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The use of chlorine dioxide to disinfect drinking water and ameliorate toxic components

of wastewater has significant advantages in terms of providing safe water. Nonetheless,

significant drawbacks toward such usage remain. These drawbacks include the fact that

toxic byproducts of the disinfection agents are often formed, and the complete removal of

such agents can be challenging. Reported herein is one approach to solving this problem:

the use of α-cyclodextrin to affect the product distribution in chlorine dioxide-mediated

decomposition of organic pollutants. The presence of α-cyclodextrin leads to markedly

more oxidation and less aromatic chlorination, in a manner that is highly dependent on

analyte structure and other reaction conditions. Mechanistic hypotheses are advanced

to explain the cyclodextrin effect, and the potential for use of α-cyclodextrin for practical

wastewater treatment is also discussed.

Keywords: cyclodextrin, bisphenol (BPA), 2-phenylphenol, hydrophobic encapsulation, chlorination

INTRODUCTION

The decontamination of the water supply from a variety of organic pollutants (Cravotto et al., 2005),
including phthalates (Przybylinska and Wyszkowski, 2016), biphenyls (Benoit et al., 2016), and
bisphenol derivatives (Onundi et al., 2017) is an important challenge with a variety of industrial
and public health applications (Foo and Hameed, 2010; Shah et al., 2016). Methods to achieve
such decontamination to facilitate access to clean drinking water tend to rely on the application
of large quantities of disinfectants, oxidants, or decomposition reagents (Kim et al., 1999), with
newer methods including the use of photochemical (Laxma Reddy et al., 2017), electrochemical
(Oturan et al., 2009), and sonochemical (Joseph et al., 2009) decontamination procedures. While
these methods are effective in reducing the quantities of known organic pollutants (Besner et al.,
2008), the decomposition products of both the pollutants and of chemicals used for disinfection
have not been well-characterized (Wang et al., 2014), and methods to remove such decomposition
products from the water stream are poorly developed. This is particularly concerning because many
of these decomposition products are likely to have similar or evenworse toxicities compared to their
associated starting materials (Li and Mitch, 2018).

One popular disinfection agent is chlorine dioxide, which has been used for the decontamination
of wastewater from pathogens (Banach et al., 2015), as part of the seawater desalination process
(Kim et al., 2015), and for the removal of antibiotics and other pharmaceuticals from drinking
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Graphical Abstract | Chlorine dioxide-mediated decontamination of aromatic

pollutants in water in the presence of α-cyclodextrin (α-CD) changes the

reaction pathway, leading to decreased chlorination, and increased oxidation.

water (Dodd, 2012). Despite the widespread usage of chlorine
dioxide, concerns remain about its toxicity (Ma et al., 2017),
and about the toxicity of pollutant byproducts that result from
chlorine dioxide treatment (Colman et al., 2011). Efforts to
mitigate this toxicity have focused on alternative disinfection
treatments (Meireles et al., 2016), on immobilization of chlorine
dioxide to minimize the diffusion of toxic byproducts (He
et al., 2014), and on the combined use of chlorine dioxide
and other water treatments (Hsu and Huang, 2015). The
use of supramolecular constructs and/or adducts of chlorine
dioxide as strategies for mitigating chlorine dioxide-induced
water treatment toxicity has not been reported to date, despite
the fact that chlorine dioxide is known to form a variety of
supramolecular adducts (Loginova et al., 2011; Palcso et al.,
2019), including with α-cyclodextrin (Wambaugh et al., 2013).
Moreover, supramolecular association with common organic
pollutants is well-known, including cyclodextrin complexation
with the classes of pollutants mentioned above [phthalates
(Cromwell et al., 2019), biphenyls (Serio et al., 2013), and
bisphenols (DiScenza et al., 2018)]. Finally, supramolecular
complexation in general (Chang et al., 2017), and cyclodextrin
complexation in particular (Aiassa et al., 2016), has been shown
to result in significantly altered and often reduced toxicities,
which provides another potential avenue by which toxicity of the
water stream can be mitigated.

In general, cyclodextrin complexation has been shown
to rely heavily on hydrophobic association of hydrophobic
small molecules inside the hydrophobic interior cavity of
the cyclodextrin hosts. Such host-guest complexes have a

strong dependence on the steric complementarity between the
cavity size and the size of the guest, with single aromatic
ring compounds reported to bind strongly in α-cyclodextrin
(Connors and Pendergast, 1984; Pendergast and Connors, 1985)
and larger aromatic (and hydrophobic aliphatic compounds)
reported to bind in β-cyclodextrin (Celebioglu et al., 2019; Yu
et al., 2019). Of note, moving to the even larger γ-cyclodextrin
oftentimes results in the formation of ternary complexes, where
two small molecule guests bind simultaneously inside the larger
γ-cyclodextrin core (Hamai, 2010; Saokham et al., 2018). For
the most common analytes involved in aqueous contamination
(vide infra), the single aromatic rings of these analytes indicate
that they are likely to bind strongly in the α-cyclodextrin cavity.
Such strong and sterically matched binding, in turn, is expected
to affect the reactivity of these substrates and the distribution of
products obtained, an expectation that was effectively borne out
by the results of our experiments (vide infra). The use of larger
cyclodextrins, by contrast, would lead to the formation of less
sterically matched complexes, which would in turn impart lower
selectivities and lower overall cyclodextrin-induced effects.

Recent reports from our research groups have focused on the
design, optimization, and sensing applications of cyclodextrin
complexes (for the Levine group) (Serio et al., 2015; Chaudhuri
et al., 2018; Haynes et al., 2019), and on the engineering,
deployment, and evaluation of water purification filters (for
the Boving group) (Schifman et al., 2016; Eberle et al., 2017;
Blanford et al., 2018), which combined have provided us with
unique insight into the potential of cyclodextrins to benefit the
water purification process. Reported herein are the results of
our investigations into the effect of α-cyclodextrin complexation
on chlorine dioxide-based water treatment, and how such
complexation affects the quantity and distribution of degradation
byproducts. Mechanistic insight into the specific role of α-
cyclodextrin is also discussed.

EXPERIMENTAL SECTION

Materials and Methods
1H NMR experiments were conducted using a 400 MHz Bruker
Avance spectrometer with D2O as a solvent. GC-MS analyses of
reaction mixtures were carried out using a Shimadzu GCMS-
QP2020 instrument. All chemicals were purchased from Sigma
Aldrich chemical company or from Fisher Scientific and were
used as received, without further purification.

Method for the Preparation of Chlorine
Dioxide Solution
An aqueous chlorine dioxide suspension was generated from
the treatment of a solution of NaClO2 (ERCOPureTM 7.5) with
activated HCl. A typical generation procedure involved the
addition of 4mL of 30–36% HCl to a mixture of 17.5mL of
ADOXTM 7.5 and 200mL of deionized water. The reaction
mixture was kept in a dark Amber bottle for ∼24 h at room
temperature. Prior to usage, the reaction mixture was further
diluted to render a final chlorine dioxide concentration of
∼1,095 ppm (confirmed via hand-held colorimetry using a Hach
Digital Titrator).
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FIGURE 1 | Structures of common aqueous pollutants investigated herein as substrates for chlorine dioxide-mediated degradation.

General Method for the Complexation of
Chlorine Dioxide With α-cyclodextrin
The complexation of chlorine dioxide with α-cyclodextrin was
obtained by mixing a solution of 6.2mL of 1,100 ppm of ClO2

(100 µmol) with solid α-cyclodextrin (584mg; 600 µmol) for
15–20 min.

General Method for Determining the
Reaction Progression
The reactionmixture containing the organic analyte (compounds
1-3, Figure 1) was treated with ClO2 and allowed to react at the
specified temperature for a certain amount of time, after which
time the mixture was treated with concentrated sodium sulfite
(Na2SO3) solution to quench the excess chlorine dioxide. The
resulting solution was extracted with ethyl acetate. An aliquot
of the organic phase was injected into the GC-MS for analysis,
which enabled us to identify unreacted starting material, as well
as new peaks corresponding to the formation of a variety of
oxidation and chlorination products.

General Method for Measuring the Binding
of Analytes in α-cyclodextrin
Binding of analytes with α-cyclodextrin was investigated via
1H NMR titrations (Roselet and Kumari, 2017). A mixture of
analytes (20 µmol) with α-cyclodextrin (0.0–5.0 equivalents)
in D2O were investigated via 1H NMR spectroscopy, and the
resulting shifts in the positions of the NMR signals were used to
confirm supramolecular complexation.

RESULTS AND DISCUSSION

Analyte Selection
There are a broad variety of organic pollutants that contaminate
water supplies, including phthalates, biphenyls, and bisphenol
derivatives (vide supra). We have selected three common
pollutants to focus on in this paper, all of which have been
reported to interact with α-cyclodextrin: bisphenol A (BPA)
(analyte 1) (Araki et al., 2001), bisphenol F (BPF) (analyte 2)
(Xiao et al., 2007), and 2-phenylphenol (analyte 3) (Burkert et al.,
1981), with the expectation that supramolecular interactions
of the pollutants with α-cyclodextrin is likely to affect their
chlorine dioxide-mediated degradation. Moreover, the selection
of three pollutants with similar structures is expected to provide
important insight into the structural selectivity of α-cyclodextrin

complexation, and how such selectivity affects the chlorine
dioxide-mediated degradation processes. Finally, the inclusion of
BPF in addition to BPA is important, as BPA derivatives such as
BPF are increasingly used as commercially available substitutes
for BPA (Bjornsdotter et al., 2017; Wu et al., 2018), with evidence
indicating analogous or even worse toxicity compared to BPA
(den Braver-Sewradj et al., 2020).

Initial Screening
Initial screening of reaction conditions started with room
temperature treatment of analyte 1 with chlorine dioxide and
α-cyclodextrin (0–60 equivalents relative to the substrate). BPA
was found to undergo decomposition into single aromatic ring
oxidized units (quinols and quinones), as well as undergo
chlorination on residual starting material to form chlorinated
BPA analogs. Under these conditions, increasing the equivalents
of cyclodextrin led to a dramatic increase in the ratio of oxidation
products to chlorination products, from a ratio of 3.2 without
any cyclodextrin to a ratio of oxidation to chlorination of
49 measured at the highest concentration of α-cyclodextrin
(Figure 2).

However, even after 24 h, significant unreacted starting
material remained (up to 72%). Raising the reaction temperature
slightly, to 40◦C, resulted in complete consumption of the
starting material but dramatic changes in the reaction products,
with nearly exclusive formation of chlorinated oxidation
products chloroquinol and chloroquinone (Figure 3). This
significant change in consumption of the starting material with
only a mild increase in the temperature of the reaction is likely
due to increased reaction kinetics at the elevated temperature.
The stability of the cyclodextrin complexes is likely also affected
by the increased reaction temperature, which in turn leads to
changes in the distribution of products observed. Increasing the
equivalents of α-cyclodextrin in this system led to moderate
increases in the ratio of chloroquinol to chloroquinone obtained,
with overall limited changes in the overall oxidation products
obtained (Table 1). This could likely be due to the stronger
binding of quinols to α-cyclodextrin, thereby inhibiting their
subsequent oxidation into quinones.

In contrast to the results obtained for analyte 1, treatment
of bisphenol F (analyte 2) with chlorine dioxide at 40◦C led to
100% oxidation products, with both unsubstituted quinols and
chloroquinols formed (Figure 4). The ratio of oxidation products
(100% of the product mixture) to chlorination products (namely,
the formation of chloroquinols) was calculated, and the results
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FIGURE 2 | (A) Illustration of how the addition of α-cyclodextrin dramatically increases the oxidation to chlorination ratio in bisphenol A degradation at room

temperature. (B) Illustration of oxidation and chlorination products that are produced from the chlorine dioxide-mediated decomposition of bisphenol A. Only one set

of experiments was conducted to screen the reaction temperature; after determining that significant amounts of starting material remained; additional experimental

variations were pursued. The red line represents the best linear fit to the data; Equation: y = 0.6821x +_0.4289; R2
= 0.9715.

FIGURE 3 | Illustration of the degradation reaction of bisphenol A upon treatment with chlorine dioxide at 40◦C.

TABLE 1 | Effects of α-cyclodextrin addition on the distribution of decomposition

products obtained from chlorine dioxide treatment of bisphenol Aa.

Equivalents of Ratio of chloroquinol Overall oxidation product %

α-cyclodextrin to chloroquinone

0 1.9 56.2%

27.4 3.5 53.6%

68.5 4.3 55.3%

aReactions were run at 40◦C for 24 h.

summarized in Table 2. Of note, substantial increases in the
ratio of quinol to chloroquinol with increasing concentration of
cyclodextrin indicates a decrease in the chlorination byproducts,
which strongly suggests that cyclodextrin complexation plays a
role in inhibiting that reaction pathway (vide infra).

In contrast to analytes 1 and 2, analyte 3 (2-phenylphenol)
underwent complete decomposition with ClO2 treatment,
yielding a much more complex product profile. Unlike analytes
1 and 2, which formed predominantly single aromatic ring
oxidation products, the chlorine dioxide treatment of analyte

3 led to only minor amounts of such products, with the
majority of oxidation products maintaining the core biphenyl
structure. Such differences in product distribution between the
analytes strongly suggests that the bridging methylene unit of the
bisphenol structures of 1 and 2 (absent in analyte 3) provided
a site for C-C bond cleavage that enabled single aromatic
ring products to form. In addition to the biphenyl-containing
oxidation products, a variety of chlorinated products were also
formed, most of which resulted from chlorination of the initially
formed oxidized compounds (Figure 5). The ratio of oxidation
products to chlorination products formed from chlorine dioxide-
mediated decomposition of analyte 3, with increasing equivalents
of α-cyclodextrin effectively protecting the aromatic ring from
undesired chlorination reactions (as shown by increasing values
of the oxidation to chlorination ratio observed, Table 2).

Overall, the results obtained for analyte 1 at room
temperature, and analytes 2 and 3 at 40◦C indicate that the
presence of cyclodextrin markedly increases the percentage
of non-chlorinated oxidation products formed, with the one
anomalous result, obtained for the chlorine dioxide treatment
of analyte 1 at 40◦C, discussed later in the manuscript. Of note,
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FIGURE 4 | Illustration of how the chlorine dioxide-mediated decomposition of bisphenol F leads to the formation of quinols and chloroquinols exclusively.

TABLE 2 | Ratio of oxidation to chlorination products formed by treating aromatic

analytes 2 and 3 with chlorine dioxide with varying cyclodextrin equivalentsa.

Analyte 0 eq. α-CD 24 eq. α-CD 60 eq. α-CD

2 1.2 1.5 1.5

3 3.2 4.5 5.1

aReactions were run at 40◦C for 24 h, and the ratio of oxidation to chlorination products

was determined via GC-MS analysis.

both substrates with bridging methylene units (compounds
1 and 2) decomposed primarily into single aromatic ring
oxidized units [(chloro)quinols and (chloro)quinones]. Such
results have substantial relevance from a practical as well as a
fundamental scientific perspective. From a practical perspective,
chlorinated byproducts formed from chlorine dioxide mediated
decomposition generally have higher reported toxicities than
the non-chlorinated, oxidation products formed (Li and Mitch,
2018). As a result, the ability to decrease the relative amount
of chlorinated products through α-cyclodextrin addition is
particularly attractive, especially as α-cyclodextrin itself has
almost no reported toxicity (Cal and Centkowska, 2008), and
in fact has been used for a variety of biomedical applications
due to its generally recognized safety (Szente et al., 2018).
From a fundamental perspective, the fact that α-cyclodextrin
complexation suppresses the chlorination processes is likely
due to hydrophobic encapsulation of the phenyl rings in the
cyclodextrin cavity, in a way that provides steric shielding and
prevents aromatic chlorination from occurring (vide infra). Such
supramolecular shielding provides insight into the mechanism of
cyclodextrin complexation, how such complexation depends on
the structure of the encapsulated guest, and how such complexes
affect guest reactivity.

Mechanistic Investigations
There are multiple fundamental mechanistic questions involved
in this process, including how α-cyclodextrin affects the
product distribution of chlorine dioxide mediated degradation,
as well as how variations in substrate structure affect product
distribution and the underlying reaction mechanism. Most
likely, the binding of phenyl groups in the cyclodextrin
cavity (Figure 6) provides supramolecular steric shielding from

undesired aromatic chlorination. Moreover, the benzylic position
on the substituent, which must be accessed to effect oxidation
reactions, remains relatively unhindered. Electronic activation of
that benzylic position through hydrogen bonding to the rims of
cyclodextrins can also accelerate the desired oxidation reactions,
and evidence for such activation is provided through 1H NMR
analysis (vide infra).

Overall, the treatment of the analytes with chlorine dioxide led
to highly analyte-specific results. Both analytes 1 and 2 yielded
oxidation products with primarily single ring aromatic groups,
whereas analyte 3 maintained its biphenyl structure, indicating
that the bridging methylene group of analytes 1 and 2 plays a
key role in facilitating oxidative bond cleavage. Differences in the
product distribution of analytes 1 and 2 indicate amarkedlymore
complex product mixture for analyte 1’s treatment with chlorine
dioxide, with major products of chloroquinol and chloroquinone
and numerous minor products, generally with higher molecular
weights (indicating radical-radical recombination). For analyte 1,
the fact that the ratio of chloroquinol to chloroquinone increased
with increasing equivalents of α-cyclodextrin indicates that the
cyclodextrin effectively inhibits oxidation of chloroquinol. In
contrast, increasing the equivalents of α-cyclodextrin in the
analyte 2 decomposition process led to an increased ratio of
quinol to chloroquinol, which indicates that the chlorination
reaction pathway was inhibited by α-cyclodextrin.

The proposed mechanism is further supported by 1H NMR
chemical shift studies of the analytes in presence of increasing
equivalents of α-cyclodextrin, and key results are summarized
in Table 3 and Figure 7. In particular, all aromatic protons
of the analytes demonstrated significant chemical shifts upon
the addition of increasing concentrations of α-cyclodextrin,
supporting supramolecular encapsulation of the type shown in
Figure 6. Moreover, for analytes 1 and 2, significant changes in
chemical shift were also observed for the methyl group protons
at the bridging carbon (for analyte 1) or for the protons directly
on the methylene bridge (for analyte 2), which indicates the
existence of significant non-covalent interactions between this
part of the molecule and the cyclodextrin host (Yang et al., 2008).
Such interactions are likely intermolecular hydrogen bonding
between the hydroxyls located at the cyclodextrin rim and the
protons between the aromatic rings, which in turn activates the
benzylic position for the desired oxidation reactions.
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FIGURE 5 | Illustration of the products formed from chlorine dioxide-mediated decomposition of analyte 3.

FIGURE 6 | Schematic illustration of how α-cyclodextrin binds to aromatic

rings on the pollutant structures to limit aromatic chlorination.

Of note, binding of aromatic compounds in cyclodextrin that
leads to activation of benzylic positions through association with
the cyclodextrin rim is a phenomenon that has been reported
previously in the literature, both by our group (Chaudhuri
et al., 2016) and by others (Andres and de Rossi, 2003; Lopez
et al., 2007). In particular, a previous report by our group uses
binding of aromatic rings in the cyclodextrin cavity to activate
the benzylic position of benzylic alcohols and achieve effective
and mild oxidation to the corresponding aldehydes (den Braver-
Sewradj et al., 2020). Similarly, complexation in α-cyclodextrin,
reported herein, has the dual function of protecting the aromatic
ring from undesired chlorination and of facilitating effective
oxidation at the benzylic site.

Practical Applications
Real-world municipal waste water effluent samples, prior to
chlorination, were used to simulate this mediated oxidation
in practice. Such samples were doped with 100 mg/L of BPA
(analyte 1), and then treated with chlorine dioxide in the
presence or absence of α-cyclodextrin. Results of these studies
showed that α-cyclodextrin promoted the decomposition of
BPA to form hydroquinone and chlorohydroquinone, with

TABLE 3 | Changes in the 1H NMR spectral signals of protons on bisphenol A as

a function of added equivalents of α-cyclodextrin (α-CD)a.

Eq. of α-CD Methyl protons Ortho protons Meta protons

(1ppm) (1ppm)b (1ppm)c

0.5 0.0291 0.0044 0.0609

1.0 0.0400 0.0071 0.0801

1.5 0.0443 0.0077 0.0870

2.0 0.0493 0.0089 0.0920

3.0 0.0522 0.0088 0.0953

5.0 0.0609 0.0135 0.1015

a
∆ppm is defined as the difference in chemical shifts in the presence of cyclodextrin

compared to the chemical shifts in the absence of cyclodextrin, according to the

following equation.

∆ppm = δcomplex (chemical shifts in presence of α-CD) – δcontrol (chemical shifts without

α-CD).
bOrtho protons are defined as the protons that are at the ortho positions of the aromatic

ring relative to the non-aromatic bridge.
cMeta protons are defined as the protons that are at the meta positions of the aromatic

ring relative to the non-aromatic bridge.

substantially more of these products formed in the presence of α-
cyclodextrin compared to the decomposition run in the absence
of cyclodextrin (Table 4). Nonetheless, the ratio of hydroquinone
to chlorohydroquinone remained roughly unchanged by the
addition of α-cyclodextrin, a result which is surprising based on
the documented ability of α-cyclodextrin to affect this product
distribution (vide supra). Reasons for this anomalous behavior
may relate to the presence of interfering species in the wastewater
sample. In particular, higher ionic strength and/or other species
complexing with cyclodextrin sites can limit the ability to target
specific compounds for specific oxidation mechanisms. Such
treatment might be better suited in the long-term for industrial
wastewater streams where a more consistent water matrix and
a higher concentration of the targeted pollutant is available
for cyclodextrin-mediated oxidation. We expect that additional
modifications to our cyclodextrin-based system will allow
for improved performance in such samples, possibly through
combining the α-cyclodextrin with other additives that will
address the more complex nature of real-world aqueous samples.
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FIGURE 7 | Copies of 1H NMR spectra of the aromatic protons of (A) analyte 1; (B) analyte 2; and (C) analyte 3 in the presence of increasing equivalents of

α-cyclodextrin.

TABLE 4 | Summary of the formation of hydroquinone and chlorohydroquinone

from chlorine dioxide mediated decomposition of BPA in real-world wastewater

samples, measured as normalized integrated peak emissions from GC-MS.

Decomposition product Without α-CD With α-CD

Hydroquinonea 0.17 0.31

Chlorohydroquinonea 0.51 1.00

Ratio of hydroquinone to chlorohydroquinoneb 0.33 0.31

aValues reported herein represent the integrated area of the GC-MS peaks that

correspond to each analyte, with the results normalized so that the highest value peak

(chlorohydroquinone in the presence of α-CD) is equal to 1.0.
bRatio of hydroquinone to chlorohydroquinone is calculated as the quotient of the

integrated area of the peak corresponding to hydroquinone divided by the integrated area

of the peak corresponding to chlorohydroquinone.

CONCLUSIONS

The ability to change the product distribution of chlorine dioxide
mediated degradation of organic pollutants via supramolecular
complexation of the pollutants has substantial practical benefit
in improving wastewater treatment methodologies, and is of
interest from a fundamental scientific perspective as well. Results
reported herein highlight that the use of α-cyclodextrin to bind
small aromatic pollutants affects the accessibility of the structure
to the chlorine dioxide reagent and the resulting distribution
of oxidation to chlorination products in a way that is highly
dependent on the structure of the reagent, the temperature of the
treatment, and the molar equivalents of α-cyclodextrin added,
with most cases resulting in a marked decrease in the relative
amounts of chlorinated byproducts obtained. Reasons for these
effects rely on the supramolecular complexation of the pollutants,
confirmed by 1H NMR analysis, which cause steric shielding of
the phenyl groups of the pollutants to undesired chlorination.
Overall, the addition of α-cyclodextrin generally increases the
ratio of water-soluble oxidation products and decreases the
amount of toxic chlorination products, through the addition
of a non-toxic, sugar-based cyclodextrin additive. The results
reported herein provide significant groundwork for further

development of novel and highly effective water treatment
procedures, and open the possibility of using cyclodextrin-
mediated complexation in other water treatment and pollutant
removal processes.
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