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A highly efficient metal-free oxidative direct C(sp3)–H functionalization of N-acyl/sulfonyl
1,2,3,4-tetrahydroisoquinolines (THIQs) with a wide range of electron-rich nucleophiles
was accomplished under mild conditions through oxidation with DDQ and subsequent
trapping of the resulting reactive and stable N-acyl/sulfonyl iminium ions. The synthetic
utility of this method was illustrated by a concise and efficient total synthesis of
(±)-benzo[a]quinolizidine (10) in 3 steps from the known N-Cbz 1,2,3,4-THIQ 4b.

Keywords: tetrahydroisoquinoline, oxidation, DDQ, electron-rich, natural products

INTRODUCTION

C(1)-Substituted 1,2,3,4-tetrahydroisoquinolines (THIQs) constitute an important family of
biologically active alkaloids, and their derivatives are found as major structural motifs in a
wide range of natural products as well as medicines such as (–)-ecteinascidin 743 (Yondelis R©,
1, anti-tumor activity) (Rinehart, 2000), (–)-emetine (2, treatment of amoebiasis and amebic
dysentery) (Akinboye and Bakare, 2011), and (–)-noscapine (3,anti-tussive agent) (Segal et al.,
1957) (Figure 1). Not surprisingly, natural and synthetic C(1)-substituted 1,2,3,4-THIQs have
attractedmuch interest from synthetic organic as well as medicinal chemists due to their interesting
structural features, in conjunction with a diverse range of biological activities (Bentley, 2001;
Scott and Williams, 2002; Chrzanowska and Rozwadowska, 2004), and the development of a
new and efficient strategy toward the construction of the C(1)-substituted 1,2,3,4-THIQs still
remains imperative.

During our investigation of the scope and limitations of using a variety of nucleophiles in the
oxidative direct C(sp3)–H functionalization of N-acyl/sulfonyl 1,2,3,4-THIQs (Kim et al., 2018),
we recognized that a variety of structurally and electronically different nucleophiles were employed
in the majority of reported examples such as styrenes (Richter et al., 2012), terminal alkynes (Su
et al., 2011; Freeman et al., 2012; Yu et al., 2013; Sun et al., 2015), nitroalkanes (Tsang and Todd,
2009; Hari and König, 2011; Su et al., 2011; Dhineshkumar et al., 2013; Nobuta et al., 2013), dialkyl
malonate (Dubs et al., 2008; Hari and König, 2011), malonitrile (Su et al., 2011), nitrile (Murahashi
et al., 2003, 2005; Yan et al., 2014), aldehydes (Xie et al., 2016), α,β-unsaturated aldehydes
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(Zhang et al., 2012), ketones (Shen et al., 2009; Sud et al., 2009;
Alagiri et al., 2012a,b; Chen et al., 2014), α,β-unsaturated γ-
butyrolactam (Ma et al., 2014), coumarins (Alagiri et al., 2012a,b;
Dhineshkumar et al., 2013), aryl boronic acids (Baslé and Li,
2008), aryl boronates (Liu et al., 2015), organotrifluoroboronates
(Xie et al., 2014), phosphonates (Hari and König, 2011; Alagiri
et al., 2012a,b; Wang et al., 2012), or difluoramide (Chen et al.,
2015). Although sporadic examples were reported on the use
of electron-rich aromatic nucleophiles such as indole (Alagiri
et al., 2011; Ghobrial et al., 2011; Su et al., 2011; Dhineshkumar
et al., 2013) and phenols (Dhineshkumar et al., 2013) in this
research area, there has been no practical and general method
for oxidative direct C(sp3)–H functionalization of 1,2,3,4-THIQs
with electron-rich nucleophiles which are labile to oxidation
such as organostannes, silyl enol ethers, or other aromatic
rings bearing electron-donating substituents. We postulated
that the use of such electron-rich nucleophiles was limited in
this area, presumably since they are rapidly oxidized and lose
their nucleophilicity under oxidative conditions. In addition,
silyl enol ethers or ketene silyl acetals are very unstable under
harsh reaction conditions such as a high temperature and long
reaction time that most transition metal-catalyzed oxidative
direct C(sp3)–H functionalization of 1,2,3,4-THIQs required to
proceed to completion. We envisaged that this problem could
be circumvented through the direct oxidation of N-protected
1,2,3,4-THIQs with a proper oxidant in the absence of moisture
first, thereby leading to a high-yielding in situ reactive and stable
iminium ion along with the consumption of the oxidant, then
subsequent trapping of the resultant iminium ion with electron-
rich nucleophiles, which will afford the corresponding N-
protected C(1)-substituted 1,2,3,4-THIQs avoiding the oxidation
of electron-rich nucleophiles (Scheme 1).

The majority of oxidative functionalization reactions widely
employed an aryl group as the activating and protecting group
for 1,2,3,4-THIQs (Li, 2009; Scheuermann, 2010; Yoo and Li,
2010; Klussmann and Sureshkumar, 2011; Yeung and Dong,
2011; Rohlmann and Mancheño, 2013), since the aryl group
on the nitrogen atom activates the C(sp3)–H bond at the
C(1)-position of 1,2,3,4-THIQs and stabilizes the resulting
iminium ion intermediate. Although Todd and co-workers
recently identified that 4-methoxyphenyl (PMP) group is a
removable protecting group in the oxidative direct C(sp3)–
H functionalization (Tsang et al., 2013), it still proves to be
problematic to remove the aryl protecting group from the
nitrogen atom in the presence of other functional groups,

SCHEME 1 | Proposed strategy for oxidative C(sp3)–H functionalization of N-acyl/sulfonyl 1,2,3,4-THIQs with electron-rich nucleophiles.

which significantly limits the synthetic utility of oxidative
functionalization of N-aryl 1,2,3,4-tetrahydroisoquinolines. For
instance, the phenyl protecting group from amines was removed
under harsh reaction conditions where only a small set of organic
compounds could be tolerated (Girard et al., 2004, 2005; Girard
and Hurvois, 2007). Therefore, use of easily removable N-acyl
or N-sulfonyl groups on the nitrogen atom of 1,2,3,4-THIQs in
place of the aryl ones would provide an attractive solution for
enhancing the scope and synthetic utility of the direct C(sp3)–
H functionalization of 1,2,3,4-THIQs through generating a more
reactive N-acyl/sulfonyl iminium ion intermediate that can react
with a broader range of nucleophiles.

Considering that 1,2,3,4-THIQ motifs are core units found
in a multitude of pharmacologically active natural products and
medicines, the development of an operationally convenient and
practical method to introduce a wide range of nucleophiles is
still a worthwhile project to pursue. Herein we wish to report
a new direct metal-free direct C(sp3)–H functionalization of
N-acyl/sulfonyl 1,2,3,4-THIQs with a variety of electron-rich
nucleophiles via 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(DDQ) oxidation under ambient conditions.

RESULTS AND DISCUSSION

Initial Attempt and Optimization of the
Reaction Conditions
At the outset of our studies, we examined the C(1)-allylation of
N-Boc 1,2,3,4-THIQ 4a (Hickin et al., 2014), which is ubiquitous
structural frameworks in numerous pharmacologically active
THIQ natural products, as a model substrate to test the viability
of the envisioned direct metal-free C(sp3)–H functionalization.
The allyl moiety is exceptionally versatile and synthetically useful
in that this functional group offers a wealth of opportunities to
further functionalization (Denmark and Fu, 2003). Although
Wang and co-workers (Yan et al., 2015) recently reported the use
of allyltrimethylsilane (Me3SiCH2CH=CH2) as the nucleophile
in direct oxidative C(1)-allylation of N-acyl/N-sulfonyl
1,2,3,4-THIQs employing 2,2,6,6-tetramethylpiperidine-1-
oxoammonium tetrafluoroborate (T+BF−4 ), success of such
a direct oxidative transformation with an electron-rich
allyltrialkylstannane was not yet to be proven, presumably,
due to their high propensity of oxidation in the presence of
oxidizing agents. It is difficult to generate N-acyl or N-sulfonyl
iminium ion intermediates with commonly used transition
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FIGURE 1 | Selected biologically active natural products embodying C(1)-substituted 1,2,3,4-tetrahydroisoquinoline (THIQ) subunit.

SCHEME 2 | DDQ-promoted C(1)-allylation of N-Boc 1,2,3,4-THIQ 4a with an electron-rich allyltributylstannane.

metal catalysts or non-metal organic oxidants (Luo et al.,
2020). Therefore, a judicious selection of oxidant is critical. We
selected 1,2-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)
(Walker and Hiebert, 1967; Fu and Harvey, 1978; Wendlandt
and Stahl, 2015) since it is inexpensive and stable organic solid
that is conveniently handled under ambient conditions, and
permits mild and more practical reaction conditions. To test the
compatibility of allyltributylstannane ((n-Bu)3SnCH2CH=CH2)
in the presence of DDQ, DDQ (1.1 equiv) was added to a mixture
of 4a (1.0 equiv) and (n-Bu)3SnCH2CH=CH2 (2.5 equiv) in the

presence of 4ÅMS in DCM, and the reaction mixture was stirred
for 1 h at ambient temperature (Scheme 2). However, the desired
C(1)-allylated N-Boc 1,2,3,4-THIQ (±)-5a was not obtained, but
most of 4a was recovered, presumably due to faster oxidation
of electron-rich nucleophile (n-Bu)3SnCH2CH=CH2 than 4a.
Pleasingly, treatment of 4awith DDQ (1.1 equiv) as an oxidant in
the presence of 4Å MS in DCM at room temperature for 30min,
thereby leading in situ high yield of the reactive N-Boc iminium
ion along with consumption of the oxidant. The subsequent
addition of (n-Bu)3SnCH2CH=CH2 (2.5 equiv) afforded the
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desired (±)–5a in excellent yield (98%). Molecular sieves (4Å)
was added to eliminate moisture that might be present in the
reaction mixture and the reactivity of the N-Boc iminium
ion lasted for several hours at room temperature under argon
atmosphere. To the best of our knowledge, such aDDQ-mediated
direct functionalization of C(sp3)–H functionalization of N-Boc
1,2,3,4-THIQ with electron-rich (n-Bu)3SnCH2CH=CH2 as a
nucleophile has not been reported yet.

Among oxidants tested in this study, ceric ammonium nitrate
(CAN) proved to be an effective oxidant albeit with lower
yield (62%) (entry 5, Table 1) compared with DDQ. However,
other oxidants including (diacetoxyiodo)benzene (PhI(OAc)2),
1,4-benzoquinone (1,4-BQ), TBHP (tert-butyl hydroperoxide),
and silver acetate (AgOAc) did not promote the oxidative
allylation reaction, and only unreacted starting material 4a

was recovered (entries 1–4, Table 1). Solvent screening studies
revealed that most organic solvents tested were effective (entries
6–14, Table 1). When EtOAc or THF was used, the desired
product could be obtained in excellent yields (90 and 92%,
respectively) (entries 6–7, Table 1). Also, highly polar solvents
such as acetone, DMF, and MeCN resulted in the desired
product (±)–5a in high yields (70–86%) (entries 9–11, Table 1).
Allyltriphenylstannane (Ph3SnCH2CH=CH2) also proved to
be an effective nucleophile (entries 12, Table 1). However,
low yield (17%) was obtained when allyltrimethylsilane
(Me3SiCH2CH=CH2) (entries 13, Table 1) was used as
an allyl nucleophile.

Scope and Limitations of the Reaction
With optimized reaction conditions in hand, the scope
of the oxidative direct C(sp3)–H functionalization was
investigated with a diverse range of electron-rich nucleophiles
(Scheme 3). The reactions of methallyltributylstannane [(n-
Bu)3SnCH(Me)CH=CH2] and dimethyltributylstannane
[(n-Bu)3SnCH2CH=CMe2] provided the corresponding
C(1)-allylated products (±)–5b and (±)–5c in 88% and
64% yields, respectively. Also, allenyltributylstannane [(n-
Bu)3SnC=C=CH2] provided the desired C(1)-propargylated
product (±)–5d in 77% yield. Although a variety of ketones
have been widely employed as pro-nucleophiles in cross
dehydrogenative coupling (CDC) reactions of N-aryl 1,2,3,4-
THIQs, the use of electron-rich silyl enol ethers (Scott et al.,
2014) or silyl ketene acetals have rarely been reported. A
diverse range of silyl enol ethers and a silyl ketene acetal have
been tested in order to expand the scope and utility of this
oxidative DDQ-promoted direct C(sp3)–H functionalization
of N-acyl 1,2,3,4-THIQs. All of the silyl enol ethers tested so
far worked rather well with 4a to provide Mannich products
(±)–5e-j in isolated yield ranging from 63 to 91%. The reaction
could also be readily expanded to oxidative Friedel–Crafts-
type reaction. Under the optimal reaction condition, 4a with
3,5-dimethoxyphenol, 3-dimethylaminophenol and 1-naphthol
afforded Friedel–Crafts products (±)-5k (75%), (±)–5l (70%),
and (±)–5n (76%) in good yields. In these examples, 4a was
coupled to phenols selectively at the ortho-position, while

TABLE 1 | Optimization of oxidative C(1)-allylation of N-Boc 1,2,3,4-THIQ 4a with an electron-rich allylating reagent.

Entry Oxidant R Solvent Temp. Yield (%)

1 PhI(OAc)2 (n-Bu)3Sn MeCN rt 0

2 1,4-BQa (n-Bu)3Sn MeCN rt 0

3 TBHPb (n-Bu)3Sn DCM rt 0

4 AgOAc (n-Bu)3Sn DCM rt 0

5 CANc (n-Bu)3Sn MeCN rt 62

6 DDQ (n-Bu)3Sn EtOAc rt 90

7 DDQ (n-Bu)3Sn THF rt 92

8 DDQ (n-Bu)3Sn DCM rt 98 (80)d

9 DDQ (n-Bu)3Sn Acetone rt 86

10 DDQ (n-Bu)3Sn DMF rt 70

11 DDQ (n-Bu)3Sn MeCN rt 79

12 DDQ Ph3Sn DCM rt 90

13 DDQ Me3Si DCM rt 17

All reactions were conducted at 0.1M concentration with 0.3 mmol of N-Boc 1,2,3,4-THIQ 4a (1.0 equiv), 0.33 mmol of oxidant (1.1 equiv) in the presence of 120mg of 4Å molecular
sieves (MS) at ambient temperature under argon atmosphere. After 30min, 0.75 mmol of allyl nucleophiles (2.5 equiv) were added to the reaction mixture, and the reaction mixture was
stirred for 1 h. Yield was based on isolated product after purification by chromatography. a1,4-benzoquinone; btert-butyl hydroperoxide; cceric ammonium nitrate; dyield in the absence
of 4Å molecular sieves (MS).
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SCHEME 3 | Reaction scope of N-Boc 1,2,3,4-THIQ 4a and electron-rich nucleophiles. All reactions were conducted at 0.1M concentration with 0.3 mmol of N-Boc
1,2,3,4-THIQ 4a (1.0 equiv), 0.33 mmol of DDQ (1.1 equiv) in the presence of 120mg of 4Å MS at ambient temperature under argon atmosphere. After 30min, 0.75
mmol of nucleophiles were added to the reaction mixture, and the reaction mixture was stirred for 1 h. Yield was based on isolated product after purification
by chromatography.
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the phenolic-OH is unaffected. Furthermore, we found that
N, N-diethylaniline, indole, and 2-methyl furan are good
nucleophiles for this oxidative DDQ-promoted direct C(sp3)–H
functionalization to afford the corresponding Friedel-Crafts
products (±)–5m (78%), (±)–5o (84%), and (±)–5p (55%). To
the best of our knowledge, this is the first report using electron-
rich nucleophiles in oxidative direct C(sp3)–H functionalization
of a N-acyl 1,2,3,4-THIQ.

To make this oxidative direct C(sp3)–H functionalization
synthetically useful, we explored the use of a broad range
of N-acyl/sulfonyl THIQs since installation and liberation
of their amine protecting groups are easy and operationally
convenient (Scheme 4). The C(1)-allylation reaction of benzyl-
(4b), allyl- (4c), methyl- (4d), and ethyl (4e) carbamates
under DDQ-promoted oxidative reaction conditions all provided
the corresponding C(1)-allylated products (±)–6a–d in good
to excellent yields (60–84%). Furthermore, reactions of N-
sulfonamides such as N-Ts (4h), N-Ms (4i), N-Ns (4j) generated

the corresponding C(1)-allylated products (±)–6g–i in high
yields (72–89%). However, amides such as acetamide (4f) and
benzamide (4g) proved to be ineffective substrates to afford
the corresponding C(1)-allylated products (±)–6e and (±)–6f
in low yield (48 and 37%, respectively) under the optimized
reaction conditions.

We further investigated the substrate scope with respect
to electronically diverse N-Boc 1,2,3,4-THIQs (Scheme 5). As
expected, direct C(1)-allylation of N-Boc 1,2,3,4-THIQs 4k–m
bearing electron-donating substituents on the phenyl moiety
led to the corresponding C(1)-allylated products (±)–7a–7c in
high yields (79–98%). Notably, N-Boc 1,2,3,4-THIQs bearing
electron-withdrawing substituents such as fluorine (4n) and
bromine (4o) on the phenyl moiety were also tolerated to
furnish the corresponding C(1)-allylated products (±)–7d and
(±)–7e in high yield (89 and 85%, respectively), which are
useful for further diversifications. Also, N-Boc 1,2,3,4-THIQ
4p with no substituents on the phenyl moiety was found

SCHEME 4 | Reaction scope of N-acyl/sulfonyl 1,2,3,4-THIQs 4b–j and allyltributylstannane. All reactions were conducted at 0.1M concentration with 0.3 mmol of
N-acyl/sulfonyl 1,2,3,4-THIQs 4b–j (1.0 equiv), 0.33 mmol of DDQ (1.1 equiv) in the presence of 120mg of 4Å MS at ambient temperature under argon atmosphere.
After 30min, 0.75 mmol of allyltributylstannane (2.5 equiv) was added to the reaction mixture, and the reaction mixture was stirred for 1 h. Yield was based on isolated
product after purification by chromatography.
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SCHEME 5 | Reaction scope of electronically diverse N-Boc 1,2,3,4-THIQs 4k–p and allyltributylstannane. All reactions were conducted at 0.1M concentration with
0.3 mmol of N-Boc 1,2,3,4-THIQs 4k–p (1.0 equiv), 0.33 mmol of DDQ (1.1 equiv) in the presence of 120mg of 4Å MS at ambient temperature under argon
atmosphere. After 30min, 0.75 mmol of allyltributylstannane (2.5 equiv) was added to the reaction mixture, and the reaction mixture was stirred for 1 h. Yield was
based on isolated product after purification by chromatography.

TABLE 2 | Liberation of C(1)-allylated 1,2,3,4-THIQ (±)–8 from (±)–5a, 6c, and 6h.

Entry Reactant PG Reaction conditions Yield (%)

1 5a CO2t-Bu (Boc) TFA, DCM, rt, 2 h 88

2 6c CO2Me KOH, H2O, ethylene glycol, reflux, 12 h 70

3 6h SO2(o-NO2)C6H4 (Ns) PhSH, K2CO3, DMF, rt, 18 h 88

to be effective to afford the desired C(1)-allylated product
(±)–7r in 92% yield.

With the desired N-acyl/sulfonyl C(1)-substituted 1,2,3,4-
THIQs in hand, a variety of means for liberation of the C(1)-
allylated 1,2,3,4-THIQs were investigated (Table 2). The tert-
butoxycarbonyl (Boc) group of (±)–5a was cleanly removed
under acidic (CF3CO2H) conditions to give free amine (±)–8
in high yield (88%). Alkaline hydrolysis of the methoxycarbonyl
group in (±)–6c with KOH by heating at reflux in ethylene
glycol furnished free amine (±)–8 in good yield (70%).
Also, removal of the 2-nitrobenzenesulfonyl (Ns) group of
(±)–6h proceeded smoothly by employing the condition
(PhSH and K2CO3) reported by Fukuyama and co-worker

(Fukuyama et al., 1995) to afford free amine (±)–8 in
high yield (88%).

Proposed Reaction Mechanism
In order to gain some mechanistic insight into the reaction
mechanism, the radical inhibition experiments were conducted.
When 2,6-di-tert-butyl-4-methylphenol (BHT) (1.1 equiv)
was added to the reaction mixture of N-Boc 1,2,3,4-
tetrahydroisoquinoline 4a (1.0 equiv) and DDQ (1.1 equiv),
the yield of the desired product (±)–5a was dramatically
decreased from 98 to 20% and 79% of the starting material 4a
was recovered. This result suggests that a radical cation species
might be involved in the reaction. On the basis of the radical
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inhibition experiments and literature precedents (Muramatsu
et al., 2013; Chen et al., 2015), a plausible reaction mechanism for
the DDQ-promoted oxidative direct C(sp3)–H functionalization
of N-acyl/sulfonyl 1,2,3,4-THIQ 4 was proposed (Scheme 6).
N-Acyl/sulfonyl 1,2,3,4-THIQ 4 undergoes a single electron
transfer fromN-acyl/sulfonyl 1,2,3,4-THIQ 4 to DDQ to generate
a radical cation (A). The DDQ radical oxygen then abstracts a
H-atom from A, leading to a stable and reactive N-acyl/sulfonyl
iminium ion (B). Finally, the trapping the iminium ion (B) with
a diverse range of electron-rich nucleophiles afforded the desired
N-acyl/sulfonyl C(1)-substituted THIQs (±)–5–7.

A Concise and Efficient 3-Step Total
Synthesis of (±)-Benzo[a]quinolizidine
We next turned on our attention to a short and efficient
total synthesis of (±)-benzo[a]quinolizidine (10) to prove the
synthetic utility of this method (Scheme 7). The oxidative
direct C(sp3)–H functionalization of the readily available N-Cbz
1,2,3,4-THIQ 4b (Dunetz et al., 2005; Kim et al., 2018) with
CH2 =C(OTMS)H afforded aldehyde, which underwent Wittig
olefination with a two carbon stabilized ylide Ph3P=CHCO2Me
to furnish α,β-unsaturated ester (±)–8 in 79% yield in a one-
pot fashion, exhibiting high stereoselectivity (E/Z = 95:5), that is
none the less to be rendered in consequential at this stage because
the planned hydrogenation/deprotection/ring-closure reaction
sequence was envisaged to provide a single product regardless
of the olefin geometry. The hydrogenation of the olefin moiety,
simultaneous deprotection of the Cbz group on the nitrogen
atom of the THIQ framework and ring closure was achieved
smoothly by hydrogenation (1 atm) over 10% Pd/C in EtOAc to
provide the desired lactam (±)–9 in 85%. Reduction of lactam

(±)–9 with LiAlH4 in THF according to Reddy and co-workers
(Reddy et al., 2013) afforded (±)-benzo[a]quinolizidine (10) in
77%, whose spectral data were in good agreement with those
reported in the literature (Williams et al., 2005; Szawkalo et al.,
2007; Reddy et al., 2013; Talk et al., 2016).

CONCLUSIONS

In conclusion,N-acyl/sulfonyl 1,2,3,4-THIQ iminium complexes
in situ generated by DDQ were found to be very effective and
compatible with a wide range of electron-rich nucleophiles.
New and useful nucleophiles such as silyl enol ethers and silyl
ketene acetals are employed to affordMannich-type products and
use of phenols, heteroaromatics furnished Friedel–Crafts-type
products. Further studies are ongoing to expand the synthetic
utility of this products to natural product or synthetically
useful compounds.

MATERIALS AND METHODS

General Information
General Methods

Except as otherwise indicated, reactions were carried out under
argon atmosphere in flame- or oven-dried glassware. In aqueous
work-up, all organic solutions were dried over sodium sulfate
(Na2SO4) or magnesium sulfate (MgSO4), and filtered prior to
rotary evaporation at water aspirator pressure. Reactions were
monitored by thin layer chromatography (TLC) with 0.25-mm
E. Merck pre-coated silica gel plates (Kieselgel 60F254, Merck).
Spots were detected by viewing under a UV light, colorizing
with charring after dipping in p-anisaldehyde solution with

SCHEME 6 | Proposed reaction mechanism for DDQ-promoted C(1)-allylation of N-acyl/sulfonyl 1,2,3,4-THIQs.
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SCHEME 7 | A concise and efficient 3-step total synthesis of (±)-benzo[a]quinolizidine (11).

acetic acid and sulfuric acid and ethanol, or ceric ammonium
molybdate solution with sulfuric acid and ethanol. Silica gel
for flash chromatography (particle size 0.040–0.063mm) was
supplied by E. Merck. Yields refer to chromatographically and
spectroscopically pure compounds unless otherwise noted.

Materials

All commercial reagents and solvents were purchased from
Sigma Aldrich Co. or Tokyo Chemical Industry (TCI) and
used as received with the following exceptions. All solvents
were freshly purified and dried by standard techniques
just before use. Tetrahydrofuran (THF) was distilled from
sodium/benzophenone. Dichloromethane (CH2Cl2), acetonitrile
(MeCN), N, N-dimethylformamide (Me2NC(=O)H), benzene
(C6H6) and toluene (C7H8) were distilled from calcium hydride
(CaH2). Methanol (MeOH) was distilled from magnesium
sulfate (MgSO4).

Instrumentation
1H and 13C spectra were recorded on Varian Mercury-400BB
(400 MHz). Chemical shifts are reported as δ value relative to
internal chloroform (δ 7.26 for 1H and δ 77.0 for 13C). Data are
represented as follows: chemical shift, multiplicity (s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet, br =

broad), coupling constant in Hz, and integration. High resolution
mass spectra (HRMS) were recorded on JEOL JMS-700 (FAB or
EI) mass spectrometer. High resolution values are calculated to
four decimal places from the molecular formula, all found values
being within a tolerance of 5 ppm.

Synthesis of N-Protected 1-Substituted-
1,2,3,4-Tetrahydroisoquinolines
To a stirred solution of N-protected 1,2,3,4-
tetrahydroisoquinoline (0.30 mmol) in DCM (3.0mL, 0.1M) was
added 4Å molecular sieves (120mg) at room temperature. After
the reaction mixture was stirred for 15min at room temperature,
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (0.45 mmol,
1.1 equiv) was added portionwise and the reaction mixture was
stirred at room temperature for 30min under argon atmosphere.
Nucleophile (0.75 mmol, 2.5 equiv) was added dropwise or
portionwise at room temperature. The reaction mixture was
stirred at room temperature for 1 h under argon atmosphere,
then quenched with saturated NaHCO3 solution (10mL) and
the layers were separated. The aqueous layer was extracted
with DCM (2 × 25mL), and the combined organic layer was
washed with brine (5mL), dried over Na2SO4, filtered, and
concentrated in vacuo. Purification of the residue by flash
column chromatography on silica gel, using hexanes/EtOAc
as eluent, provided the corresponding N-protected
1-substituted-1,2,3,4-tetrahydroisoquinoline.

(±)-tert-Butyl 1-allyl-6,7-dimethoxy-3,4-
dihydroisoquinoline-2(1H)-carboxylate (5a). Yield 98% as
a colorless oil. 1H NMR (400 MHz, CDCl3, a 1.5:1 mixture of
amide rotamers at room temperature) δ 6.60 (s, 2H), 5.80–5.90
(m, 1H), 5.16 (brs, 0.4H), 5.01–5.07 (m, 2.6H), 4.20–4.23 (m,
0.6H), 3.97–4.02 (m, 0.4H), 3.86 (s, 1.2H), 3.84 (1.8H), 3.23–3.28
(m, 0.4H), 3.12–3.18 (m, 0.6H), 2.82–2.90 (m, 1H), 2.64 (t, J =
3.6Hz, 0.6H), 2.60 (t, J = 3.6Hz, 0.4H), 2.52 (t, J = 7.2Hz, 2H),
1.47 (s, 9H); 13C NMR (100 MHz, CDCl3, a rotameric mixture,
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resonances for minor rotamer are enclosed in parenthesis)
δ 153.9, (147.0), 146.7, 134.6, (128.7), 128.4, 125.8, (125.5),
116.6, (116.2), 111.0, (110.9), (109.7), 109.4, 79.1, (78.8), 55.5,
(55.4), 53.7, (52.8), 41.1, (40.8), (38.0), 36.3, 28.1, (27.9), 27.8;
IR (Film) 2975, 1691, 1519, 1422, 1259, 1165 (cm−1); HRMS
(EI-magnetic sector)m/z: {M}+ Calcd for C19H27NO4: 333.1940;
Found 333.1936.

(±)-tert-Butyl 6,7-dimethoxy-1-(2-methylallyl)-3,4-
dihydroisoquinoline-2(1H)-carboxylate (5b). Yield 88% as
a colorless oil. 1H NMR (400 MHz, CDCl3, a 1.5:1 mixture of
amide rotamers at room temperature) δ 6.56–6.60 (m, 2H),
5.27 (dd, J = 8.8, 5.6Hz, 0.4H), 5.07 (dd, J = 8.8, 5.2Hz, 0.6H),
4.82 (s, 0.6H), 4.78 (s, 0.4H), 4.68 (s, 1H), 4.24 (dd, J = 13.4,
3.8Hz, 0.6H), 4.00 (dd, J = 13.6, 3.2Hz), 3.86 (s, 1.2H), 3.85 (s,
1.8H), 3.13–3.29 (m, 1H), 2.79–2.93 (m, 1H), 2.60–2.64 (m, 1H),
2.49–2.55 (m, 1H), 2.28–2.39 (m, 1H), 1.89 (s, 3H), 1.47 (s, 5.4H),
1.45 (s, 3.6H); 13C NMR (100 MHz, CDCl3, a rotameric mixture,
resonances for minor rotamer are enclosed in parenthesis) δ

154.5, 147.6, (147.4), 147.0, (142.7), 141.8, (129.9), 129.3, 126.3,
(125.9), 114.0, 113.2, 111.5, (111.3), (110.2), 110.1, 79.8, (79.3),
(56.1), 55.9, 52.9, (52.1), 45.3, (45.1), (38.0), 36.5, 28.5, (28.3),
28.2, 22.9, (22.6); IR (Film) 2971, 1684, 1516, 1419, 1240, 1161
(cm−1); HRMS (FAB-magnetic sector) m/z: {M+H}+ Calcd for
C20H30NO4: 348.2175; Found 348.2183.

(±)-tert-Butyl 6,7-dimethoxy-1-(2-methylbut-3-en-2-yl)-3,4-
dihydroisoquinoline-2(1H)-carboxylate (5c). Yield 64% as a
colorless oil. 1H NMR (400 MHz, CDCl3, a 1:1 mixture of amide
rotamers at room temperature) δ 6.74 (s, 0.5H), 6.72 (s, 0.5H),
6.60 (s, 0.5H), 6.58 (s, 0.5H), 5.87 (dd, J = 17.6, 11.2Hz, 0.5H),
5.83 (dd, J = 16.4, 10.8Hz, 0.5H), 5.08 (s, 0.5H), 4.97 (s, 0.5H),
4.91–4.95 (m, 2H), 4.18 (ddd, J = 12.8, 7.6, 7.6Hz, 0.5H), 3.85–
3.92 (m, 0.5H), 3.86 (s, 1.5H), 3.85 (s, 1.5H), 3.84 (s, 1.5H), 3.82
(s, 1.5H), 3.52 (ddd, J = 14.8, 7.2, 7.2Hz, 0.5H), 3.39 (ddd, J =
15.6, 9.6, 6.0Hz, 0.5H), 2.69–2.88 (m, 2H), 1.49 (s, 4.5H), 1.46 (s,
4.5H), 1.14 (s, 3H), 1.11 (s, 1.5H), 1.08 (s, 1.5H); 13C NMR (100
MHz, CDCl3, a rotameric mixture, resonances for minor rotamer
are enclosed in parenthesis) δ 155.5, (154.9), (147.7), 147.5,
(147.2), 147.0, 146.2, 127.2, (127.0), 126.8, 112.0, 111.5, (111.34),
111.25, (111.1), 79.9, (79.4), (61.7), 61.0, 56.1, (56.0), 55.9, 43.8,
39.6, (38.0), (28.7), 28.6, (27.7), 27.6, 27.5, (27.3), (24.2), 24.0; IR
(Film) 2970, 1684, 1517, 1364, 1249, 1160 (cm−1); HRMS (FAB-
magnetic sector)m/z: {M+H}+ Calcd for C21H32NO4: 362.2331;
Found 362.2331.

(±)-tert-Butyl 6,7-dimethoxy-1-(prop-2-yn-1-yl)-3,4-
dihydroisoquinoline-2(1H)-carboxylate (5d). Yield 77% as a
colorless oil. 1H NMR (400 MHz, CDCl3, a 1.4:1 mixture of
amide rotamers at room temperature) δ 6.76 (s, 1H), 6.61 (s,
1H), 5.25 (t, J = 6.4Hz, 0.42H), 5.13 (t, J = 6.4Hz, 0.58H),
4.14–4.23 (m, 0.58H), 3.90–3.97 (m, 0.42H), 3.87 (s, 2.52H), 3.86
(s, 3.48H), 3.40–3.46 (m, 0.42H), 3.23–3.30 (m, 0.58H), 2.65–2.90
(m, 4H), 2.01 (s, 0.58H), 1.98 (s, 0.42H), 1.51 (s, 5.22H), 1.49
(s, 3.78H); 13C NMR (100 MHz, CDCl3, a rotameric mixture,
resonances for minor rotamer are enclosed in parenthesis) δ

(154.4), 154.2, 147.7, 147.0, (127.6), 127.4, 126.5, (126.3), 111.2,
(111.0), (110.2), 109.9, 81.4, 80.0, (79.7), 70.7, (70.6), 55.9,
55.8, 53.1, (52.4), (39.1), 37.3, 28.5, (28.4), 28.2, 26.6, (26.2);
IR (Film) 3287, 2974, 2118, 1690, 1519, 1259 (cm−1); HRMS

(FAB-magnetic sector) m/z: {M}+ Calcd for C19H25NO4:
331.1784; Found 331.1779.

(±)-tert-Butyl 6,7-dimethoxy-1-(2-oxoethyl)-3,4-
dihydroisoquinoline-2(1H)-carboxylate (5e). Yield 87% as a
white foam. 1H NMR (400 MHz, CDCl3, a 1:1 mixture of amide
rotamers at room temperature) δ 9.84 (t, J = 3.6Hz, 1H), 6.62
(s, 3H), 6.60 (s, 3H), 5.61–5.71 (m, 0.5H), 5.46–5.54 (m, 0.5H),
4.15–4.30 (m, 1H), 3.94–4.02 (m, 0.5H), 3.85 (s, 3H), 3.10–3.40
(m, 1H), 2.76–2.96 (m, 3H), 2.68 (t, J = 3.6Hz, 0.5H), 2.64 (t,
J = 3.6Hz, 0.5H), 1.47 (s, 9H); 13C NMR (100 MHz, CDCl3, a
rotameric mixture, resonances for minor rotamer are enclosed
in parenthesis) δ 199.5, 154.0, (153.2), 147.3, 147.1, 127.3, 125.9,
(125.8), 111.0, 109.0, 80.1, (79.6), 55.5, 55.4, 50.8, (49.5), 48.9,
38.3, (36.9), 28.0, (27.7), 27.6; IR (Film): 2975, 1722, 1689, 1519,
1419, 1258, 1163 (cm−1); HRMS (EI-magnetic sector)m/z: {M}+

Calcd for C18H25NO5: 335.1733; Found 335.1725.
(±)-tert-Butyl 6,7-dimethoxy-1-(2-oxopropyl)-3,4-

dihydroisoquinoline-2(1H)-carboxylate (5f). Yield 63% as a
colorless oil. 1H NMR (400 MHz, CDCl3, a 1.2:1 mixture of
amide rotamers at room temperature) δ 6.68 (s, 0.45H), 6.65 (s,
0.55H), 5.61 (s, 0.45H), 5.48 (s, 0.55H), 4.14–4.18 (m, 0.45H),
3.88–3.94 (m, 0.55H), 3.85 (s, 3H), 3.29–3.34 (m, 0.45H), 3.18–
3.23 (m, 0.55H), 2.75–2.94 (m, 3H), 2.67 (t, J = 4.0Hz, 0.55H),
2.63 (t, J = 4.0Hz, 0.45H), 2.25 (s, 1.35H), 2.19 (s, 1.65H),
1.47 (s, 9H); 13C NMR (100 MHz, CDCl3, a rotameric mixture,
resonances for minor rotamer are enclosed in parenthesis) δ

(206.3), 206.0, (154.4), 153.9, 147.5, 147.3, 128.5, 126.0, (125.9),
111.2, (109.7), 109.3, 80.3, (79.8), 55.9, 55.8, 51.2, 51.1, (50.5),
(38.8), 37.5, 31.2, (30.2), 28.4, (28.1), 27.9; IR (Film): 2976, 1689,
1519, 1418, 1222, 1164 (cm−1); HRMS (EI-magnetic sector)m/z:
{M}+ Calcd for C19H27NO5: 349.1889; Found 349.1893.

(±)-tert-Butyl 1-(3,3-dimethyl-2-oxobutyl)-6,7-dimethoxy-
3,4-dihydroisoquinoline-2(1H)-carboxylate (5g). Yield 63% as
a white foam. 1H NMR (400 MHz, CDCl3, a 1.5:1 mixture of
amide rotamers at room temperature) δ 6.68 (s, 0.4H), 6.64 (s,
0.6H), 6.59 (s, 1H), 5.62 (t, J = 6.4Hz, 1H), 4.08–4.12 (m, 0.6H),
3.84 (s, 3H), 3.81 (s, 3H), 3.81–3.84 (m, 0.4H), 3.34–3.43 (m,
0.4H), 3.18–3.28 (m, 0.6H), 2.65–3.03 (m, 4H), 1.47 (s, 9H),
1.07 (s, 9H); 13C NMR (100 MHz, CDCl3, a rotameric mixture,
resonances for minor rotamer are enclosed in parenthesis) δ

212.3, 154.1, 147.4, 147.2, (129.5), 129.3, 126.0, 111.1, (110.0),
109.5, 80.0, (79.5), 55.8, 50.8, (50.5), 44.9, 44.3, (44.2), (39.6),
38.1, 28.4, 28.1, 26.0; IR (Neat): 2974, 1691, 1517, 1364, 1257,
1220 (cm−1); HRMS (EI-magnetic sector) m/z: {M}+ Calcd for
C22H33NO5: 391.2359; Found 391.2366.

(±)-tert-Butyl 6,7-dimethoxy-1-(2-oxo-2-phenylethyl)-3,4-
dihydroisoquinoline-2(1H)-carboxylate (5h). Yield 76% as a
white foam. 1H NMR (400 MHz, CDCl3, a 1:1 mixture of amide
rotamers at room temperature) δ 7.95 (d, J = 7.2Hz, 2H),
7.52–7.60 (m, 1H), 7.47 (t, J = 7.2Hz, 2H), 6.69 (s, 0.75H),
6.64 (s, 0.25H), 6.61 (s, 1H), 5.69–5.74 (m, 0.25H), 5.66 (dd, J
= 6.0, 5.6Hz, 0.75H), 4.19–4.22 (m, 0.5H), 3.85 (s, 3H), 3.80
(s, 2.25H), 3.75 (s, 0.75H), 3.45–3.50 (m, 1.5H), 3.22–3.34 (m,
2H), 2.69–2.93 (m, 2H), 1.41 (s, 2.25H), 1.30 (s, 6.75H); 13C
NMR (100 MHz, CDCl3, a rotameric mixture, resonances for
minor rotamer are enclosed in parenthesis) δ 197.2, (154.0),
153.6, 147.5, 147.1, (146.9), (136.8), 136.6, 132.8, (132.5), 128.5,
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128.3, 128.2, 127.9, 126.0, 111.2, (111.0), (109.9), 109.5, 79.8,
(79.14), 55.6, 51.8, (51.2), 46.1, (45.8), (39.3), 37.4, 28.2, 27.9;
IR (Film): 2976, 1690, 1518, 1418, 1256, 1164 (cm−1); HRMS
(EI-magnetic sector)m/z: {M}+ Calcd for C24H29NO5: 411.2046;
Found 411.2052.

(±)-(E)-tert-Butyl 6,7-dimethoxy-1-(4-methoxy-2-oxobut-3-
en-1-yl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (5i). Yield
91% as a colorless oil. 1H NMR (400 MHz, CDCl3, a 2:1 mixture
of amide rotamers at room temperature) δ 7.65 (d, J = 12.4Hz,
0.33H), 7.57 (d, J = 12.8Hz, 0.67H), 6.67 (s, 1H), 6.59 (s, 1H),
5.70 (d, J = 12.4Hz, 0.33H), 5.59 (d, J = 12.8Hz, 0.67H), 5.50–
5.53 (m, 1H), 4.19–4.22 (m, 0.33H), 3.85–3.90 (m, 0.67H), 3.84
(s, 3H), 3.83 (s, 3H), 3.70 (s, 3H), 3.30–3.40 (m, 0.33H), 3.17–
3.22 (m, 0.67H), 2.97 (d, J = 7.2Hz, 0.33H), 2.93 (d, J = 6.8Hz,
0.67H), 2.72–2.88 (m, 2H), 2.68 (t, J = 3.6Hz, 0.67H), 2.64 (t,
J = 3.6Hz, 0.67H), 1.45 (s, 9H); 13C NMR (100 MHz, CDCl3,
a rotameric mixture, resonances for minor rotamer are enclosed
in parenthesis) δ 196.6, 162.9, 154.2, 147.7, 147.4, 128.9, 126.2,
111.4, (110.2) 109.9, 106.3, (105.7), 80.3 (79.8), 57.7, 56.1, (56.0),
51.8, (51.3), 49.0, (39.2), 37.6, 28.5, 28.3; IR (Film): 2975, 1689,
1518, 1419, 1257, 1166 (cm−1); HRMS (EI-magnetic sector)m/z:
{M}+ Calcd for C21H29NO6: 391.1995; Found 391.1992.

(±)-tert-Butyl 6,7-dimethoxy-1-(2-methoxy-2-oxoethyl)-3,4-
dihydroisoquinoline-2(1H)-carboxylate (5j). Yield 80% as a
white foam. 1HNMR (400MHz, CDCl3, a 1.5:1 mixture of amide
rotamers at room temperature) δ 6.66 (s, 0.4H), 6.65 (s, 0.6H),
6.60 (s, 0.6H), 6.59 (s, 0.4H), 5.54 (t, J = 6.0Hz, 0.4H), 5.46 (t, J
= 6.4Hz, 0.6H), 4.14–4.21 (m, 0.6H), 3.92–3.99 (m, 0.4H), 3.85
(s, 6H), 3.70 (s, 1.8H), 3.68 (s, 1.2H), 3.30–3.35 (m, 0.4H), 3.16–
3.23 (m, 0.6H), 2.63–2.92 (5H), 1.48 (s, 9H); 13CNMR (100MHz,
CDCl3, a rotameric mixture, resonances for minor rotamer are
enclosed in parenthesis) δ 170.84, (170.77), (154.0), 153.8, 147.6,
147.2, (128.0), 127.8, 126.1, (125.9), 111.2, (111.1), (109.5), 109.2,
79.9, (79.5), (55.78), 55.75, 55.68, (55.64), 51.7, (51.6), 51.5, 51.1,
41.9, (41.4), (38.5), 37.0, 28.2, 28.0, (27.7); IR (Film): 2971, 1739,
1593, 1517, 1418, 1254, 1166 (cm−1); HRMS (EI-magnetic sector)
m/z: {M}+ Calcd for C19H27NO6: 365.1838; Found 365.1836.

(±)-tert-Butyl 1-(2-hydroxy-4,6-dimethoxyphenyl)-6,7-
dimethoxy-3,4-dihydroisoquinoline-2(1H)-carboxylate (5k).
Yield 75% as a white foam. 1H NMR (400 MHz, CDCl3) δ 10.19
(brs, 1H), 6.60 (s, 1H), 6.29 (s, 1H), 6.24 (d, J = 2.4Hz, 1H),
6.15 (s, 1H), 5.94 (d, J = 2.4Hz, 1H), 4.12 (dd, J = 12.8, 5.6Hz,
1H), 3.86 (s, 3H), 3.78 (s, 3H), 3.64 (s, 3H), 3.53 (dt, J = 12.8,
3.2Hz, 1H), 3.21 (s, 3H), 2.91 (dt, J = 15.6, 5.6Hz, 1H), 2.67
(dd, J = 15.6, 2.8Hz, 1H), 1.46 (s, 9H); 13C NMR (100 MHz,
CDCl3, a rotameric mixture, resonances for minor rotamer are
enclosed in parenthesis) δ 160.7, 159.4, 158.0, 156.3, 147.0, 146.6,
129.0, 125.3, 111.2, 110.6, 108.6, 95.2, 92.8, 81.0, (55.83), 55.76,
55.70, (55.3), 55.2, 55.0, (54.9), 50.1, 39.0, 28.9, 28.3; IR (Film):
3148, 2936, 1644, 1615, 1518, 1428, 1255, 1148 (cm−1); HRMS
(EI-magnetic sector)m/z: {M}+ Calcd for C24H31NO7: 445.2101;
Found 445.2106.

(±)-tert-Butyl 1-(4-(dimethylamino)-2-hydroxyphenyl)-6,7-
dimethoxy-3,4-dihydroisoquinoline-2(1H)-carboxylate (5l).
Yield 70% as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 9.45
(brs, 1H), 6.63 (s, 1H), 6.48 (d, J = 8.8Hz, 1H), 6.40 (s, 1H), 6.36
(d, J = 2.4Hz, 1H), 6.29 (s, 1H), 6.08 (dd, J = 8.8, 2.4Hz, 1H),

3.97 (dd, J = 13.6, 5.6Hz, 1H), 3.88 (s, 3H), 3.70 (s, 3H), 3.13
(ddd, J = 12.8, 12.8, 3.6Hz, 1H), 2.88–2.98 (m, 7H), 2.68 (dd, J
= 15.6, 2.4Hz, 1H), 1.47 (s, 9H); 13C NMR (100 MHz, CDCl3, a
rotameric mixture, resonances for minor rotamer are enclosed
in parenthesis) δ 156.5, (156.3), 151.4, 147.7, 147.4, 130.7, 126.9,
126.8, 116.2, 111.0, 110.75, 110.71, 103.6, 100.8, 81.3, (55.94),
55.89, 55.85, 52.0, (40.43), 40.38, 40.31, (40.25), 37.4, 28.5,
28.3; IR (Film): 3198, 2976, 1645, 1518, 1432, 1254 (cm−1);
HRMS (EI-magnetic sector) m/z: {M}+ Calcd for C24H32N2O5:
428.2311; Found 428.2307.

(±)-tert-Butyl 1-(4-(diethylamino)phenyl)-6,7-dimethoxy-
3,4-dihydroisoquinoline-2(1H)-carboxylate (5m). Yield 78%
as a white foam. 1H NMR (400 MHz, CDCl3, a 1:1 mixture of
amide rotamers at room temperature) δ 7.03 (d, J = 8.4Hz,
2H), 6.94 (s, 1H), 6.56 (d, J = 8.4Hz, 2H), 6.51 (s, 1H), 6.31
(s, 0.5H), 6.12 (s, 0.5H), 4.11 (s, 0.5H), 3.90 (s, 0.5H), 3.88 (s,
3H), 3.75 (s, 3H), 3.31 (q, J = 7.2Hz, 4H), 3.05 (s, 0.5H), 2.91
(s, 0.5H), 2.64 (s, 0.5H), 2.61 (s, 0.5H), 1.5 (s, 9H), 1.14 (t, J =
7.2Hz, 6H); 13C NMR (100 MHz, CDCl3, a rotameric mixture,
resonances for minor rotamer are enclosed in parenthesis) δ

154.1, 147.4, 146.9, 146.5, 129.3, 127.5, 126.9, 110.9, 110.7, 79.4,
56.7, 55.7, 55.6, 44.1, (37.5), 36.1, 28.5, 28.1, (12.53), 12.51;
IR (Film): 2974, 1687, 1611, 1519, 1220 (cm−1); HRMS (EI-
magnetic sector) m/z: {M}+ Calcd for C26H36N2O4: 440.2675;
Found 440.2679.

(±)-tert-Butyl 1-(1-hydroxynaphthalen-2-yl)-6,7-dimethoxy-
3,4-dihydroisoquinoline-2(1H)-carboxylate (5n). Yield 76% as a
white foam. 1H NMR (400 MHz, CDCl3) δ 10.34 (brs, 1H), 8.44
(dd, J = 6.0, 3.2Hz, 1H), 7.70 (dd, J = 7.2, 3.2Hz, 1H), 7.44–7.49
(m, 2H), 7.17 (d, J = 8.8Hz, 1H), 6.79 (d, J = 8.8Hz, 1H), 6.68 (s,
1H), 6.56 (s, 1H), 6.33 (s, 1H), 4.05 (dd, J = 13.6, 5.2Hz, 1H), 3.90
(s, 3H), 3.63 (s, 3H), 3.21 (td, J = 13.2, 3.6Hz, 1H), 2.99 (td, J =
16.0, 5.6Hz, 1H), 2.75 (dd, J = 16.0, 2.4Hz, 1H), 1.49 (s, 9H); 13C
NMR (100MHz, CDCl3) δ 156.8, 151.9, 148.0, 147.8, 134.1, 127.2,
127.1, 126.8, 126.7, 126.5, 125.8, 125.0, 123.3, 121.1, 118.5, 111.1,
81.8, 55.99, 55.94, 52.5, 38.1, 28.6; IR (Film): 3134, 2976, 1644,
1518, 1432, 1254, 1159 (cm−1); HRMS (EI-magnetic sector)m/z:
{M}+ Calcd for C26H29NO5: 435.2046; Found 435.2048.

(±)-tert-Butyl 1-(1H-indol-3-yl)-6,7-dimethoxy-3,4-
dihydroisoquinoline-2(1H)-carboxylate (5o). Yield 84% as
a white foam. 1H NMR (400 MHz, CDCl3, a 1.5:1 mixture
of amide rotamers at room temperature) δ 8.10 (s, 1H), 7.88
(s, 0.6H), 7.76 (s, 0.4H), 7.34 (d, J = 8.0Hz, 1H), 7.19 (dd,
J = 8.0, 7.2Hz, 1H), 7.11 (t, J = 7.2Hz, 1H), 6.63–6.69 (m,
3.6H), 6.49 (brs, 0.4H), 4.03–4.13 (m, 0.4H), 3.89–3.93 (m,
0.6H), 3.89 (s, 3H), 3.73 (s, 3H), 2.95-3.10 (m, 1H), 2.59–2.63
(m, 1H), 1.60 (s, 3.6H), 1.50 (s, 5.4H); 13C NMR (100 MHz,
CDCl3, a rotameric mixture, resonances for minor rotamer
are enclosed in parenthesis) δ 154.2, 147.5, 146.8, 136.3, 128.1,
126.7, 126.4, 125.1, 121.9, 120.0, 119.4, 118.5, (118.1), 111.2,
111.0, (80.3), 79.5, 55.9, (51.4), 50.3, 37.6, (36.6), 28.6, 28.2,
(27.9); IR (Film): 3360, 2975, 1667, 1517, 1422, 1254 (cm−1);
HRMS (FAB-magnetic sector)m/z: {M}+ Calcd for C24H28N2O4

408.2049; Found 408.2047.
(±)-tert-Butyl 6,7-dimethoxy-1-(5-methylfuran-2-yl)-3,4-

dihydroisoquinoline-2(1H)-carboxylate (5p). Yield 55% as a
white foam. 1H NMR (400 MHz, CDCl3, a 2:1 mixture of amide
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rotamers at room temperature) δ 6.63 (s, 1H), 6.62 (s, 1H), 6.24
(s, 0.33H), 6.07 (s, 0.67H), 5.82 (s, 1H), 5.81 (s, 1H), 4.20 (s,
0.67H), 4.05 (s, 0.33H), 3.87 (s, 3H), 3.80 (s, 3H), 3.03–3.31
(m, 1H), 2.84–2.96 (m, 1H), 2.67 (s, 0.67H), 2.63 (s, 0.33H),
2.24 (s, 3H), 1.51 (s, 9H); 13C NMR (100 MHz, CDCl3, a
rotameric mixture, resonances for minor rotamer are enclosed
in parenthesis) δ 154.2, 153.2, 151.4, 147.8, 147.0, 126.9, (125.0),
111.2, 111.1, (110.7), 108.9, 105.9, 105.5, 79.7, 55.85, (55.81),
55.7, 52.1, (51.4), (38.7), 37.1, 28.4, 28.1, 13.6; IR (Film): 2976,
1694, 1519, 1415, 1254 (cm−1); HRMS (FAB-magnetic sector)
m/z: {M}+ Calcd for C21H27NO5 373.1889; Found 373.1894.

(±)-Benzyl 1-allyl-6,7-dimethoxy-3,4-dihydroisoquinoline-
2(1H)-carboxylate (6a). Yield 77% as a colorless oil. 1H NMR
(400 MHz, CDCl3, a 1.2:1 mixture of amide rotamers at room
temperature) δ 7.30–7.37 (m, 5H), 6.61 (s, 0.45H), 6.59 (s,
0.55H), 6.57 (s, 0.55H), 6.56 (s, 0.45H), 5.82–5.92 (m, 0.45H),
5.71–5.82 (m, 0.55H), 5.16–5.22 (m, 2H), 4.97–5.12 (m, 3H), 4.27
(dd, J = 13.2, 3.2Hz, 0.55H), 4.08–4.11 (m, 0.45H), 3.84 (s, 6H),
3.31–3.38 (m, 0.45H), 3.21–3.28 (m, 0.55H), 2.79–2.94 (m, 1H),
2.65 (dd, J = 11.6, 2.4Hz, 1H), 2.51–2.59 (m, 2H); 13C NMR
(100 MHz, CDCl3, a rotameric mixture, resonances for minor
rotamer are enclosed in parenthesis) δ 155.1, 147.5, (147.4),
147.1, (136.7), 136.5, 134.7, (134.6), (128.7), 128.4, 128.2, (127.9),
127.8, 127.7, (127.5), 126.0, (125.7), 117.3, (117.1), 111.4, (111.2),
67.1, (66.9), (55.9), 55.8, 54.0, 41.4, (41.2), (38.3), 37.6, (28.3),
28.0; IR (Film) 2934, 1691, 1516, 1426, 1214 (cm−1); HRMS
(FAB-magnetic sector) m/z: {M+H}+ Calcd for C22H26NO4

368.1862; Found 386.1867.
(±)-Allyl 1-allyl-6,7-dimethoxy-3,4-dihydroisoquinoline-

2(1H)-carboxylate (6b). Yield 86% as a colorless oil. 1H NMR
(400 MHz, CDCl3, a 1.2:1 mixture of amide rotamers at room
temperature) δ 6.58–6.61 (m, 2H), 5.95 (ddd, J = 16.0, 10.8,
5.6Hz, 1H), 5.78–5.87 (m, 1H), 5.31 (dd, J = 17.2, 6.4Hz, 0.55H),
5.20–5.22 (m, 1.1H), 5.11 (t, J = 6.8Hz, 0.45H), 5.03–5.07 (m,
2.9H), 4.55–4.67 (m, 2H), 4.25 (dd, J = 12.8, 3.6Hz, 0.55H),
4.01 (dd, J = 8.0, 3.6Hz, 0.45H), 3.85 (s, 6H), 3.34 (dt, J =

10.0, 4.0Hz, 0.45H), 3.23 (dt, J = 9.6, 4.0Hz, 0.55H), 2.81–2.93
(m, 1H), 2.63–2.67 (m, 1H), 2.56–2.57 (m, 2H); 13C NMR
(100 MHz, CDCl3, a rotameric mixture, resonances for minor
rotamer are enclosed in parenthesis) δ 155.3, 147.9, (147.8),
147.4, (135.1), 134.9, (133.3), 133.2, (129.1), 128.7, 126.3, (126.0),
117.7, 117.6, (117.4), 117.2, 111.7, (111.5), (110.2), 110.0, 66.3,
(66.2), 56.3, 56.2, 54.3, 41.8, (41.5), (38.5), 37.9, (28.6), 28.3;
IR (Film) 2934, 1691, 1516, 1431, 1256, 1214 (cm−1); HRMS
(EI-magnetic sector)m/z: {M}+ Calcd for C18H23NO4 317.1627;
Found 317.1623.

(±)-Methyl 1-allyl-6,7-dimethoxy-3,4-dihydroisoquinoline-
2(1H)-carboxylate (6c). Yield 60% as a colorless oil. 1H NMR
(400 MHz, CDCl3, a 1.2:1 mixture of amide rotamers at room
temperature) δ 6.58–6.61 (m, 2H), 5.78–5.90 (m, 1H), 5.19 (t, J
= 9.6Hz, 0.45H), 5.02–5.06 (m, 2.55H), 4.23–4.25 (m, 0.45H),
4.01–4.02 (m, 0.55H), 3.85 (s, 6H), 3.71 (s, 3H), 3.20–3.33 (m,
1H), 2.82–2.93 (m, 1H), 2.66 (t, J = 3.6Hz, 0.55H), 2.62 (t, J =
3.6Hz, 0.45H), 2.53–2.55 (m, 2H); 13C NMR (100 MHz, CDCl3,
a rotameric mixture, resonances for minor rotamer are enclosed
in parenthesis) δ 155.7, 147.4, (147.3), 147.0, 134.7, (134.5),
128.7, (128.4), 125.9, (125.6), 117.1, (117.0), 111.3, (111.1), 109.8,

(109.6), 55.9, 55.8, 53.8, 52.4, 41.3, (41.0), (38.1), 37.4, 28.1,
(27.8); IR (Film) 2953, 1699, 1520, 1449, 1258, 1220 (cm−1);
HRMS (EI-magnetic sector) m/z: {M}+ Calcd for C17H21NO4

291.1471; Found 291.1466.
(±)-Ethyl 1-allyl-6,7-dimethoxy-3,4-dihydroisoquinoline-

2(1H)-carboxylate (6d). Yield 84% as a colorless oil. 1H NMR
(400 MHz, CDCl3, a 1.5:1 mixture of amide rotamers at room
temperature) δ 6.58 (brs, 2H), 5.82–5.86 (m, 1H), 5.19 (t, J =
7.2Hz, 0.4H), 5.07–5.10 (m, 0.6H), 5.02–5.07 (m, 2H), 4.03–4.26
(m, 3H), 3.85 (s, 6H), 3.30 (dt, J = 11.2, 2.8Hz, 0.4H), 2.86 (dt,
J = 12.4, 4.0Hz, 0.6H), 2.66 (t, J = 2.8Hz, 0.6H), 2.62 (t, J =
3.2Hz, 0.4H), 2.54 (brs, 2H), 1.28 (t, J = 6.4Hz, 3H); 13C NMR
(100 MHz, CDCl3, a rotameric mixture, resonances for minor
rotamer are enclosed in parenthesis) δ 155.1, 147.2, (147.1),
146.8, (134.7), 134.4, (128.6), 128.3, 125.8, (125.5), 117.0, (116.7),
111.1, (110.9), (109.6), 109.3, 60.99, (60.97), (55.7), 55.6, 53.5,
41.2, 40.9, (37.8), 37.0, (28.0), 27.8, 14.6; IR (Film) 2934, 1689,
1516, 1427, 1215, 1098 (cm−1); HRMS (EI-magnetic sector)m/z:
{M}+ Calcd for C17H23NO4 305.1627; Found 305.1625.

(±)-1-(1-Allyl-6,7-dimethoxy-3,4-dihydroisoquinolin-
2(1H)-yl)ethanone (6e). Yield 48% as a colorless oil. 1H NMR
(400 MHz, CDCl3, a 1.5:1 mixture of amide rotamers at room
temperature) δ 6.62 (s, 0.6H), 6.61(s, 0.4H), 6.592 (s, 0.4H),
6.585 (s, 0.6H), 5.80–5.90 (m, 0.6H), 5.61–5.64 (m, 0.4H),
5.13–5.17 (m, 0.8H), 5.00–5.04 (m, 1.2H), 4.76 (dd, J = 9.2,
5.2Hz, 0.6H), 4.71 (dd, J = 8.4, 4.8Hz, 0.4H), 3.87 (s, 1.2H),
3.86 (s, 1.2H), 3.85 (s, 1.8H), 3.84 (s, 1.8H), 3.79 (ddd, J =

8.8, 5.6, 3.6Hz, 0.4H), 3.53 (ddd, J = 14.8, 13.2, 4.4Hz, 0.6H),
3.04 (dt, J = 12.0, 4.4Hz, 0.4H), 2.87 (dt, J = 10.8, 5.6Hz,
1H), 2.77 (t, J = 4.0Hz, 0.6H), 2.73 (t, J = 4.0Hz, 0.4H),
2.49–2.67 (m, 3H), 2.16 (s, 3H); 13C NMR (100 MHz, CDCl3, a
rotameric mixture, resonances for minor rotamer are enclosed
in parenthesis) δ (168.7), 168.5, (147.4), 147.1, 146.9, (146.8),
134.6, (133.5), 128.5, (127.8), (125.9), 124.9, (118.2), 116.6,
(111.1), 110.7, 109.7, (109.2), (56.6), (55.7), 55.6, 55.5, 51.0,
(41.0), 40.7, 40.3, (34.6), 28.4, (27.4), (21.8), 21.6; IR (Film)
2927, 1632, 1514, 1428, 1255, 1220, 1120 (cm−1); HRMS (EI-
magnetic sector) m/z: {M}+ Calcd for C16H21NO3 275.1521;
Found 275.1524.

(±)-(1-Allyl-6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-
yl)(phenyl)methanone (6f). Yield 37% as a white foam. 1H
NMR (400 MHz, CDCl3, a 4:1 mixture of amide rotamers at
room temperature) δ 7.33–7.42 (m, 5H), 6.69 (s, 0.8H), 6.64 (s,
0.2H), 6.57 (s, 0.8H), 6.38 (s, 0.2H), 5.96–6.06 (m, 0.8H), 5.81
(dd, J = 8.8, 4.8Hz, 0.8H), 5.57–5.65 (m, 0.2H), 5.03–5.13 (m,
2.2H), 4.84 (dd, J = 13.6, 6.0Hz, 0.2H), 4.73–4.76 (m, 0.2H),
3.87 (s, 2.4H), 3.85 (s, 2.4H), 3.79 (s, 1.2H), 3.73–3.77 (m, 1H),
3.45 (dt, J = 12.0, 4.0Hz, 1H), 3.24 (dt, J = 12.0, 4.0Hz, 0.2H),
3.04–3.14 (m, 0.2H), 2.42–2.87 (m, 6.2H); 13C NMR (100 MHz,
CDCl3, a rotameric mixture, resonances for minor rotamer are
enclosed in parenthesis) δ (170.7), 170.4, (147.9), 147.6, 136.6,
(136.4), 135.0, (133.9), 129.2, (128.5), 128.4, (128.3), (126.9),
126.4, (125.9), 124.9, (118.4), 117.2, (111.6), 111.2, 110.0, (109.3),
(57.4), 56.03, 55.93, 50.9, (41.8), 41.5, 41.2, (35.4), 29.1, (27.8); IR
(Film) 2933, 1626, 1515, 1428, 1255, 1223, 1118 (cm−1); HRMS
(EI-magnetic sector)m/z: {M}+ Calcd for C21H23NO3 337.1678;
Found 337.1679.
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(±)-1-Allyl-6,7-dimethoxy-2-(methylsulfonyl)-1,2,3,4-
tetrahydroisoquinoline (6g). Yield 89% as a white foam. 1H
NMR (400 MHz, CDCl3) δ 6.59 (s, 1H), 6.57 (s, 1H), 5.85–5.95
(m, 1H), 5.13 (s, 1H), 5.10 (d, J = 5.6Hz, 1H), 4.81 (dd, J = 8.0,
5.6Hz, 1H), 3.94 (dd, J = 14.4, 6.4Hz, 1H), 3.86 (s, 3H), 3.85
(s, 3H), 3.46 (ddd, J = 16.8, 12.0, 4.8Hz, 1H), 2.98 (ddd, J =
17.2, 12.0, 6.8, 1H), 2.77 (s, 3H), 2.65–2.70 (m, 1H), 2.52–2.62
(m, 2H); 13C NMR (100 MHz, CDCl3) δ 147.9, 147.4, 134.6,
127.6, 124.5, 117.7, 111.6, 109.7, 56.0, 55.9, 55.6, 41.8, 40.1, 38.8,
26.7; IR (Film) 2935, 1611, 1516, 1316, 1247, 1163, 1120 (cm−1);
HRMS (EI-magnetic sector) m/z: {M}+ Calcd for C15H21NO4S
311.1189; Found 311.1191.

(±)-1-Allyl-6,7-dimethoxy-2-tosyl-1,2,3,4-
tetrahydroisoquinoline (6h). Yield 81% as a colorless oil.
1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.4Hz, 2H), 7.14
(d, J = 8.4Hz, 2H), 6.53 (s, 1H), 6.38 (s, 1H), 5.83 (dddd, J =
17.6, 10.4, 7.2, 7.2Hz, 1H), 5.05 (d, J = 10.4Hz, 1H), 5.04 (d, J =
17.6Hz, 1H), 4.97 (t, J = 6.8Hz, 1H), 3.85 (s, 3H), 3.81–3.83 (m,
1H), 3.78 (s, 3H), 3.43 (ddd, J = 16.4, 10.8, 5.6Hz, 1H), 2.41–2.60
(m, 4H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 147.7,
147.2, 143.0, 137.9, 134.6, 129.3, 127.7, 127.0, 124.9, 117.6, 111.3,
109.7, 56.1, 56.0, 55.9, 42.2, 39.2, 26.4, 21.6; IR (Film) 2935, 1517,
1325, 1228, 1157 (cm−1); HRMS (EI-magnetic sector)m/z: {M}+

Calcd for C21H25NO4S 387.1504; Found 387.1504.
(±)-1-Allyl-6,7-dimethoxy-2-((2-nitrophenyl)sulfonyl)-

1,2,3,4-tetrahydroisoquinoline (6i). Yield 72% as a colorless oil.
1H NMR (400 MHz, CDCl3) δ 7.95(dd, J = 7.6, 1.6Hz, 1H),
7.53–7.64 (m, 3H), 6.60 (s, 1H), 6.48 (s, 1H), 5.73 (ddd, J =

17.2, 10.0, 7.2Hz, 1H), 5.02 (d, J = 16.8Hz, 1H), 5.00 (d, J =
10.0Hz, 1H), 4.94 (d, J = 9.6Hz, 1H), 4.04 (dd, J = 12.8, 5.6Hz,
1H), 3.86 (s, 3H), 3.81 (s, 3H), 3.53 (ddd, J = 14.8, 12.0, 4.8Hz,
1H), 2.76 (ddd, J = 16.8, 12.0, 6.4Hz, 1H), 2.62–2.63 (m, 1H),
2.57 (dd, J = 15.2, 7.2Hz, 2H); 13C NMR (100 MHz, CDCl3) δ

147.8, 147.7, 147.2, 134.1, 134.0, 133.3, 131.5, 130.3, 127.6, 124.5,
123.9, 117.8, 111.3, 109.6, 56.6, 56.0, 55.8, 41.9, 39.4, 27.2; IR
(Film) 2937, 1542, 1518, 1350, 1247, 1163, 1120 (cm−1); HRMS
(FAB-magnetic sector) m/z: {M}+ Calcd for C20H22N2O6S
418.1199; Found 418.1196.

(±)-tert-Butyl 1-allyl-6-methoxy-3,4-dihydroisoquinoline-
2(1H)-carboxylate (7a). Yield 85% as a colorless oil. 1H NMR
(400 MHz, CDCl3, a 1.5:1 mixture of amide rotamers at room
temperature) δ 7.03 (d, J = 8.0Hz, 1H), 6.65 (brs, 1H), 5.78–5.88
(m, 1H), 5.17–5.20 (m, 0.4H), 4.99–5.05 (m, 2.6H), 4.16–4.20 (m,
0.6H), 3.92–3.96 (m, 0.4H), 3.78 (s, 3H), 3.26–3.31 (m, 0.4H),
3.14–3.21 (m, 0.6H), 2.80–2.95 (m, 1H), 2.72 (t, J = 4.0Hz,
0.6H), 2.68 (t, J = 4.0Hz, 0.4H), 2.45–2.56 (m, 2H), 1.47 (s, 9H);
13CNMR (100MHz, CDCl3, a rotameric mixture, resonances for
minor rotamer are enclosed in parenthesis) δ 157.9, 154.6, 135.7,
(135.5), 135.1, (129.5), 129.3, (128.2), 127.9, 117.2, (116.9), 113.3,
112.4, (112.0), 79.8, (79.5), 55.3, 54.2, (53.3), 41.9, (41.6), (38.6),
36.8, (29.2), 29.1, 28.6; IR (Film) 2974, 1685, 1418, 1232, 1159
(cm−1); HRMS (FAB-magnetic sector) m/z: {M+H}+ Calcd for
C18H26NO3 304.1913; Found 304.1913.

(±)-tert-Butyl 1-allyl-7-methoxy-3,4-dihydroisoquinoline-
2(1H)-carboxylate (7b). Yield 79% as a colorless oil. 1H NMR
(400 MHz, CDCl3, a 1.5:1 mixture of amide rotamers at room
temperature) δ 7.00–7.05 (m, 1H), 6.73–6.75 (m, 1H), 6.65

(d, J = 2.4Hz, 1H), 5.79–5.89 (m, 1H), 5.20–5.22 (m, 0.4H),
5.01–5.07 (m, 2.6H), 4.18–4.20 (m, 0.6H), 3.93–3.97 (m, 0.4H),
3.79 (s, 3H), 3.24–3.30 (m, 0.4H), 3.13–3.20 (m, 0.6H), 2.76–2.90
(m, 1H), 2.68 (t, J = 4.0Hz, 0.6H), 2.64 (t, J = 4.0Hz, 0.4H),
2.54 (t, J = 7.6Hz, 2H),1.48 (s, 9H); 13C NMR (100 MHz,
CDCl3, a rotameric mixture, resonances for minor rotamer are
enclosed in parenthesis) δ 157.6, (154.7), 154.5, (138.3), 138.1,
(135.1), 135.0, 129.8, (129.5), 126.4, (126.2), 117.3, (116.9), 112.6,
(112.1), 112.0, 79.8, (79.4), 55.4, 54.8, (53.9), 41.6, (41.3), (38.9),
37.1, 28.6, (28.0), 27.9; IR (Film) 2975, 1686, 1420, 1249, 1159
(cm−1); HRMS (FAB-magnetic sector) m/z: {M+H}+ Calcd for
C18H26NO3 304.1913; Found 304.1907.

(±)-tert-Butyl 1-allyl-6,8-dimethoxy-3,4-
dihydroisoquinoline-2(1H)-carboxylate (7c). Yield 98% as a
colorless oil. 1H NMR (400 MHz, CDCl3, a 1.5:1 mixture of
amide rotamers at room temperature) δ 6.31 (d, J = 2.4Hz,
0.6H), 6.28 (d, J = 2.4Hz, 0.4H), 6.25 (d, J = 2.0Hz, 0.6H),
6.22 (d, J = 2.0Hz, 0.4H), 5.81–5.94 (m, 1H), 5.40 (dd, J =

9.6, 4.0Hz, 0.4H), 5.20 (dd, J = 9.6, 3.2Hz, 0.6H), 4.94–5.07
(m, 2H), 4.20 (ddd, J = 13.2, 6.0, 1.6Hz, 0.6H), 3.95 (ddd, J =
12.8, 6.4, 3.2Hz, 0.4H), 3.82 (s, 1.8H), 3.78 (s, 4.2H), 3.29 (ddd,
J = 14.8, 10.4, 4.4Hz, 0.4H), 3.18 (ddd, J = 13.2, 11.6, 4.4Hz,
0.6H), 2.78–2.93 (m, 1H), 2.59–2.68, m, 2H), 2.28–2.36 (m, 1H),
1.47 (s, 5.4H), 1.45 (s, 3.6H); 13C NMR (100 MHz, CDCl3, a
rotameric mixture, resonances for minor rotamer are enclosed
in parenthesis) δ 158.9, (158.8), (156.7), 156.5, 154.7, (136.2),
136.0, 135.9, (119.3), 118.9, 116.3, (115.8), 104.2, (104.1), 96.5,
(96.3), 79.6, (79.2), 55.4, 55.3, 50.0, (49.0), 38.8, (38.7), (37.8),
36.1, (29.0), 28.9, 28.6; IR (Film) 2975, 1686, 1420, 1249, 1159
(cm−1); HRMS (FAB-magnetic sector) m/z: {M+H}+ Calcd for
C19H28NO4 334.2018; Found 334.2016.

(±)-tert-Butyl 1-allyl-7-fluoro-3,4-dihydroisoquinoline-
2(1H)-carboxylate (7d). Yield 89% as a colorless oil. 1H NMR
(400 MHz, CDCl3, a 1.5:1 mixture of amide rotamers at room
temperature) δ 7.06–7.07 (m, 1H), 6.82–6.86 (m, 2H), 5.81–5.83
(m, 1H), 5.22 (brs, 0.4H), 5.03–5.06 (m, 2H), 4.21 (d, J = 12.0Hz,
0.6H), 3.97 (d, J = 10.4Hz, 0.4H), 3.25–3.27 (m, 0.4H), 3.14–3.19
(m, 0.6H), 2.83–2.86 (m, 1H), 2.72 (t, J = 3.6Hz, 0.6H), 2.67 (t, J
= 3.6Hz, 0.4H), 2.51–2.59 (m, 2H), 1.48 (s, 9H); 13C NMR (100
MHz, CDCl3, a rotameric mixture, resonances for minor rotamer
are enclosed in parenthesis) δ 162.1, 159.7, 138.9, 134.7, 130.4,
130.1, 117.7, (117.4), 113.9, 113.6, (113.4), 54.7, (53.8), 41.6,
(41.3), (38.7), 37.1, 28.7, (28.3), 28.2; IR (Film) 2976, 1688, 1413,
1246, 1161, 1114 (cm−1); HRMS (FAB-magnetic sector) m/z:
{M+H}+ Calcd for C17H23FNO2 292.1713; Found 292.1713.

(±)-tert-Butyl 1-allyl-7-bromo-3,4-dihydroisoquinoline-
2(1H)-carboxylate (7e). Yield 85% as a white foam. 1H NMR
(400 MHz, CDCl3, a 1.5:1 mixture of amide rotamers at room
temperature) δ 7.27 (brs, 2H), 6.98–7.00 (m, 1H), 5.76–5.85
(m, 1H), 5.21 (m, 0.4H), 5.04–5.08 (m, 2.6H), 4.19–4.22 (m,
0.6H), 3.96–3.99 (m, 0.4H), 3.23–3.28 (m, 0.4H), 3.11–3.18 (m,
0.6H), 2.81–2.89 (m, 1H), 2.70 (t, J = 3.2Hz, 0.6H), 2.66 (t,
J = 3.2Hz, 0.4H), 2.52 (d, J = 8.0Hz, 2H), 1.47 (s, 9H); 13C
NMR (100 MHz, CDCl3, a rotameric mixture, resonances for
minor rotamer are enclosed in parenthesis) δ (154.6), 154.5,
(139.5), 139.3, 134.6, 133.5, (133.2), 130.7, (130.4), (130.0), 129.8,
129.6, 119.5, 117.7, (117.4), 41.6, (41.3), (38.4), 36.7, 28.7, (28.5),
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28.3; IR (Film) 2975, 1687, 1412, 1230, 1159 (cm−1); HRMS
(FAB-magnetic sector) m/z: {M+H}+ Calcd for C17H23BrNO2

352.0912; Found 352.0915.
(±)-tert-Butyl 1-allyl-3,4-dihydroisoquinoline-2(1H)-

carboxylate (7f). Yield 92% as a colorless oil. 1HNMR (400MHz,
CDCl3, a 1.5:1 mixture of amide rotamers at room temperature) δ
7.10–7.15 (m, 4H), 5.81–5.87 (m, 1H), 5.24 (brs, 0.4H), 5.01–5.06
(m, 2.6H), 4.18–4.21 (m, 0.6H), 3.94 (s, 0.4H), 3.17–3.31 (m, 1H),
2.89–2.91 (m, 1H), 2.75 (t, J = 4.0Hz, 0.6H), 2.71 (t, J = 4.0Hz,
0.4H), 2.54 (t, J = 7.2Hz, 2H), 1.47 (s, 9H); 13C NMR (100 MHz,
CDCl3, a rotameric mixture, resonances for minor rotamer are
enclosed in parenthesis) δ 154.4, 136.9, 134.93, 134.85, 134.2,
(134.0), 128.8, (128.5), 126.8, (126.3), 125.7, 117.1, (116.7), 79.5,
(79.2), 54.5, (53.7), 41.6, (41.3), (38.5), 36.9, 28.5; IR (Film) 2978,
1694, 1422, 1166, 1124 (cm−1); HRMS (FAB-magnetic sector)
m/z: {M+H}+ Calcd for C17H24NO2 274.1807; Found 274.1807.

Synthesis of (±)-1-Allyl-6,7-Dimethoxy-
1,2,3,4-Tetrahydroisoquinoline (8)
To a stirred solution of (±)–5a (100.0mg, 0.30 mmol) in
DCM (3.0mL) was added TFA (0.69mL, 3.0 mmol) at room
temperature. The reaction mixture was stirred for 2 h at room
temperature under argon atmosphere and then quenched with
saturated NaHCO3 (5mL) and the layers were separated and
the aqueous layer was extracted with EtOAc (2 × 20mL). The
combined organic layer was washed with brine (5mL), dried
over anhydrous Na2SO4, filtered, and concentrated in vacuo.
The residue was purified by column chromatography (silica gel,
EtOAc/MeOH/Et3N = 15:1:0.1) to afford (±)–8 (61.6mg, 0.26
mmol) as a colorless oil.

To a stirred solution of (±)–6c (87.4mg, 0.30 mmol)
in ethylene glycol/H2O [3.0mL, 1:1 (v/v)] was added KOH
(168.3mg, 3.0 mmol) at room temperature. The reaction mixture
was heated at reflux for 12 h under argon atmosphere and cooled
to room temperature and then quenched with saturated NH4Cl
(5mL) and the layers were separated and the aqueous layer was
extracted with EtOAc (2 × 20mL). The combined organic layer
was washed with brine (5mL), dried over anhydrous Na2SO4,
filtered, and concentrated in vacuo. The residue was purified
by column chromatography (silica gel, EtOAc/MeOH/Et3N =

15:1:0.1) to afford (±)-8 (49.0mg, 0.21 mmol) as a colorless oil.
To a stirred solution of (±)–6h (125.5mg, 0.30 mmol) in

DMF (3.0mL) was added PhSH (0.09mL, 0.90 mmol) and
K2CO3 (124.4mg, 0.90mmol) at room temperature. The reaction
mixture was stirred for 12 h at room temperature under argon
atmosphere and then quenched with saturated NaHCO3 (5mL)
and the layers were separated and the aqueous layer was extracted
with EtOAc (2 × 20mL). The combined organic layer was
washed with brine (5mL), dried over anhydrous Na2SO4, filtered,
and concentrated in vacuo. The residue was purified by column
chromatography (silica gel, EtOAc/MeOH/Et3N = 15:1:0.1) to
afford (±)–8 (61.6mg, 0.26 mmol) as a colorless oil. 1H NMR
(400MHz, CDCl3) δ 6.64 (s, 1H), 6.56 (s, 1H), 5.83 (dddd, J =
16.8, 10.4, 7.6, 6.8Hz, 1H), 5.12–5.20 (m, 2H), 3.99 (dd, J = 8.8,
3.6Hz, 1H), 3.84 (s, 6H), 3.22 (ddd, J = 12.4, 4.8, 4.8Hz, 1H),

2.95 (ddd, J = 12.4, 7.6, 4.8Hz, 1H), 2.72–2.79 (m, 1H), 2.60–
2.70 (m, 2H), 2.45–2.53 (m, 1H); 13C NMR (100MHz, CDCl3) δ

147.1, 146.9, 135.4, 130.2, 127.2, 117.8, 111.6, 108.9, 56.0, 55.8,
54.7, 41.1, 40.8, 29.5; IR (Film) 2932, 1510, 1464, 1355, 1258,
1112 (cm−1); HRMS (EI-magnetic sector) m/z: {M}+ Calcd for
C14H19NO2 233.1416; Found 233.1416.

Total Synthesis of
(±)-Benzo[a]Quinolizidine (10)
(±)-(E)-Benzyl 6,7-dimethoxy-1-(4-methoxy-4-oxobut-2-en-1-
yl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (9). To a stirred
solution of 4b (120.5mg, 0.37 mmol) in DCM (3.70mL) was
added 4Å molecular sieves (160mg) at room temperature. After
the reaction mixture was stirred for 15min at room temperature,
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (91.9mg,
0.40 mmol) was added portionwise and the reaction mixture was
stirred at room temperature for 30min under argon atmosphere.
CH2 =CH(OTMS) (0.14mL, 0.92 mmol) was added dropwise at
room temperature and the reaction mixture was stirred at room
temperature for 1 h under argon atmosphere. Ph3P=CO2Me
(213.4mg, 0.63 mmol) was added portionwise and the reaction
mixture was stirred at room temperature for 12 h and then
diluted with hexanes (5.0mL) and concentrated in vacuo.
Purification of the crude residue by flash chromatography on
silica gel, using hexanes/EtOAc (4:1 to 3:1) as elutant, provided
(±)–8 (124.4mg, 0.29 mmol, E/Z = 95:5) as a white foam. 1H
NMR (400 MHz, CDCl3, a 1:1 mixture of amide rotamers at
room temperature) δ 7.29–7.38 (m, 5H), 6.93–7.00 (m, 1H), 6.59
(s, 0.5H), 6.57 (s, 0.5H), 6.56 (s, 0.5H), 6.51 (s, 0.5H), 5.82 (d, J
= 16.0Hz, 0.5H), 5.80 (d, J = 16.0Hz, 0.5H), 5.29 (t, J = 6.8Hz,
0.5H), 5.17 (t, J = 6.8Hz, 0.5H), 5.16 (d, J = 4.0Hz, 1H), 5.12
(d, J = 4.0Hz, 1H), 4.24–4.28 (m, 0.5H), 4.02–4.07 (m, 0.5H),
3.85 (s, 3H), 3.83 (s, 1.5H), 3.82 (s, 1.5H), 3.71 (s, 1.5H), 3.70
(s, 1.5H), 3.29–3.36 (m, 0.5H), 3.17–3.25 (m, 0.5H), 2.78–2.94
(m, 1H), 2.64–2.74 (m, 3H);); 13C NMR (100 MHz, CDCl3, a
rotameric mixture, resonances for minor rotamer are enclosed in
parenthesis) δ (166.3), 166.2, (155.2), 155.0, 147.8, (147.7), 147.3,
(144.9), 144.8, (136.6), 136.2, 128.4, 128.1, (128.0), (127.8), 127.6,
127.4, 126.1 (125.9), 123.24, (123.18), 111.4, (111.3), (109.7),
109.4, 67.6, (67.2), 56.0, (55.9), (53.63), 53.59, 51.5, 39.8, (39.4),
(38.8), 37.8, (28.2), 27.9; IR (Film) 2937, 1542, 1517, 1348, 1246,
1162 (cm−1); HRMS (FAB-magnetic sector)m/z: {M}+ Calcd for
C24H27NO6 425.1838; Found 425.1837.

(±)-9,10-Dimethoxy-2,3,6,7-tetrahydro-1H-pyrido[2,1-
a]isoquinolin-4(11bH)-one (9). To a stirred solution of (±)-8
(30.5mg, 0.072 mmol) in EtOAc (2.4mL) was added 10% Pd/C
(3.1mg) at room temperature. The reaction mixture was stirred
under H2 atmosphere for 18 h, then filtered through a pad of
Celite 545 and concentrated in vacuo. Purification of the residue
by flash chromatography on silica gel, using hexanes/EtOAc
(1:5.5) as elutant, provided (±)–9 (16.0mg, 0.061 mmol) as a
clear oil. 1HNMR (400 MHz, CDCl3) δ 6.67 (s, 1H), 6.61 (s, 1H),
4.88 (ddd, J = 12.4, 4.4, 2.4Hz, 1H), 4.61 (dd, J = 10.8, 4.4Hz,
1H), 3.86 (s, 6H), 2.91 (dt, J = 12.0, 3.6Hz, 1H), 2.80 (dt, J =
12.0, 2.8Hz, 1H), 2.50–2.66 (m, 3H), 2.37 (ddd, J = 18.0, 12.0,
6.8Hz, 1H), 1.79–1.92 (m, 1H), 1.79–1.90 (m, 1H) 1.62–1.72 (m,
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1H); 13C NMR (100 MHz, CDCl3) δ 168.7, 147.3, 147.2, 128.7,
126.8, 111.2, 107.9, 56.4, 55.8, 55.6, 39.4, 32.0, 30.7, 28.3, 19.4;
IR (Film) 3454, 2936, 1635, 1515, 1257, 1225 (cm−1); HRMS
(EI-magnetic sector)m/z: {M}+ Calcd for C15H19NO3 261.1365;
Found 261.1363.

(±)-9,10-Dimethoxy-2,3,4,6,7,11b-hexahydro-1H-
pyrido[2,1-a]isoquinoline (10). To a stirred solution of (±)–9
(70.0mg, 0.268 mmol) in THF (2.4mL) was LiAlH4 (152.5mg,
4.018 mmol) at 0 ◦C. The reaction mixture was heated to
reflux for 1 h under argon atmosphere, then cooled to room
temperature and then quenched with saturated Rochelle’s salt
(5mL) and the layers were separated and the aqueous layer was
extracted with EtOAc (2 × 20mL). The combined organic layer
was washed with brine (5mL), dried over anhydrous Na2SO4,
filtered, and concentrated in vacuo. The residue was purified
by column chromatography (silica gel, hexane/EtOAc/Et3N =

1:9:0.1) to afford (±)–10 (51.0mg, 0.206 mmol) as a colorless oil.
1H NMR (400 MHz, CDCl3) δ 6.68 (s, 1H), 6.56 (s, 1H), 3.84 (s,
6H), 3.04–3.15 (m, 2H), 2.91–2.99 (m, 2H), 2.60 (dd, J = 16.0,
3.6Hz, 1H), 2.50 (dt, J = 11.2, 4.0Hz, 1H), 2.32 (dd, J = 11.2,
4.0Hz, 1H), 2.23–2.28 (m, 1H), 1.90–1.95 (m, 1H), 1.66–1.77
(m, 2H), 1.37–1.54 (m, 2H); 13C NMR (100 MHz, CDCl3) δ

147.3, 147.1, 130.4, 126.8, 111.6, 108.3, 63.4, 57.0, 56.2, 56.0, 53.0,
31.7, 29.3, 25.7, 25.3; IR (Film) 3423, 2933, 1602, 1510, 1259,
1225 (cm−1); HRMS (EI-magnetic sector) m/z: {M}+ Calcd for
C15H21NO2 247.1572; Found 247.1574.
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