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The surface wettability of plants exhibits many unique advantages, which enhances the

environmental adaptability of plants. In view of the rapid development of responsive

materials, smart surfaces have been explored extensively to regulate surface wettability

through external stimuli. Herein, we summarized recent advancements in bioinspired

surfaces with switchable wettability. Typical bioinspired surfaces with switchable

wettability and their emerging applications have been reviewed. In the end, we have

discussed the remaining challenges and provided perspective on future development.
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INTRODUCTION

The surface wettability of plants exhibits unique advantages (Wu et al., 2009, 2010, 2011a,b;
Jiang et al., 2011), which enhances the environmental adaptability and improves survival chances.
(Zhang et al., 2012a, 2019b, 2020; Yong et al., 2017) For example, water droplets roll freely on the
surface of lotus leaves, which shows self-cleaning characteristics (Figure 1a; Zhang et al., 2012c).
Rose petals demonstrate water droplets pinning effect, which is helpful for keeping rose petals
hydrated (Figure 1b; Zhang et al., 2012b) Water droplets on the surface of reed leaves prefer to
flow along the direction of the parallel leaf veins (Figure 1c; Wang et al., 2015) This anisotropic
rolling characteristic plays an important role in collecting dewdrops on the roots and improves
the environmental adaptability in dry and hot climates (Jiang et al., 2016). Insects easily slide from
the edge of pitcher plants to the inner bottom and provide nourishment for the pitcher plants
(Figure 1d; Huang et al., 2017; Zhang et al., 2017). Similar to insects, water droplets are also easy to
slide on the liquid-infused surface (Yong et al., 2018). In addition, there are plenty of stimulated-
responsive creatures on our planet. For example, organisms show reversible deformable body
postures under environment stimulate (Cui et al., 2019). Chameleon owns excellent camouflage
capabilities (Jiang et al., 2019b). Venus Flytrap generates closure motions under external forces (Le
et al., 2019). Pinecone opens in dry environment and closes in wet environment (Mulakkal et al.,
2018). Currently, motivated by such examples with extreme wettability and stimulated-responsive
creatures, bioinspired surfaces with switchable wettability have been proposed and prepared (Xin
et al., 2018; Jiang et al., 2019a; Han et al., 2020; Li et al., 2020).

Smart surfaces have attracted considerable interests because the surface chemistry and surface
roughness play an important role in controlling surface wettability (Fang et al., 2010; Xu et al.,
2013; Huang et al., 2017; Wei et al., 2017). Nowadays, the rapid development of responsive
materials has enabled surface chemistry and surface roughness change to switch surface wettability
through external stimuli (Xin et al., 2016; Wu et al., 2017; You et al., 2018; Salter and Booth,
2019; Zhang et al., 2019c; Fu et al., 2020; Zou et al., 2020). Due to the reversible dynamic
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FIGURE 1 | Bioinspired Smart Surfaces with Switchable Wettability. (a) Photograph of a lotus leaf. Reproduced from Wang et al. (2018b) with permission of

WILEY-VCH. (b) Photograph of a rose. Reproduced from Wang et al. (2018b) with permission of WILEY-VCH. (c) Photograph of reed leaves. Reproduced from Jiang

et al. (2018) with permission of American Chemical Society. (d) Photograph of Nepenthes pitcher plants. Reproduced from Huang et al. (2017) with permission of

(Continued)
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FIGURE 1 | WILEY-VCH. The schemes for typical surfaces with switchable wettability based on (e) surface chemistry changing, (f) surface roughness changing, and

(g) a combination changing of surface chemistry and surface roughness. (h) Photothermal response. Reproduced from Geng et al. (2018) with permission of

WILEY-VCH. (i) Electric response. Reproduced from Oh et al. (2018) with permission of WILEY-VCH. (j) Magnetic response. Reproduced from Huang et al. (2017) with

permission of WILEY-VCH. (k) Pneumatic response. Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/) (Wang et al., 2018a). Copyright 2018, the authors, published by Springer Nature. (l) PH response. Reproduced from

Zhu et al. (2017) with permission of American Chemical Society.

control capability, tremendous effects have been devoted to
developing driving techniques (Yin et al., 2018; Liu et al., 2020;
You et al., 2020) such as temperature, light, electric/magnetic
fields, chemicals, and mechanical motion (Han et al., 2015a,b,
2016; Yong et al., 2015). Importantly, the stimulated-responsive
bioinspired surface has great prospects in diverse applications,
such as droplet manipulations, oil-water separation, cell culture,
smart skin (Yang et al., 2018; Liu et al., 2019; Lu et al., 2019).

In this minireview, we focus on the recent advancements
in bioinspired stimulated-responsive surfaces with switchable
wettability. Typical examples, such as thermal/photothermal,
electric, magnetic, mechanical motion and chemical response
surfaces, have been summarized. Finally, the challenges and
future perspective for smart surfaces with switchable wettability
are also discussed.

MECHANISM

Typically, surface chemistry and surface roughness play
important roles in the surface wettability. According to the
Cassie equation (Li et al., 2019; Zhang et al., 2019a; Namdari
et al., 2020): cos θ

∗ = f s cos θ s - f a; f s + f a =1, θ
∗ and θ s

are the apparent contact angle (CA) and intrinsic CA of the
substrate. f s and f a are apparent area fractions of the substrate
and air troughs. Therefore, the surface wettability becomes
switchable when the surface chemistry and surface roughness
change under different environment stimuli. For example, as
shown in the Figure 1e, the surface is initially hydrophobic
without stimuli because of the structured substrate. Under
stimuli, the surface chemical composition changes, leading to
the changing of θ s. Therefore, the surface water CA changes.
Similarly, as shown in the Figure 1f, the surface water CA
changes when the apparent area fractions of the substrate and
air troughs change (f s and f a) under environment stimuli.
In addition, a combination change of surface chemistry and
surface roughness can be used to design surfaces with switchable
wettability (Figure 1g) because of the combination change of θ s,
f s, and f a.

SURFACES WITH SWITCHABLE
WETTABILITY

Thermal/Photothermal Response
Benefiting from temperature responsive shape memory polymer
(SMP) materials, Cheng et al. have successfully developed
thermal response surfaces that tune superhydrophobic characters
between isotropic and anisotropic state (Cheng et al., 2018). The
groove structure is prepared by heat-pressing a template on the
micro/nanostructured pillars surface. The collapsed pillars would
recover to the initial structure when the surrounding temperature

is above the Tg. In particular, this thermal response surface
shows outstanding rewritable capability. Besides, Geng et al. have
made intensive efforts to develop a photothermal responsive tube
based on PDMS/rGO-PNIPAm (Figure 1h; Geng et al., 2018).
rGO converts light into heat. PNIPAm shows the reversible
hydrophilic/hydrophobic switch. Therefore, the PDMS/rGO-
PNIPAm tube can be used as an amazing sunlight-driven water
transporter by gradient in the surface wettability.

Electric Response
In 2017, Wei et al. fabricated electric-responsive polypyrrole
(Ppy) arrays (Wei et al., 2017). The Ppy array shows reversible
morphological transition between hydrophobic nanotubes and
hydrophilic nanotips. The morphological transition is because
of the volume change of Ppy under different voltage. As a
result, the water CAs of the Ppy array are 105 ± 15◦ under
−0.8V and 44 ± 10◦ under 0.5V, respectively. Besides, Oh
et al. demonstrated dielectric elastomer-actuated liquid-infused
poroelastic film (Figure 1i; Oh et al., 2018) The elastomeric
film contracts in the thickness direction and expands in-plane
under voltage. Therefore, the liquid-infused poroelastic film can
be used for droplet manipulations including droplet oscillation,
jetting, mixing.

Magnetic Response
Magnetically transformable surface was constructed by
conformally infusing a liquid lubricant into magnetically
responsive hierarchical micropillars (Figure 1j; Huang et al.,
2017) The surface shows superhydrophobic property when
micropillars are perpendicular to the surface. Whereas, the
surface shows slippery property when micropillars are parallel
to the surface. This liquid-infused magnetism responsive
surface shows adaptive liquid repellency. Besides, due to the
switching wetting state, the magnetic response surface can
be used for fog harvesting and liquid transport. Similarly,
various magnetic response switching wetting surfaces have been
successfully designed and fabricated based on PDMS@cobalt
microparticles and PDMS@Fe3O4 (Cao et al., 2017; Li et al.,
2018). Recently, Jiang et al. have developed magnetic response
Janus microplates arrays (Jiang et al., 2019b). The microplates
were prepared by casting a mixture of PDMS and magnetic
particles into a polystyrene mold. Then, the one side of
microplates was modified by superhydrophobic spray to obtain
superhydrophobic property. Another side of microplates was
scanned by femtosecond laser to expose the hydrophilic carbonyl
irons particles.

Mechanical Motion
Wang et al. developed a superhydrophobic PDMS skin that
switches between lotus leaf and rose petal modes (Wang
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et al., 2018b). The superhydrophobic PDMS skins with
monolithic and hierarchical structures were fabricated by
direct laser writing technique. The water droplet rolled off
with a slight tilt under ε <50% (rolling state). Whereas,
the water droplet firmly stuck on the surface under ε

>70% (pinning state). This smart surface shows potential
in droplet manipulations by movable joints. Similarly, this
group developed pneumatic surfaces by embedding micro-air-
sac network in an elastomer (Figure 1k; Wang et al., 2018a). The
surface exposes one surface and hiding the other by deflation
and inflation.

Chemical Response
Zhu et al. prepared polyphenylsulfone-pyridine (PPSU-Pyx)-
based nanoporous membrane with switchable wettability
in response to pH (Figure 1l; Zhu et al., 2017) Due to the
conformational switch of pyridine pendants, the porous
membrane shows reversibly switch wettability. The CAs of
PPSU-Pyx are 63.3◦ in acid solution (pH = 3) and 106.5◦

in alkaline solution (pH = 11). Besides, Liu et al. developed
chemical response structured copper surfaces by exchanging
counterion from PFO− to Cl− (Liu et al., 2018). After the
PFO− treatment, structured copper surfaces was filled with
fluorine-containing groups, leading to hydrophobic characters.
Whereas, the hydrophobic surface loses fluorine-containing
groups after the Cl− treatment. As a result, the hydrophobic
surface become hydrophilic.

CONCLUSION AND OUTLOOK

In this minireview, we have summarized the typical stimulated-
responsive surfaces with switchable wettability including
thermal/photothermal, electric, magnetic, mechanical motion
and chemical response surfaces. Taking advantage of the
stimulated-responsive characters, the smart surfaces can be used
as droplet manipulators, fog collection, smart skin, stem cell
differentiation, and others. The further trend of smart surfaces
with switchable wettability may be developed from new driving
mechanism, fabrication methods, and broaden the application
areas. We believe that continued efforts to smart surfaces with
switchable wettability would have potential applications in
the fields of bionic manufacturing, electronic information,
biomedicine, etc.
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