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Fullerol (C60OH) has been shown to catalyze the trisodium citrate (TSC)–silver

nitrate reaction to generate Ag nanoparticles (AgNPs). These AgNPs exhibit

significant nanoplasmic surface-enhanced Raman scattering (SERS), resonance

Rayleigh scattering (RRS), and absorption (Abs). When an aptamer (Apt) adsorbs

on the C60OH surface, catalysis is inhibited, and the intensities of SERS, RRS, and

Abs decrease. In the presence of isocarbophos (IPS), Apt forms a stable complex

(Apt-IPS) and releases C60OH. As a result, SERS, RRS, and Abs intensities increase

with increasing IPS concentration. Accordingly, a new SERS, RRS, and Abs trimodal

method using Apt-labeled fullerol was established for the determination of IPS. Of the

three spectral methods, SERS was the most sensitive, while the Abs method was the

most cost-effective.

Keywords: isocarbophos, aptamer, fullerol nanocatalysis, SERS, RRS, Abs

INTRODUCTION

Surface plasmon resonance (SPR) is an optical phenomenon caused by the oscillation of free
electrons in a metal surface layer produced by incident light (Jackman et al., 2017). Because of
their exponentially larger surface areas, metal nanoparticles exhibit enhanced SPR and produce
a more sensitive response. With the development of nanomaterial fabrication technologies, SPR
has been used increasingly for the analysis of metal nanomaterials (Ye et al., 2016; Ouyang et al.,
2017). Surface-enhanced Raman spectroscopy (SERS), in which the SPR effect is amplified by
substances adsorbed on the nanoparticle surface, is an increasingly popular direct application
of nanoscale plasma detection (Alvarez-Puebla and Liz-Marzan, 2012). Nanomaterials, especially
those comprising noble metals and carbon nanomaterials, have novel spectral, electric, magnetic,
thermal, and chemical properties (Gao et al., 2007; Kotov, 2010; Wei and Wang, 2013). Because
noble metal nanomaterials, such as AuNPs and AgNPs, possess both catalytic activity and SERS
activity, they have drawn attention (Jiang et al., 2008, 2010a,b; Liang et al., 2011, 2015; Yao
et al., 2013). Carbon-based nanomaterials have abundant conjugated π bonds (C=C), which are
characterized by high electron density, delocalization, and electron transfer ability (Krätschmer
et al., 1990; Zhang et al., 2011; Zhao et al., 2016; Zhou et al., 2016; Justino et al., 2017) and have
potential as green catalysts. Fullerene is of particular interest as a promising carbon nanomaterial,
and it has been widely used in solar energy conversion materials and catalysis (Zhao et al., 2016;
Cai et al., 2017) since it was successfully prepared. C60 is stable and possesses good electron-transfer
ability, due to the highly delocalized conjugated system consisting of 30 C=C bonds (Starodubtseva
et al., 2008; Zhang et al., 2016). However, C60 is a hydrophobic nanomaterial; it has very low
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aqueous solubility and easily forms aggregates in water,
which restricts its applicability (Jafvert and Kulkarni, 2008).
Modification (such as carboxylation and hydroxylation) of the
C60 surface enhances its water solubility and expands the range
of possible applications (Mohan et al., 1998; Niu et al., 2011; Li
et al., 2013; Lu et al., 2013; Hang et al., 2014; Lanzellotto et al.,
2014; Cao et al., 2016; Xu et al., 2016; Najafi, 2017). Lanzellotto
et al. (2014) constructed a Trametes versicolor laccase biosensor
on Au-AuNC60OH. Fullerol enhanced the electron transfer
between the active site of the enzyme and the electrode surface,
leading to improved electrochemical biosensor performance. Tea
polyphenols in beer were detected in the range of 0.03–0.30
mmol/L, with a limit of detection of 6 µmol/L.

Isocarbophos (IPS) is a fast-acting insecticide and acaricide
that can cause poisoning by the esophagus, skin, and respiratory
tract; all these have acute toxicity and cause cancer (Yamashita
et al., 1997). The widespread uses of organic phosphorous
insecticides indicate the extensive availability and potential for
accidental and intentional human exposure (El-Behissy et al.,
2001). Therefore, a rapid and accurate analytical method for
the estimation of IPS is required. The main methods for IPS
detection include chromatography (Huang et al., 2002; Yao et al.,
2015; Li et al., 2017), chemiluminescence (Chen et al., 2012),
and electrochemical methods (Yan et al., 2012). In recent years,
new methods, such as highly selective aptamers and catalytic
techniques, have been used to detect IPS (Pang et al., 2014;
Zhang et al., 2014; Chen et al., 2017). In this paper, we propose
nanocatalytic SPR spectroscopy for IPS detection, combining
the favorable electron-transfer capabilities and catalytic behavior
of fullerol to catalyze the sodium citrate–silver nitrate reaction
and generate SPR on silver nanoparticles. The inhibitory effect
on the catalytic reaction of the aptamer has been studied.
Isocarbophos was selected as the target for a nanocatalytic SPR
spectroscopy method. To the best of our knowledge, this is the
first report describing the use of SPR (SERS, RRS, and Abs)
combined with aptamer-labeled C60OH and AgNP (generated
from the trisodium citrate–silver nitrate catalytic reaction) for the
detection of IPS.

MATERIALS AND METHODS

Apparatus
The following instrumentation was used: a DXR SmartRaman
spectrometer (Thermo Company, USA) with a 633-nm laser at
3 mW power, a Cary Eclipse fluorescence spectrophotometer
(Varian Company, USA), a TU-1901 double-beam UV-Visible
spectrophotometer (Beijing General Instrument Co., LTD,
China), and a FEI Quanta 200 FEG field-emission scanning
electronmicroscope (Field Electron and Ion Company, Holland).

Reagents
Aptamer (Apt) sequence of 5′-3′ AGC TTG CTG CAG CGA
TTC TTG ATC GCC ACAGAG CT [Sangon Biotech (Shanghai)
Co., Ltd., China], 0.01 mol/L silver nitrate (Sinopharm
Chemical Reagent Co. Ltd., China), 0.2 g/L fullerene(C60),
0.04 g/L fullerol(C60OH), 0.1 g/L graphene oxide(GO) (Nanjing
XFNANO Materials Tech Co., Ltd, China), 0.1 mol/L trisodium

citrate (TSC) (Xilong Scientific Co., Ltd., China), 10.3 mol/L
Victoria Blue B (VBB) solution, Victoria 4R (VB4R) solution,
rhodamine S (RhS), rhodamine 6G (Rh6G, Sinopharm Chemical
Reagent Co., Ltd., China), isocarbophos (Beijing Century
OuKe Biological Technology Co., Ltd., China), profenofos
(Sinopharm Chemical Reagent Co., Ltd., China), and glyphosate
(J&K Scientific Ltd., China) were prepared. All reagents were
analytically pure, and water was double-distilled.

To prepare fullerene (Andrievsky et al., 1995), 0.02 g fullerene
was dissolved in 20mL methylbenzene to give a bright purple
solution. Double-distilled water (100mL) was added, and
the solution was sonicated until the toluene was completely
volatilized. The solution changed to a dark-yellow suspension,
and 0.2 g/L of fullerene sol was obtained.

Hydroxylated fullerene was prepared, referring to Li et al.
(1998): 1mL 0.2 g/L fullerene sol, 10 µL 30% H2O2 solution,
and 100 µL 1 mol/L NaOH were mixed and reacted at room
temperature. Then, 98 µL 1 mol/L hydrochloric acid was
added to adjust pH to 7.5 and diluted 5mL with water to
obtain 0.04 g/L C60OH.

Procedure
Apt (20 µL of a 1.5 µmol/L solution), a certain amount of IPS,
and 10 µL of 0.04 g/L fullerol solution were added to a 5-mL
graduated tube, mixed well, and allowed to react for 10min. Next,
200 µL 0.01 mol/L AgNO3 and 70 µL 0.1 mol/L trisodium citrate
were added and diluted to 1.5mL. The mixture was heated for
21min to 85◦C in a water bath, then cooled with ice water. Next,
50 µL of 1.0 × 10−5 mol/L VBB and 40 µL of 1 mol/L NaCl
were added and mixed well. SERS spectra were recorded using
a Raman spectrometer. SERS intensity of the reaction solution at
1614 cm−1 (I1614cm−1 ) and the blank solution without IPS (I0)
were recorded. The value of 1I = I1614 cm−1 − I0 was calculated.

RESULTS AND DISCUSSION

Principle
C60(OH)n is a good electron acceptor (Samal and Sahoo,
1997). It transfers electrons from a donor to an acceptor,
thereby facilitating, or catalyzing, the reaction. The silver nitrate–
trisodium citrate reaction does not occur in solution because
of the effective collision between silver ions and citrate. When
C60(OH)n is added, silver ions and citrate adsorb onto its surface,
allowing electrons to transfer from citrate to silver ions, which
leads to the generation of silver, 1,3-acetonedicarboxylic acid,
and CO2. Silver assembles as yellow Ag nanoparticles (Figure 1).
Fullerol has abundant hydroxyl groups that can form hydrogen
bonds with water; it combines better with silver ions and citrate
for more efficient electron transfer. Thus, fullerol has enhanced
catalytic ability compared to fullerenes lacking the hydroxyl
group. An aptamer coating on the fullerol surface hinders the
interaction between C60(OH)n and citrate and silver ions, such
that C60(OH)n catalytic activity is inhibited. In the presence of
IPS specific to the aptamer, C60(OH)n is once again exposed
to the reaction system and its catalytic activity is recovered.
The amount of Ag nanoparticles generated increases linearly
with IPS concentration. Using this relationship, a method to
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FIGURE 1 | An aptamer trimode analytical platform for IPS based-C60(OH)n catalytic amplification and AgNP trifunctional probex.

detect IPS using the SPR absorption spectrum, RRS, and SERS
was developed.

SERS Spectra
In this study, fullerol exhibited increased catalytic activity
compared to C60. Fullerol has –OH groups with excellent
water solubility that increase its catalytic activity compared to
C60. Thus, fullerols were prepared by H2O2 oxidization using
a previously published procedure (Li et al., 1998). Hydroxyl
content in fullerol increases with increasing H2O2 (Figure S1),
as does the catalytic action of silver nitrate–trisodium citrate;
a 70-mmol/L H2O2 solution was selected to obtain highly
catalytic fullerol (C60OH). VBB, VB4R, RhS, Rh6G, and RhB
were used as signal molecules; their strongest SERS peaks
occurred at 1614, 1385, 1361, 1362, and 1508 cm−1, respectively
(Figure S2). The SERS intensities of VBB and VB4R were
stronger than those of the others; VBB was chosen for further
study. The catalytic activities of C60OH, C60, GO, and AgNPwere
investigated (Figure 2A and Figure S3). C60OH exhibited the
highest catalytic activity and was chosen for use. In the presence

of Apt, which coats the fullerol surface and isolates it from the
reactants, fullerol catalytic activity is suppressed and decreased
SERS intensity is observed (Figure 2B). When added to the
system, IPS conjugates to Apt, releasing fullerol and restoring its
catalytic activity. As the IPS concentration increases, the amount
of released fullerol increases and more AgNP is produced as well;
thus, SERS intensity increases linearly with IPS concentration
(Figure 2C and Figure S4).

RRS and Absorption Spectra
In a water bath at 85◦C, fullerol and other nanoparticles
catalyze the reaction of silver nitrate and trisodium citrate to
generate AgNP, which exhibits two strong RRS peaks at 360
and 550 nm (Figure 3 and Figure S5A) and a strong surface
plasma resonance (SPR) absorption peak at 410 nm (Figure 4 and
Figure S6A). The RRS peak at 550 nm is characteristic of AgNP,
and the intensity of 1I550nm and 1A410nm increase linearly with
the amount of nanocatalyst. When Apt coats the nanocatalyst
surface, it isolates the nanocatalyst from the system and inhibits
its catalytic activity, leading to decreased 1I550nm and 1A410nm
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FIGURE 2 | SERS spectra. (A) C60OH–AgNO3-TSC catalytic system. (0, 2.67, 5.33, 13.33, 26.67, 53.33, 133.33, 266.67, 533.33 µg/L) C60OH4+ 1.33 mmol/L

AgNO3 + 4.67 mmol/L TSC +85◦C+21min +3.33×10−7 mol/L VBB+0.02 mol/L NaCl. (B) Apt–C60OH–AgNO3-TSC inhibitory catalytic system. (0, 1.03, 2.07, 5.17,

10.33, 15.5, 20.67 nmol/L) Apt + 266.67 µg/L C60OH+21min +1.33 mmol/L AgNO3+4.67 mmol/L TSC+85◦C+3.33×10−7 mol/L VBB+0.02 mol/L NaCl.

(C) Apt–C60OH–AgNO3-TSC-IPS detection system. 20.67 nmol/L Apt + 266.67 µg/L C60OH+ (0, 0.02, 0.05, 0.21, 0.52, 2.07, 5.17 µg/L) IPS + 1.33 mmol/L

AgNO3+ 4.67 mmol/L TSC+85◦C+21min +3.33×10−7 mol/L VBB+0.02 mol/L NaCl.
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FIGURE 3 | RRS spectra. (A) C60OH–AgNO3-TSC catalytic system, (0, 13.33, 26.67, 53.33, 133.33, 266.67, 533.33 µg/L) C60OH+ 1.33 mmol/L AgNO3+ 4.67

mmol/L TSC +85◦C+21min +3.33×10−7 mol/L VBB+0.02 mol/L NaCl. (B) Apt–C60OH–AgNO3-TSC-IPS detection system, 20.67 nmol/L Apt + 266.67 µg/L

C60OH + (0, 0.1, 0.21, 0.52, 1.03, 2.07, 5.17 µg/L) IPS + 1.33 mmol/L AgNO3+ 4.67 mmol/L TSC +85◦C+21min +3.33×10−7 mol/L VBB+0.02 mol/L NaCl.

values. In the presence of IPS, which conjugates specifically with
Apt, fullerol is released and its catalytic activity recovers. As IPS
concentration increases, the amount of released fullerol increases,
as does the amount of AgNP generated; consequently, 1I550nm
and 1A410nm intensities increase linearly with IPS concentration
(Figures 3B, 4B and Figures S5B, S6B).

The Catalytic Effect of C60OH and
Inhibition of the Aptamer
In the absence of the catalyst, AgNO3 does not react readily
with trisodium citrate. However, in the presence of a fullerol
nanocatalyst, silver ions and citrate adsorb to the fullerol surface
by interface free energy. As shown in Figure S7, the intensity
of RRS for fullerol in aqueous solution is considerably lower
than that of fullerene, suggesting that the fullerol particle size
is less than that of fullerene. This may be responsible for the
reduced catalytic activity of fullerenes compared to fullerol. In

addition, silver ions and citrate adsorb to the surface more
readily and electron transfer between the silver and citrate ions
occurs more efficiently. That is, smaller particles demonstrate
greater catalytic efficiency. As shown in Table 1, the slope of the
C60OH catalytic system is about 50 times that of C60. In addition,
the catalytic effect of AgNP on this reaction was studied. As
shown in Figure S8 and Table 1, AgNP is an effective catalyst
even with AgNP concentrations as low as 13.33 nmol/L. AgNP
participates in autocatalysis, strengthening the catalytic effect.
Furthermore, fullerene was hydroxylated using H2O2, according
to a previously published procedure [42] and its catalytic activity
was determined. Fullerol exhibited enhanced catalytic activity
(compared to fullerene), and its catalytic activity increased with
increasing hydroxylation (Table 1). This suggests that improved
solubility of fullerol in water would increase its ability to bind
with ions, thereby enhancing catalysis. When Apt is added, the
intensity of RRS increases, as shown in Figure S7C, indicating
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FIGURE 4 | Absorption spectra. (A) C60OH–AgNO3-TSC catalytic system, (0, 5.33, 13.33, 26.67, 53.33, 133.33, 266.67, 533.33 µg/L) C60OH + 1.33 mmol/L

AgNO3 + 4.67 mmol/L TSC +85◦C+21min +3.33×10−7 mol/L VBB+0.02 mol/L NaCl. (B) Apt–C60OH–AgNO3-TSC-IPS detection system, 20.67 nmol/L Apt +

266.67 µg/L C60OH + (0, 0.1, 0.21, 0.52, 1.03, 2.07, 5.17 µg/L) IPS + 1.33 mmol/L AgNO3+ 4.67 mmol/L TSC +85◦C+21min +3.33×10−7 mol/L VBB+0.02

mol/L NaCl.

TABLE 1 | The catalytic effect of various catalyst and the inhibiting effect of Apt.

System Linear equation Linearity range Correlation

coefficient (R2)

C60 1I1614cm−1 = 0.24 C +

155.77

133.33–13333.33 µg/L 0.9954

C60OH 1I1614cm−1 =9.33 C +

127.81

13.33–533.33 µg/L 0.9947

C60OHP 1I1614cm−1 =9.33 C +

127.81

13.33–533.33 µg/L 0.9947

AgNP 1I1614cm−1 = 11.36 C +

50.21

1.44∼359.56 µg/L 0.9979

Apt-C60OH 1I1614cm−1 = 132.8 C +

157.15

1.03∼20.67 nmol/L 0.9797

Apt-C60 1I1614cm−1 = 21.41 C –

9.85

5.17∼51.67 nmol/L 0.9913

that Apt coats the nanocatalyst surface and blocks the adsorption
of silver and citrate ions to the nanocatalyst, inhibiting its
catalytic activity. It is worth mentioning that the catalytic activity
of fullerol is suppressed by Apt (Table 1). This is likely due to
its smaller size; the hydroxyl group of fullerol produced a better
combination of hydroxyl and –COOH, –NH2.

Scanning Electron Microscopy (SEM)
The reaction solution was prepared and diluted 10 times. A
10 µL sample solution was dropped onto a silicon wafer and
allowed to dry naturally, then scanning electron microscopy
(SEM) was performed. As shown in Figure 5, in the absence
of IPS, few AgNPs are detected in the reaction solution, with
a mean grain size of 20 nm (Figure 5A). Upon addition of IPS,

the catalyst recovered catalytic activity; a large amount of AgNP
was generated and formed aggregates with a mean grain size
of 40 nm (Figure 5B).

Optimization of Catalysis Conditions
The effect of reagent concentration on the determination was
studied. When AgNO3 and TSC concentrations were 1.33 and
4.67 mmol/L, respectively, the SERS value was at its maximum.
Thus, 1.33 mmol/L AgNO3 and 4.67 mmol/L TSC were chosen
as the optimal concentrations (Figures S9, S10). The effects of
reaction temperature and time were tested as well; 85◦C and
21min resulted in the maximum value for1I (Figures S11, S12).
The effects of VBB, VB4R, RhB, RhS, and Rh6G concentrations
on 1I were considered. Maximum 1I was observed at VBB,
VB4R, RhB, RhS, and Rh6G concentrations of 3.33 × 10−7

mol/L, 1× 10−6 mol/L, 1× 10−5 mol/L, 1.67× 10−6 mol/L, and
1 × 10−6 mol/L, respectively. Among these, VBB was selected
because of its lower detection limit (Figure S13). At an Apt
concentration of 20.67 nmol/L, the1I value reached a maximum
value and thus was chosen for use (Figure S14). Binding times
for the aptamers with fullerol were tested. A maximum value of
1I was reached and maintained at 8min; thus, it was chosen as
the optimal binding time (Figure S15).

Working Curve
Using the optimal conditions described in section Optimization
of Catalysis Conditions, working curves were prepared for IPS
concentration at the corresponding 1I1614cm−1 , 1I550nm, and
1A410nm values for SERS, RRS, and Abs, respectively (Figure 6
and Figures S16–S19). Analytical characteristics are listed in
Table 2. SERS exhibited the best performance, with a maximum
slope of 492.83, and a limit of detection of 8.2 ng/L; RRS
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FIGURE 5 | SEM of aptamer–C60OH–AgNO3-TSC-IPS detection system. (A) 20.67 nmol/L Apt + 266.67 µg/L C60OH + 1.33 mmol/L AgNO3+ 4.67 mmol/L TSC

+85◦C+21min; (B) a+ 0.21 µg/L IPS.

FIGURE 6 | Working curve for the SERS determination of Apt–C60OH–AgNO3-TSC-IPS. 20.67 nmol/L Apt + 0.05–5 µg /L IPS + 266.67 µg/L C60OH + 1.33

mmol/L AgNO3+ 4.67 mmol/L TSC+85◦C+ 21min +3.33×10−7 mol/L VBB+0.02 mol/L NaCl.

TABLE 2 | Analytical characteristics of the aptamer adjust catalysis-Ag nano plasma SERS for the determination of IPS.

Test method System Working curve Linearly range Limit of detection Coefficient (R2)

SERS C60OH-VBB 1I1614cm−1 = 492.83 C + 29.74 0.02∼5.17 µg/L 8.2 ng/L 0.9982

C60OH-VB4R 1I1385cm−1 = 364.83 C + 35.84 0.02∼5.17 µg/L 9.1 ng/L 0.9945

C60OH-RhS 1I1361cm−1 = 301.08 C + 62.38 0.02∼5.17 µg/L 8.7 ng/L 0.9904

C60OH-Rh6G 1I1362cm−1 = 292.33 C + 60.7 0.02∼5.17 µg/L 10.3 ng/L 0.9906

C60OH-RhB 1I1508cm−1 = 203.21 C + 23.26 0.02∼5.17 µg/L 10.1 ng/L 0.9946

C60-VBB 1I1614cm−1 = 78.41 C + 44.20 0.21∼15.5 µg/L 0.03 µg/L 0.9954

GO-VBB 1I1614cm−1 = 80.67 C + 64.34 0.52∼15.5 µg/L 0.2 µg/L 0.9816

AgNVBB 1I1614cm−1 = 361.28 C + 69.57 0.02∼5.17 µg/L 10.2 ng/L 0.9824

RRS C60OH 1I550nm = 456.26 C + 122.29 0.1∼5.17 µg/L 0.02 µg/L 0.9828

C60 1I550nm = 183.95 C + 46.36 0.1∼5.17 µg/L 0.02 µg/L 0.9883

Abs C60OH 1A410nm = 0.27 C + 0.07 0.52∼15.5 µg/L 0.03 µg/L 0.9845

C60 1A410nm = 0.05 C – 0.0014 0.52∼15.5 µg/L 0.04 µg/L 0.9917

was the next most effective method. However, the Abs method
is inexpensive, convenient, and aligns with national standards
such that it could be used for on-site tests. Fullerol, because

of its small size, higher surface electronic density, and ability
to bind with silver and citrate ions, displays enhanced catalytic
activity and a greater sensitivity for IPS detection compared
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TABLE 3 | Sample analysis results (n = 5).

Sample Found Added Found Recovery/%

Pond water – 2 µg/L 2.01 µg/L 100.5%

Lijiang River – 2 µg/L 1.95 µg/L 97.5%

Cropland 1 – 2 µg/L 2.03 µg/L 101.5%

Cropland 2 0.22 µg/L 2 µg/L 2.28 µg/L 103%

Grape – 2 µg/L 1.86 µg/L 93%

Orange – 2 µg/L 1.92 µg/L 96%

Chinese cabbage – 2 µg/L 2.01 µg/L 100.5%

Pond water – 2 µg/L 2.01 µg/L 100.5%

to fullerene. Organophosphate analogs glyphosate, profenofos,
and tributylphosphine also were detected using this method,
according to the linear equations I1614cm−1 = 0.93CIPS +

93.71, I1614cm−1 = 0.31CIPS + 75.53, and I1614cm−1 =

0.87CIPS + 66.21, respectively (Figure S20). These detection
ranges exceeded that of IPS, and the components did not
interfere with the determination. Compared to previously
reported methods for the determination of IPS, the SERS,
RRS, and Abs method (Table S1) is simpler, requires an
easily obtainable reagent, is highly sensitive, and exhibits good
selectivity. It can be used to detect IPS residues in water and
agricultural products.

Influence of Substances
Using fullerol as a catalyst, the influence of coexisting
substances on the determination of 2 µg/L IPS was tested.
The results indicate that common substances do not interfere
with IPS determination (Table S2), with a relative error
of±10%.

Sample Analysis
Three water samples, taken from a pond, Lijiang, and cropland
were collected using two 100mL glass sampling bottles and were
then filtered through a 150 nm filter membrane to obtain sample
solutions, which were stored at 4◦C. Food samples (200 g grape,
265 g orange (3), and 200 g Chinese cabbage) were purchased
from farmer markets. The samples were immersed in 100mL
of acetone for 2 h. Extracts were air-dried, then dissolved with
sonication in 100mL water, and then stored at 4◦C. Samples
(50 µL) were then tested for IPS content. A known amount of

IPS was added to each sample, and recoveries of 93–101.5% were
obtained (Table 3).

CONCLUSIONS

C60OH is an effective catalyst to generate yellow AgNP via
the AgNO3-trisodium citrate reaction. The generated AgNPs
exhibit a strong plasma resonance effect that increases linearly
with catalyst amount at a certain concentration. RRS spectra
demonstrate that the abundant hydroxyl groups of C60OH
increase its hydrophilicity and its ability to bind silver and citrate
ions, resulting in increased catalytic activity compared to C60.
When C60OH is coated with an aptamer, silver ions cannot
bind to C60OH, and catalytic activity is suppressed. Conversely,
when isocarbophos conjugates with the specific aptamer, C60OH
is released and catalytic activity is recovered. SPR (Abs,
RRS, and SERS) intensities increased linearly with increasing
IPS concentration. Thus, aptamer binding and nanocatalysis
combine with SPR to provide a sensitive, selective, simple, and
rapid method for the determination of IPS.
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