane-c(RGDfK) conjugate GPU-201 for integrin

αvβ3 targeting. (B) Double-carborane modified [Tyr3]-octreotate (TATE) for SSTR2 targeting. (C) Dodecarborate modified mitochondrial targeting CPP RLA.

The first boron delivery agent targeting cancer cells by their
overexpressed GPCRs was proposed in 2003 (Schirrmacher
et al., 2003). They used the SSTR2-addressing [Tyr3]-octreotate
(TATE), which was N-terminally modified with the ortho-
carborane derivative 5,6-dicarba-closo-dodecaboranyl hexynoic
acid. Subsequently, they attached a BSH via Michael-addition to
the N-terminus of TATE, both derivatives showed no biological
activity (Mier et al., 2004). Four years later, Betzel et al. succeeded
in creating the first biologically active and boronated TATE
analogs by using the ortho-carborane-containing building block
4-(O-methylencarboranyl)-benzoic acid (BBB1), which was
coupled either directly to the N-terminus or by glycinylsarcosine
spacers of different length (Figure 10B) (Betzel et al., 2008).
Even though double carborane modified TATE conjugates were

generated with suitable SSTR2 affinity, further pharmaceutical
development of SSTR2-targeting, boronated peptides were
not undertaken.

In addition to these PDCs, the hY1R preferring peptide
[F7,P34]-NPY has been recently described as a suitable target
in BNCT. An ortho-carboranyl propionic acid (Cpa)-containing
amino acid Fmoc-Lys-Nε(Cpa)-OH was incorporated at position
4 by solid-phase peptide synthesis (Ahrens et al., 2011).
The modification led only to a slight loss of activity at
the hY1R, but the hYR subtype-specific internalization was
maintained. These results led to the development of the ortho-
carborane building block 9-(carboxymethylthio)-1,2-dicarba-
closo-dodecaborane(12) and a deoxygalactosyl-functionalized,
charge-compensated cobalt bis(dicarbollide) building block,
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FIGURE 11 | Chemical structure of a highly boron loaded [F7,P34]NPY conjugate.

which were introduced at position 4, 18, or 22 of [F7,P34]NPY
by the side-chain of substituted lysines at the respective
positions (Ahrens et al., 2015; Frank et al., 2016). A triple
modified conjugate with 30 boron atoms per peptide molecule
demonstrated nanomolar potency at the hY1R and selectivity
against other hYR subtypes and the sufficient uptake into hY1R
transfected HEK293 cells was proven. Recent studies showed that
introduction of sugar moieties to heavily carborane-loaded hY1R
selective analogs can enhance solubility and thereby enable the
boron conjugation of up to 80 boron atoms (Worm et al., 2019)
(Figure 11).

The concept of boron-containing peptides was also
investigated for ghrelin analogs and GRPR analogs. A ghrelin
receptor superagonist was modified with different carborane
monoclusters and the meta-carborane building block with a
mercaptoacetic acid linker demonstrated the best results (Worm
et al., 2018). The GRPR-selective ligand [D-Phe6, β-Ala11,
Ala13, Nle14]Bn(6–14) contained multiple bis-deoxygalactosyl-
carborane building blocks, which allowed the generation of
a peptide conjugate with up to 80 boron atoms per molecule
(Hoppenz et al., 2020). These modifications did not influence

receptor activation but metabolic stability was increased and
no intrinsic cytotoxicity was observed. Notably, undesired
uptake into liver cells was suppressed by using L-deoxygalactosyl
modified carborane building blocks.

Three studies reported the design and synthesis of CPPs
modified with boron clusters. Conjugation of eight BSH clusters
to the 11R peptide (8BSH-11R) facilitated the delivery of
high amounts of boron (around 5,000 ppm/106 cells) into
U871EGFR glioma cells (Michiue et al., 2014). In comparison
to BSH, 8BSH-11R resulted in significantly stronger growth
inhibition of U871EGFR glioma cells after neutron irradiation.
In addition, accumulation of 8BSH-11R in implanted cells in
mice was observed, while no uptake in healthy brain tissue
was demonstrated.

In another study, an arginine-tripeptide (3R) was modified
with BSH and a DOTA chelator to allow 64Cu-radiolabeling and
uptake quantification in glioma-bearing mice by PET imaging.
For the labeled 3R conjugate, significantly higher tumor-to-
normal-brain and tumor-to-blood radioisotope accumulation
ratios compared to BSH-DOTA-64Cu were observed (Iguchi
et al., 2015).
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Moreover, themitochondrial targeting peptides KLA and RLA
peptides were conjugated to dodecaborates (DB) in a very recent
study (Figure 10C) (Nakase et al., 2019). It was shown that DB-
RLA reached higher boron concentrations in C6 glioblastoma
cells than BSH and the cell mortality rate was significantly higher
than for BSH after neutron irradiation, for which no cytotoxicity
was observed. The number of the conducted studies and the
variety of applied approaches demonstrate the pronounced
interest in developing suitable boron delivery agents.

CONCLUSION

Today, targeted delivery of anticancer agents remains one of the
most appealing methods for cancer treatment. Peptide receptors
are promising targets owing to their high overexpression in
various tumor types. The synthetic analogs of natural peptide
ligands are of major interest for PDCs as they possess high
target affinity and specificity, fast internalization rates, and
low immunogenicity. Previous limitations including low in
vivo stability can be overcome by peptide modification and

therapeutic cargos can be readily introduced to the peptides.
PDCs have to compete with recently developed antibody-drug
conjugates, but by now, they are rapidly catching up. More and

more conjugates containing classical chemotherapeutic agents
progress into clinical studies and in January 2018, 177Lu-DOTA-
[Tyr3]-octreotate was approved by the FDA as the first PDC
used in a therapeutic setting. This demonstrates the applicability
of peptide-drug conjugates in future cancer treatment. Notably,
the full potential of this approach is not exploited yet and PDC
of the next generations are already in the pipeline. PDCs with
intelligent linkers or non-radioactive payloads such as 10boron
might not only provide even better tumor selectivity but also
higher efficacy. Therefore, the approach of peptide-based and
receptor-mediated drug delivery will give new impulses to cancer
therapies in the future.
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