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Self-assembly of polypseudorotaxanes in high-polar organic solvents is difficult due
to remarkably weak interactions between macrocycles and axles. Reported here
is a novel metal-coordinated poly[2]pseudorotaxane constructed by pillar[5]arene,
1,4-bis(4-pyridyl pyridinium)butane, and [PdCl2(PhCN)2] in highly polar organic solvent
of dimethyl sulfoxide (DMSO). Utilizing a combination of 1H NMR, NOESY, DOSY,
DLS, SEM, and viscosity measurements, the formation of polypseudorotaxane was
shown to be dependent on the concentration of [2]pseudorotaxanes/[PdCl2(PhCN)2]
and temperature. Furthermore, a temperature-responsive supramolecular gel with
reversibly gel–sol transformation was obtained via spontaneous assembly of the
polypseudorotaxanes at high concentrations.

Keywords: pillararenes, host-guest interactions, coordination polymers, polypseudorotaxanes, supramolecular

chemistry

INTRODUCTION

Over the past 20 years, supramolecular architectures of (pseudo)rotaxanes and catenanes have
played a significant role in supramolecular topology and the fabrication ofmechanically interlocked
molecules (Loeb, 2007; Serreli et al., 2007; Hunter, 2011; Lehn, 2017). Poly(pseudo)rotaxanes
constructed by threading repeated macrocyclic rings onto linear-chain polymeric backbones have
attracted tremendous attention for their specific and unique molecular recognition structures and
diverse potential applications in various fields (Forgan et al., 2011; Du et al., 2012; Rambo et al.,
2012; Rotzler and Mayor, 2013; Guo and Liu, 2014; Ma and Tian, 2014; Hou et al., 2016; Lefebvre
et al., 2016; Kato et al., 2018; Hashidzume et al., 2019; Xiao et al., 2020).

Macrocycles are the basic building blocks in the construction of pseudorotaxanes because of
the strong binding ability between macrocyclic hosts and guests. Therefore, there is no doubt
that introducing new macrocycles and novel non-covalent interactions into polypseudorotaxanes
will expand the applications of polypseudorotaxanes. Furthermore, variations in supramolecular
structures allow them to show unique responsivity to stimuli. Pillar[n]arenes, the fifth generation
of host macrocycles, have been applied to the formation of various functional supramolecular
materials, owing to their rigid pillar architecture, easy functionalization, and outstanding binding
properties in host–guest chemistry (Cao et al., 2009; Xue et al., 2012; Li, 2014; Ogoshi et al., 2016;
Li et al., 2017; Hua et al., 2018, 2019; Chen et al., 2019; Xia et al., 2019; Shao et al., 2020; Wang et al.,
2020). To date, a variety of supramolecular poly(pseudo)rotaxanes based on pillar[n]arenes have
been investigated (Hu et al., 2012; Eichstaedt et al., 2016; Cui et al., 2017; Zeng et al., 2018; Li B.
et al., 2019; Yang et al., 2019).
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Metal coordination interactions, as a class of non-covalent
interactions possessing remarkable stability and unique
properties, can be used to effectively and conveniently generate
polypseudorotaxane (Lee et al., 2001; Liu et al., 2003; Harada
et al., 2009; Wei et al., 2014; Yan et al., 2014; Krogsgaard et al.,
2016; Tian et al., 2016; Winter and Schubert, 2016; Wu et al.,
2016; Huang et al., 2017; Wang et al., 2018 Xia et al., 2018;
Wang L. et al., 2019; Zhu et al., 2019). However, most of the
(poly)rotaxanes and (poly)pseudorotaxanes are constructed
in water, low polar organic solvents, or the crystalline state.
Highly polar organic solvent such as dimethyl sulfoxide (DMSO)
seems to be not working because, generally, the non-covalent
interactions between the wheels and axles, which greatly depend
on the sorts and polarity of solvents, are quite weak in DMSO.
Aqueous solution and low polar organic solvents can maintain
these non-covalent interactions well. But highly polar solvents
such as DMSO inhibit non-covalent bonds involving hydrogen
bonding and complementary π···π-stacking, through powerful
solvation of the interacting components.

In the past 10 years, our group focused on the host–
guest chemistry of pillararenes and biphenarenes (Li, 2014;
Ma et al., 2016; Li H. et al., 2019; Wang Y. et al., 2019;
Xu et al., 2020). The association constant, (7.4 ± 0.3)
×102 M−1, of P5A and bis(pyridinium)dicationic guest
in DMSO is surprisingly high, leading to the formation
of a [2]psdudorotaxane-type complex (Li et al., 2010).
Herein, to provide new insight into supramolecular
polypseudorotaxanes in highly polar solvents, we extended

SCHEME 1 | Schematic representation of the conversion from [2]pseudorotaxanes to linear polypseudorotaxane.

our research target to novel P5A-based polypseudorotaxane
bridging by palladium(II)-containing coordination interactions
[PdCl2(PhCN)2]. Therefore, a linear polypseudorotaxane
was constructed by [2]pseudorotaxanes making up of P5A

and bis(pyridinium)dicationic (1) via metal–coordination
interactions in DMSO (Scheme 1). It was expected that the
utilization of P5A-based [2]pseudorotaxanes and metal–
ligand coordination would be quite suitable for fabricating
polymeric assemblies in highly polar solvents due to their robust
interactions. Interestingly, the obtained polypseudorotaxane
could continuously self-assemble at higher concentrations
to form a dynamic supramolecular gel, which responded to
environmental stimuli.

MATERIALS AND METHODS

All reagents and solvents were commercially available and
used without further purification, unless otherwise noted.
Compound (P5A) (Ogoshi et al., 2008; Cao et al., 2009) and
bis(pyridinium)dicationic 1 (Joseph et al., 2003; Li et al., 2010)
were synthesized according to literature procedures. 1H NMR
and DOSY spectra were recorded on a Bruker AV500 instrument.
Viscosity measurements were carried out with Ubbelohde micro
dilution viscometers (Shanghai Liangjing Glass Instrument
Factory, 0.40mm inner diameter) at 298K in DMSO. Dynamic
light scattering (DLS) was analyzed on a Malvern Zetasizer
3000HSA at 298K. Scanning electron microscopy (SEM) images
were recorded on SHIMADZU SSX-550.
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RESULTS AND DISCUSSION

Initially, host–guest complexation of P5A and 1 was carried out
in DMSO-d6 and investigated through 1H NMR spectroscopy.
As shown in Figures 1A,E,F, the 1H NMR spectra of 1 were
recorded in the absence and presence of the P5A host, where
evident upfield chemical shifts and a broadening effect inside
the pyridine motif and methylene protons (Ha, Hb, Hα, and
Hβ) on guest 1 could be observed in the presence of P5A

owing to the shielding effects in the cavity, while no apparent
change was observed in the proton signals of Hα′ and Hβ′

on guest 1. When comparing to the corresponding signals
of the uncomplexed P5A and 1, new peaks were observed,
demonstrating a slow exchange on the NMR timescale for
this binding process. The results are in agreement with the
spatial structure that the host P5A as a wheel was fully
threaded by the axle of guest 1 and left pyridine moiety outside
its cavity, indicating the formation of a [2]pseudorotaxane
between P5A and 1 in DMSO (Scheme 1). Besides, distinct
NOE correlation signals between the protons Ha, Hb, and
Hα on 1 and H1−3 on P5A in a 2D NOESY spectrum
further confirmed the formation of the [2]pseudorotaxanes
(Supplementary Figure 1). As shown in the energy-minimized
structure of the [2]pseudorotaxanes calculated by DFT (Materials
Studio), multiple hydrogen bonding and C–H. . .π interactions
between P5A and 1 provided enough non-covalent interactions
and guaranteed the existence of [2]pseudorotaxanes in DMSO.
And the pyridine moiety on 1 was located outside the cavity of

P5A, which reserved indispensable sites for the coordination of
metal (Figure 2).

Subsequently, after dissolving 1.0 equiv of [PdCl2(PhCN)2]
into 60mM premixed solution of P5A and 1, all of the main
peaks broadened remarkably, and the signals of Hα′ and Hβ′ on
guest 1 clearly shifted downfield (Figure 1D). These observations
provided clear evidence of the complexation between pyridine
nitrogen atoms and palladium(II) ligands. Furthermore, binding
stoichiometry between [PdCl2(PhCN)2] and 1 was investigated.
To a mixture of 1 and P5A ([1]: [P5A] = 1:5) in DMSO-d6,
[PdCl2(PhCN)2] was added in different ratios and 1H NMR
spectra were recorded. As shown in Supplementary Figure 2,
upon increasing [PdCl2(PhCN)2], both the proton signals of Hα′

and Hβ′ on the pyridine rings of 1 shifted downfield significantly,
suggesting the coordination of metal to the pyridine rings. No
obvious change was observed for the signals of Hα′ and Hβ′

when the molar ratio of [1]: [PdCl2(PhCN)2] was increased to
1:1, indicating that the binding ratio between [PdCl2(PhCN)2]
and 1 was 1:1 or n:n, which fitted well with the coordination
characteristics between pyridine and [PdCl2(PhCN)2] (Kaminker
et al., 2011). The 255 nm of the hydrodynamic radius measured
by dynamic light scattering (DLS) manifested the formation of
large aggregates, which excluded the 1:1mode and confirmed that
the binding ratio was n:n. The small amount of specie in several
nanometers was deduced as unreacted [2]pseudorotaxanes
(Figure 3). These results verified the formation of metal
supramolecular polypseudorotaxane between [PdCl2(PhCN)2]
and [2]pseudorotaxane.

FIGURE 1 | 1H NMR spectra (DMSO-d6, 298K, 500 MHz) of polypseudorotaxane and building units. (A) P5A; (B) P5A + 1 + [PdCl2(PhCN)2] + PPh3 +

[PdCl2(PhCN)2]; (C) P5A + 1 + [PdCl2(PhCN)2] + PPh3; (D) P5A + 1 + [PdCl2(PhCN)2]; (E) P5A + 1, (F) 1. ([P5A] = [1] = [PdCl2(PhCN)2] = 60.0mM; *represent
uncomplexed P5A and free 1).
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FIGURE 2 | The energy-minimized structure of [2]pseudorotaxanes calculated by DFT (Materials Studio). The green dashed lines represent hydrogen bond
interactions (A–H) and C–H…π interactions (I–L). (A) Front view and (B) top view of hydrogen bond parameters: H…O distance (Å), C(O)–H…O angle (◦) A: 2.623,
122.75; B: 2.892, 169,46; C: 2.721, 147.14; D: 2.868, 144.38; E: 2.576, 144.90; F: 3.052, 148.60; G: 2.156, 161.67; H: 2.770, 101.37. (C) Top view of C–H…π

interaction parameters: C–H…π distance (Å), C–H…π angle (◦) I: 3.519, 138.60; J: 2.982, 156.63; K: 3.099, 142.02; L: 3.476, 133.24.

FIGURE 3 | Dynamic light scattering (DLS) spectrum of polypseudorotaxane
in DMSO ([PdCl2(PhCN)2]= [2]pseudorotaxanes = 60mM, 298K).

Furthermore, the competitive ligand PPh3 was employed
to bind palladium(II) ions to investigate the phase transition
between polypseudorotaxane and [2]pseudorotaxane. Upon
adding 1 equiv of PPh3 to the polypseudorotaxane, a precipitate
formed at the bottom of the mixed system solution. As shown
in Figure 1C, the 1H NMR spectrum was almost the same
with the spectrum of [2]pseudorotaxane (Figure 1E), which
indicated the formation of the more stable complex between
PPh3 and palladium(II) ions, resulting in the disassembly of
the polypseudorotaxane (Wang et al., 2010). After filtrating off
the precipitate, one equiv of [PdCl2(PhCN)2] was added to
the solution, and the peaks of protons on guest 1 returned to
their original positions (Figure 1B). This result suggested that
metallosupramolecular polypseudorotaxane was reconstructed.
Therefore, the reversible transition between polypseudorotaxane
and [2]pseudorotaxane can be realized.

Two-dimensional diffusion-ordered NMR experiments
(DOSY) were adopted to explore the polypseudorotaxane.
When the concentration of [2]pseudorotaxane/[PdCl2(PhCN)2]
increased from 0.5 to 200mM, the weight average diffusion
coefficient (D) decreased significantly from 4.59 × 10−10 to
0.88 × 10−11 m2 s−1, suggesting an increase in the average
size of the polymeric structure owing to the generation of
polypseudorotaxane from the small oligomers (Figure 4A).

Viscosity is a characteristic property index for
metallosupramolecular polypseudorotaxane. Therefore, viscosity
measurements of an equimolar mixture of [2]pseudorotaxanes
and [PdCl2(PhCN)2] were carried out in DMSO at 298K.
A double-logarithmic plot of specific viscosity vs. the initial
concentrations of [2]pseudorotaxanes is shown in Figure 4B.
The slopes of the curves in the low-concentration region
tended to 1 (1.02 for [PdCl2(PhCN)2]/[2]pseudorotaxanes),
implying that no linear polypseudorotaxane formed (Söntjens
et al., 2001; Xiao et al., 2012). When the concentrations of
the mixture of [2]pseudorotaxanes and [PdCl2(PhCN)2]
increased above the critical polymerization concentration
(CPC, approximately 51mM), a sharp increase in the
viscosity was obtained (slope = 3.02), which indicated
the formation of linear polypseudorotaxane resulting
from strong interactions between [2]pseudorotaxanes
and [PdCl2(PhCN)2] (Söntjens et al., 2001; Xiao et al.,
2012). This result is also in agreement with the above
NMR experiments.

Interestingly, when the concentration exceeded 500mM,
a cross-linked supramolecular gel was observed. That was,
upon increasing the concentration of [2]pseudorotaxane and
[PdCl2(PhCN)2], metallosupramolecular polypseudorotaxane
transformed into a supramolecular gel. Notably, the metal-
coordinated polypseudorotaxane gel was sensitive to temperature
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FIGURE 4 | (A) Concentration dependence of diffusion coefficient D (500
MHz, CDCl3, 298K) of [PdCl2(PhCN)2] and [2]pseudorotaxanes in a 1:1 molar
ratio. (B) Specific viscosity of equimolar mixtures of [2]pseudorotaxanes and
[PdCl2(PhCN)2] vs. the [PdCl2(PhCN)2]/[2]pseudorotaxanes concentration
(DMSO, 298K).

and could transform into sol reversibly by heating to 60◦C
and cooling to room temperature (25◦C) (Figure 5A). A
possible reason for the reversible gel–sol transition is reversible
entanglement among linear polypseudorotaxane and the
coordination interaction between [2]pseudorotaxane and
[PdCl2(PhCN)2]. Heating decreased that interaction and
decomposed the polypseudorotaxane, and therefore, gel
changed to sol. However, upon cooling, the intermolecular
entanglement restored, resulting in the recovery of the
supramolecular gel. The morphology of polypseudorotaxane
xerogels prepared by freeze-drying was investigated by
scanning electron microscopy (SEM). Regular long and
fine fiber structures were observed, and the diameter was
determined to be 0.2–0.3µm (Figure 5B). These observations
provided further proof that the metallosupramolecular
gel was constructed by polypseudorotaxane fibers
resulting from [2]pseudorotaxanes and bridging
palladium(II).

FIGURE 5 | (A) The reversible gel–sol transformation of the
polypseudorotaxane gel (500mM) induced by temperature. (B) SEM images of
the supramolecular xerogels.

CONCLUSIONS

In summary, a novel metallosupramolecular polypseudorotaxane
was successfully fabricated from pillar[5]arene-based
[2]pseudorotaxanes and [PdCl2(PhCN)2] in a highly polar
solvent of DMSO, which was comprehensively confirmed by
various techniques, such as 1H NMR, NOESY, DOSY, DLS,
Viscometry, and SEM. The formation of polypseudorotaxane
was shown to be dependent on the concentration of
[2]pseudorotaxanes/[PdCl2(PhCN)2] and temperature.
Moreover, the reversal transition between polypseudorotaxane
and [2]pseudorotaxanes can be realized by the successive
addition of metal linker [PdCl2(PhCN)2] and competitive
ligand PPh3. Significantly, the metal polypseudorotaxane could
transform into supramolecular gel when the concentration was
above 500mM, which showed reversibly temperature-induced
gel–sol transformation. This study provides a new insight into
the construction of macrocycles-based polypseudorotaxane in
highly polar organic solvent and benefits to the fabrication of
smart materials.
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