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The search for new topological materials that are realistic to synthesize has attracted

increasing attention. In this study, we systematically investigated the electronic,

mechanical, and topological semimetallic properties, as well as the interesting surface

states, of the tetragonal monoxide of platinum, which is realistic to synthesize, via a

first-principles approach. Our calculated results indicate that PtO is a novel topological

semimetal with double nodal lines in the kz = 0 plane and a pair of triple topological

nodal points along the A’-M-A directions. Obvious surface states, including Fermi arc

and drum-head-like surfaces, could be found around nodal points and nodal lines. The

dynamic and mechanical stabilities of P42/mmc-type PtO were examined in detail via

calculation of the phonon dispersion and determination of elastic constants, respectively.

Some other mechanical properties, including the bulk modulus, Young’s modulus, shear

modulus, Poisson’s ratio, and Pugh’s index, were considered in this study. P42/mmc-type

PtO provides a good research platform for investigation of novel behaviors that combine

mechanical properties and rich topological elements.

Keywords: double nodal lines, fermi arc and drum-head-like surface states, triple point, DFT, phonon dispersion,

mechanical behaviors

INTRODUCTION

As rising stars in the topological material family, topological semimetals (Fang et al., 2012, 2016;
Chiu and Schnyder, 2014; Yan and Felser, 2017; Gao et al., 2019), whose band crossing points form
0-D nodal point, 1-D nodal line, or 2-D nodal surface states in momentum space, have recently
attracted extensive attention. Topological nodal point semimetals (Hosur et al., 2012; Zyuzin and
Burkov, 2012; Hosur and Qi, 2013; Vazifeh and Franz, 2013; Liu et al., 2014; Lundgren et al., 2014;
Kobayashi and Sato, 2015; Miransky and Shovkovy, 2015; Xu et al., 2015a; Young and Kane, 2015)
enjoy 0-D nodal points in momentum space. Topological nodal line semimetals (Cai et al., 2018;
Chen et al., 2018; Gao et al., 2018; Zhou et al., 2018; He et al., 2019; Jin et al., 2019a; Pham et al., 2019;
Yi et al., 2019; Zou et al., 2019; Zhao et al., 2020) host 1-D topological nodal lines in momentum
space via band crossing along a line in momentum space. Topological nodal surface semimetals
(Wu et al., 2018; Zhang et al., 2018; Fu et al., 2019a; Qie et al., 2019; Yang et al., 2020) host 2-D
nodal surface states that are composed of continuous band crossing points.
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In addition, topological semimetals exhibit many types of
band crossing points based on degeneracy. Weyl and Dirac
semimetals feature 2-fold and 4-fold degenerate 0-D band
crossing points, respectively. In detail, Weyl semimetals (Hosur
et al., 2012; Zyuzin and Burkov, 2012; Hosur and Qi, 2013;
Vazifeh and Franz, 2013; Lundgren et al., 2014; Yan and Felser,
2017) have nodal points that are protected by inversion (P)
or time-reversal symmetries (T). Dirac semimetals (Liu et al.,
2014; Lundgren et al., 2014; Kobayashi and Sato, 2015; Miransky
and Shovkovy, 2015; Young and Kane, 2015) host quadruple
degenerate nodal points that are protected by crystalline
symmetry. Furthermore, topological semimetals with 3-, 6-, and
8-fold degenerate band crossing points have been considered
(Weng et al., 2016a,b; Cai et al., 2018; Kumar et al., 2020)
by researchers. Of these, triply degenerate nodal point-type
semimetals (Weng et al., 2016a,b) are well-studied due to their
novel topological elements and related surface states. Triple nodal
points can appear both in isolation and at nodal line connections.

Many topological semimetals that are realistic to synthesize
and have various types of band crossing points have been
proposed. Unfortunately, these band crossing points are usually
disturbed by other trivial bands near the Fermi level, which
covers novel physics behaviors from the band crossing points.
Hence, to search for topological behaviors of topological
semimetals with rich topological elements, it is necessary to
find topological semimetals with clean band structures near the
Fermi level. Thus far, there are few potential clean topological
semimetals with more than one topological element. This greatly
impedes further investigation of realistic topological semimetals
with rich topological elements.

In this work, we focus on an old realistic material, tetragonal
PtO with ICSD IDs1 164290 and 26599. In 1941, Moore Jr and
Pauling (Moore Pauling, 1941) synthesized PdO and PtO by
the method of Shriner and Adams, involving fusing palladous
chloride and potassium nitrate, and platinous oxide by a similar
method. Based on previous powder photographic X-ray data, the
tetragonal crystal PtO (Moore Pauling, 1941) exhibits a P42/mmc
type structure with lattice constants a= b= 3.04± 0.03 and c=

5.34 ± 0.05Ǻ. In this paper, we use a first-principles analysis to
investigate its electronic and mechanical properties, as well as its
phase stability, systematically. We report its interesting 0-D and
1-D topological elements and the related surface states.

COMPUTATIONAL DETAILS

First-principles calculations were performed using the Vienna
ab initio simulation package (VASP) (Hafner, 2007) with
density functional theory (DFT) (Lejaeghere et al., 2016). The
generalized gradient approximation (GGA) (Perdew et al., 1996)
of the Perdew–Burke–Ernzerhof (PBE) functional (Ernzerhof
and Scuseria, 1999) was selected for the exchange-correlation
potential. The projector augmented wave (PAW) (Kresse and
Joubert, 1999) pseudo-potential was employed with a cutoff
energy of 600 eV for plane-wave expansions. The energy and

1Available online at: https://www.materialsproject.org/materials/mp-7947/.

FIGURE 1 | Crystal model of tetragonal PtO.

force convergence criteria were set to 10−6 eV per atom and

0.0005 eV/Ǻ, respectively. The surface states were obtained using
the Wannier-tools package (Villanova and Park, 2018). The
phonon dispersion of 2 × 2 × 2 supercell of PtO monolayer was
checked based on density functional perturbation theory (DFPT).

RESULTS AND DISCUSSION

Structural Model and Dynamic Stability
PtO (Moore Pauling, 1941) crystallizes in a tetragonal structure
(as shown in Figure 1) with space group P42/mmc (no. 131). The
minimum energy approach was used for structural optimization.
The PtO primitive cell contains two O and two Pt atoms.
The atomic positions and equilibrium lattice constants were
determined after complete relaxation. The resulting lattice

constants are a = b = 3.15 and c = 5.37Ǻ, and are in a good
agreement with the experimental data. In their relaxed atomic
positions, the Pt and O atoms occupy the 2c (0.0, 0.5, 0.0) and 2e
(0.0, 0.0, 0.25) Wyckoff sites, respectively. We would like to point
out that the results of current study will retain if the experimental
lattice constants are selected, as shown in Figure S1.

Based on the 3-D bulk Brillouin zone (BZ) selected in
Figure 2, the phonon dispersion (Sultana et al., 2018; Abutalib,
2019; Ding et al., 2019; Fu et al., 2019b; Han et al., 2019; Jia
et al., 2019) was determined in order to examine the dynamic
stability of tetragonal PtO. It is well-known that materials
are dynamically stable when no imaginary phonon modes
exist in their phonon dispersion curves. Figure 3 shows the
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FIGURE 2 | The 3-D bulk Brillouin zone (BZ) of tetragonal PtO.

FIGURE 3 | Phonon dispersion of tetragonal PtO along the

Ŵ-X-M-Ŵ-Z-R-A-Z-A-M directions.

TABLE 1 | Calculated PtO elastic constants.

C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa)

232.61 130.02 169.23 315.41 22.83 38.40

calculated phonon dispersion along the Ŵ-X-M-Ŵ-Z-R-A-Z-A-
M directions. Since only positive frequencies appear in Figure 3,
PtO is a dynamically stable material.

Mechanical Properties and Mechanical
Stability
By analyzing the elastic constants, we can obtain information
about the mechanical stability of PtO. In this paper, we use
the energy-strain method to compute six independent elastic
constants. The results are shown in Table 1.

TABLE 2 | Elastic behaviors of tetragonal crystal PtO.

B G E v B/G

185.62 38.83 108.90 0.402 4.780

Tetragonal PtO has six independent elastic constants,C11,C12,
C13, C33, C44, and C66. We can use the Born–Huang criteria
(see criteria i, ii, and iii) to test the mechanical stability of
tetragonal PtO:

Criteria (i) C11 > |C12|;
Criteria (ii) 2C13

2 < C33(C11 + C12); and
Criteria (iii) C44> 0.

The Born–Huang criteria indicate that PtO is mechanically
stable. Other useful mechanical parameters, including the bulk
modulus (B), shear modulus (G), Young’s modulus (E), Poisson’s
ratio (v), and Pugh’s index (B/G) are shown in Table 2.

The critical value B/G that is used to distinguish
between brittle and ductile crystals is 1.75. Obviously, PtO
is in hand elastically ductile. Moreover, the critical value
of v that distinguishes between the ionic and covalent
chemical band natures is ∼0.25. The chemical bonds in
a PtO tetragonal crystal are mainly ionic. We use the
ELATE program to determine the directional dependence
anisotropy of PtO on the Young’s modulus, shear modulus,
and Possion’s ratio in Figures 4–6, respectively. The elastic
anisotropy of PtO can be determined from these figures.
This is quite important for future practical applications of
this material.

Topological Elements and Novel Surface
States
Without considering the spin–orbit coupling effect, the band
structure of PtO at its equilibrium lattice constants along
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FIGURE 4 | Directional dependence of the Young’s modulus.

FIGURE 5 | Directional dependence of the shear modulus: blue and green indicate the maximum and minimum values, respectively.

FIGURE 6 | Directional dependence of Poisson’s ratio: blue and green indicate the maximum and minimum values, respectively.

the Ŵ-X-M-Ŵ-Z-R-A-Z-A-M directions was calculated using
the GGA method, and the result is given in Figure 7. PtO
is a typical semimetal (Wang et al., 2020a,b; Yalameha and

Nourbakhsh, 2020) with clean band crossing points, These band-
crossing points are located around the Fermi level and far from
other trivial bands. Interestingly, these band crossing points
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FIGURE 7 | Calculated band structure of PtO along the

Ŵ-X-M-Ŵ-Z-R-A-Z-A-M directions, as determined using the GGA method.

FIGURE 8 | Calculated band structure of PtO along the X-M-Ŵ-A-M

directions, as determined using the TPSS-meta-GGA method.

FIGURE 9 | Triple nodal point positions (highlighted as green balls).

are concentrated mainly in the R1 and R2 regions. We will
discuss each band crossing point in R1 and R2. To confirm
the band crossing points near the Fermi level further, one

FIGURE 10 | Projected spectrum on the (010) PtO tetragonal crystal surface.

The band crossing points are marked as yellow balls and the Fermi arc surface

states are highlighted using black arrows.

FIGURE 11 | Calculated PtO band structure along the X-M-Ŵ directions, as

determined using the GGA method. The band crossing points, labeled 1, 2, 3,

and 4, are marked by yellow balls.

type of meta-GGA method, Tao–Perdew–Staroverov–Scuseria
(TPSS) (Sun et al., 2011), was selected to prove the occurrence
of the band crossing points in the R1 and R2 regions.
The PtO band structure along the X-M-Ŵ-A-M directions
as determined via the TPSS-meta-GGA method is shown in
Figure 8. Obviously, the band crossing points in both regions
are retained.

In R1, we can see that the band crossing point along the
A-M direction induces a pair of triple nodal points. Symmetry
analysis (with the help of Quantum ESPRESSO) shows that
the two bands (conduction and valence bands), respectively,
belong to irreducible representations Ŵ2 and Ŵ2 of the C4v

symmetry for the A-M path (in R1). This pair of triple nodal
points is generated by one non-degenerate band and one doubly
degenerate band. The triple nodal point locations are given
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FIGURE 12 | M-point-centered (A) 3-D and (B) 2-D plots of bands 1 and 3 in the kz = 0 plane in R2. The white line indicates the nodal line in this plane.

FIGURE 13 | M-point-centered (A) 3-D and (B) 2-D plots of bands 1 and 2 in the kz = 0 plane in R2. The nodal line is marked as a white line.

in Figure 9. The Fermi arc surface state (Xu et al., 2015b; Jin
et al., 2019b, 2020) can be seen as strong evidence for the
appearance of triple nodal points. In Figure 10, we show the
projected spectrum on the (010) PtO tetragonal crystal surface.
The triple nodal points are highlighted as yellow balls and the
obvious Fermi arc non-trivial surface states, which are located
inside the band crossing points and marked by black arrows, are
near the Fermi level.

As shown in Figure 11, there are four band crossing points
along the X-M-Ŵ directions and near the Fermi level in R2. Band
crossing points 1 and 4 are generated by crossing bands 1 and
2. However, band crossing points 2 and 3 are formed by overlaps
between bands 1 and 3. Since PtO hosts both P and T symmetries,
these four band crossing points along the X-M-Ŵ directions in
the kz = 0 plane cannot be treated as isolated points (Gao et al.,
2018; He et al., 2019; Zhao et al., 2020). To further verify that

these four band crossing points in R2 belong to nodal lines, 3-
D and 2-D plots of bands 1 and 3 in the kz = 0 plane are given
in Figure 12. OneM-point-centered closed nodal line, marked as
a white line, occurs in the kz = 0 plane. Similarly, the 3-D and
2-D plots of bands 1 and 2 in the kz = 0 plane are shown in
Figure 13. The other M-point-centered nodal line with a closed
shape appears in the kz = 0 plane. However, these two closed
nodal lines exhibit different shapes and sizes, and are located at
different energies. The closed nodal line shown in Figure 13 is
larger than that in Figure 12. An overall illustration of the M-
point-centered double closed nodal lines in the kz = 0 plane is
shown in Figure 14.

Typically, drum-head-like surface states that originate from
the bulk band crossing points can be observed (Zhou et al.,
2018; Yi et al., 2019). To further prove this argument,
the spectrum is projected on the (001) PtO tetragonal
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FIGURE 14 | Illustration of M-point-centered double closed nodal lines in the

kz = 0 plane. Double nodal lines are marked using different colors.

FIGURE 15 | Projected spectrum on the (001) PtO tetragonal crystal surface.

Band crossing points 1, 2, 3, and 4 are marked as yellow balls and the

drum-head-like surface states are highlighted using black arrows.

crystal surface in Figure 15. The drum-head-like surface states
clearly appear outside and inside band crossing points 1, 2,
3, and 4.

CONCLUSIONS

In summary, we have systematically used first-principles
calculations to study the electronic, mechanical, and topological
properties of tetragonal phase PtO, which is a realistic material.
PtO is an excellent topological semimetal with pairs of triple
nodal points and double closed nodal lines in the kz = 0
plane when the spin–orbit coupling effect is ignored. The
0-D triple nodal points and 1-D closed nodal lines are
further confirmed by the exotic Fermi arc surface states and
drum-head-like surface states, respectively. The mechanical
properties and phonon dispersion of this material allowed us
to determine that PtO is mechanically stable, elastically ductile,
and dynamically stable. These results demonstrate that PtO is an
interesting material, which can be used to achieve experimental
detection of nodal points and nodal lines or to further
practical applications.
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