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Photoactuators are promising smart materials that can adapt their shapes upon light

illumination. Smart materials with recycling, reusable, and reconfigurable properties

are crucial for a sustainable society, and it is important to expand their function.

Recently, much effort was made to address the issue of reprocessability and recyclability

of photoactuators. Based on the development of polymer chemistry, supramolecular

chemistry, and dynamic covalent chemistry, it is now possible to prepare reconfigurable

and recyclable photoactuators using azobenzene-containing polymers (azopolymers).

Herein, the recent advances on reconfigurable and reprocessable photoactuators,

including dynamic crosslinked networks systems and non-covalently crosslinked

azobenzene-containing polymers, were reviewed. We discuss the challenges in the field

as well as the directions for the development of such photoactuators.
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INTRODUCTION

Over the past decades, significant progress has been achieved in the development of
stimuli-responsive soft materials. They are used for designing soft actuators that show complex,
rapid, and reversible macroscopic movements via external or internal stimuli (Hines et al., 2017).
Azobenzene-containing polymers (azopolymers) are commonly used to design and fabricate
photo-controlled soft actuators (Gelebart et al., 2017b; Lu et al., 2017; Pang et al., 2019).
Azopolymers can be switched reversibly between the thermally stable trans form and the meta-
stable cis form because of the reversible photoisomerization of azo bond (Merino, 2011). Ultraviolet
(UV) light induces the trans azo-form into the cis azo-form, and the cis azo-form can be converted
back to the trans azo-form photochemically upon irradiation of visible light or thermally by heating.

Azobenzene mesogens incorporating into liquid crystalline networks (LCN) or liquid crystalline
elastomers (LCE) can directly convert light energy into mechanical work (White, 2018).
Through rational design of molecular structures and orientations, the soft actuators containing
azobenzene moieties can generate sophisticated movements including contraction/expansion
(Finkelmann et al., 2001), bending (Yu et al., 2003), oscillation (Kumar et al., 2016), and
twisting (Iamsaard et al., 2014), which brings broad applications in artificial muscles, microrobots,
microfluidics, and so on. However, the existence of covalently crosslinked networks makes them
insoluble and unmeltable. Therefore, they cannot be processed by traditional melt-processing and
solution-processing methods.
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Crosslinking provides materials with mechanical robustness
but sacrifices the reprocessing and recycling performance.
With the development of the introduction of post-crosslinkable
moieties (Yoshino et al., 2010), dynamic/reversible covalent
bonds (Chakma and Konkolewicz, 2019), reconfigurable and
reprocessable LCEs and LCNs under high temperatures have
been prepared (Han et al., 2016; Ube et al., 2016; Yang et al.,
2016; Lu et al., 2017; Lahikainen et al., 2018). Furthermore,
photoactuators without chemical crosslinking networks achieved
a breakthrough in processing performance compared with the
traditional crosslinked systems (Choi et al., 2009; Lv et al., 2016;
Chen et al., 2020).

Here, we provide a brief overview of recent advances
on reconfigurable and recyclable photoactuators based on
azopolymers. New types of photoactuators including covalently
crosslinked networks and non-covalently crosslinked networks
were reviewed. Some challenges in this field were proposed.

RECENT ADVANCES IN
PHOTOACTUATORS BASED ON
AZOBENZENE-CONTAINING POLYMERS

Reconfigurable or Recyclable
Photoactuators With Covalently
Crosslinked Networks
Dynamic/reversible covalent bonds can fast break and reform
between several molecules under appropriate conditions
(Chakma and Konkolewicz, 2019). The introduction of dynamic
bonds into photoactuators affords them reprocessability and
reshaping ability. Lu et al. (2017) demonstrated that large-
size polymer photoactuators can be reconfigured into wheels
or spring-like “motors” using a reprocessable azobenzene-
containing liquid crystalline network (Figure 1A). The dynamic
reaction occurs between an ester bond and a hydroxyl group
within the polymer backbone, while it has to react at elevated
temperature and catalysts (Figure 1B). At elevated temperature,
the catalytic transesterification reaction occurs and allows the
epoxy-acid-derived network rearranged without changing the
numbers of links and average functionality, and thus affording
malleable and easy processing properties (Lu et al., 2017).

Some reconfigurable actuators based on conventional
crosslinked networks were developed by synergistic use of
photochemical and photothermal effects or interplay between
light and humidity or pH (Gelebart et al., 2017a; Lahikainen
et al., 2018; Wani et al., 2019). Lahikainen et al. (2018) prepared
a reconfigurable actuator that can be programmed to adapt
different shapes under an identical stimulus through synergistic
use of photochemical and photothermal effects. The basic idea
is to use azobenzene photoisomerization to locally control
the cis-isomer content and to program the actuator response.
Afterward, photothermal stimulus was used to actuate the shape
deformation of the actuators. Six different shapes reconfigured
from one single actuator were demonstrated under identical
irradiation conditions (Figure 1C). An initial actuator was
irradiated through masked UV exposure from either one side
or both sides of the sample to achieve spatially patterning areas

with high cis-isomer content. The UV pre-irradiation altered the
cis-content within the actuator. Upon red-light illumination, the
actuator quickly deformed into different geometries determined
by the UV pre-irradiation (Lahikainen et al., 2018).

Besides, many other reactions promoting exchangeable
covalent bonds have also been applied to prepare reprocessable
actuators, including transcarbamoylation (Wen et al., 2018),
boronic-ester exchange reaction (Saed et al., 2020), and
photo-exchange reaction of disulfide (McBride et al., 2018)
and allyl sulfide (McBride et al., 2017). All these examples
require an external force at high temperatures or under
illumination. Developing actuators capable of reprocessing
at room temperature can open up large-scale applications.
Recently, Jiang et al. (2020) demonstrated a “self-lockable”
liquid crystalline Diels-Alder dynamic network actuator that
exhibited room temperature programmability and solution-
reprocessability. The liquid crystalline dynamic networks can
be reprogrammed and self-locked into 3D objects at ambient
temperature simultaneously stabilized by slowly formed Diels-
Alder bonded crosslinks (Figure 1D). The actuator showed a
reversible shape change upon heating above and cooling below
the ordered-disordered phase transition temperature. Moreover,
such polymers can fabricate a light-fueled walker or wheel
(Jiang et al., 2020). This new actuator displayed unmatched
recycling and reprocessing performance. It can be dissolved in
organic solvents and reprocessed from solution, which cannot
be achieved with liquid crystalline networks using exchangeable
covalent bonds.

Reconfigurable and Recyclable
Photoactuators Using Non-covalently
Crosslinked Networks
Another strategy to produce the recyclable photoactuators
is directly using linear photoresponsive materials or
supramolecular non-covalent interactions (e.g., hydrogen
bonding or other weak interactions) without chemical
crosslinking networks. The hydrogen bonding-induced
physically crosslinked networks in photoactuators based on
azopolymers or hydrogels were reprogrammable or recyclable
(Mamiya et al., 2008; He et al., 2009; Ni et al., 2016; Jeon et al.,
2017; Nie et al., 2017; Si et al., 2018; Mauro, 2019). Lee et al.
synthesized the azobenzene-containing linear polymers via
acyclic diene metathesis polymerization (Choi et al., 2009; Kim
et al., 2013). Fibers or films were prepared by melt-spinning
and solution-casting. However, the mechanical properties of
the actuators were insufficient due to the low-molecular-weight
(Mn ≈ 10 kg mol−1) of the azopolymer. Design and synthesis of
linear liquid crystal polymers with robust mechanical properties
can address the abovementioned problem.

By imitating the structure of artery walls, Yu and co-
workers designed a novel tubular microactuator used for the
manipulation of fluid slugs by light (Lv et al., 2016). To
improve the mechanical robustness, a high-molecular-weight
(Mn = 360 kg mol−1) linear azopolymer was synthesized by
ring-opening metathesis polymerization (ROMP) and acted as
“photonic muscles” of the microactuator. Subsequently, they
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FIGURE 1 | (A) Synthesis route of the azobenzene liquid crystalline elastomers. (B) Schematic illustration of the reversible transesterification reaction. (A,B) Reprinted

with permission from Lu et al. (2017) Copyright Wiley-VCH. (C) Reconfigurable shape morphing of a single actuator through synergistic use of photochemical and

photothermal effects. Reprinted with permission from Lahikainen et al. (2018) Copyright Springer Nature. (D) Schematic showing the “self-lockable” liquid crystalline

Diels-Alder dynamic network (LCDAN) actuators that can be (re) shaped into 3D objects at room temperature. Reprinted with permission from Jiang et al. (2020)

Copyright Wiley-VCH.

further synthesized a linear liquid crystal copolymer (PABBP,Mn

= 300 kg mol−1) combining the photoresponsive azobenzenes
and biphenyl moieties by ROMP (Figure 2A). By incorporating
biphenyl mesogens, light can penetrate deeper in the PABBP
layer. Thus, its photodeformability was improved due to the
cooperative effect of the two mesogens (Xu et al., 2019). A long
bilayer PFM actuator was constructed by the combination of
PABBP and the commercially available ethylene-vinyl acetate
(EVA) copolymer microtube (Figure 2B). The EVA microtube
was selected as the supporting layer due to its good flexibility
and comparable modulus. The isopropanol slug confined in
PFM was manipulated to climb over a slope of 11◦ incline
by the 470 nm light spot due to photodeformation-induced
asymmetric capillary forces (Figure 2C). The PFM actuator was
able to reprocess into arbitrary shapes, including knot, helix,
and serpentine. Furthermore, the delaminated bilayer PFM can
be healed by light due to the photofluidization mechanism
of azobenzene moieties, which makes it possible to apply in
wearable and integrated microfluidic systems.

Our group synthesized a series of linear liquid crystal
azopolymers (P1) with different molecular weights by atom

transfer radical polymerization (ATRP). High-molecular-weight
entangled azopolymers were able to prepare photoactuators
(Chen et al., 2020). These azopolymers showed photoinduced
reversible solid-to-liquid transitions. Trans azopolymers are
solids with glass transition temperature (Tg) values above room
temperature, yet cis azopolymers are liquids with Tg values
below room temperature (Figure 2D). Photoinduced reversible
solid-to-liquid transitions of such azopolymers were applied
to light-induced healing and reprocessing of actuators with
high spatial resolution. The critical entanglement molecular
weight of the azopolymer calculated using Wool’s model
(Wool, 1993) was 68 kg mol−1. The low-molecular-weight
azopolymers (5–53 kg mol−1) were hard and brittle because
their polymer chains lacked entanglements, whereas the high-
molecular-weight azopolymers (80–100 kg mol−1) entangled
(Figure 2E). Thus, transparent (Figure 2F), flexible (Figure 2G),
and stretchable (Figure 2H) actuators were fabricated by
entangled azopolymers because of mechanical robustness. The
photoactuators can be not only recycled and reshaped via
solution processing but also reprocessed by light irradiation
to produce microstructured actuators (Chen et al., 2020). The
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FIGURE 2 | (A) Chemical structure of the PABBP copolymer. (B) Schematic representation of the bilayer structure of the PFM. (C) Photographs of the light-controlled

motion of an isopropanol slug climbing over a slope of 11◦ incline in a curved PFM. The intensity of the 470 nm point light was 120 mW cm−2. The scale bar is 2mm.

(A–C) Reprinted with permission from Xu et al. (2019) Copyright Wiley-VCH. (D) The chemical structure and photoisomerization of P1. (E) Schematic representation of

(Continued)
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FIGURE 2 | entanglement of polymer chains. The freestanding film of entangled P1 was highly transparent (F), flexible (G), and stretchable at 90◦C (H). (D–H)

Reprinted with permission from Chen et al. (2020) Copyright Wiley-VCH.

combination of polymer chain entanglements and photoinduced
reversible solid-to-liquid transitions provides a new strategy for
designing actuators with good reprocessability and healability at
room temperature.

CONCLUSIONS AND PERSPECTIVES

In this mini-review, we have summarized the recent progress
on reconfigurable and recyclable photoactuators based on
azopolymers. The incorporation of dynamic crosslinked
networks based on exchangeable covalent bonds, Diels-Alder
reactions, or non-covalently crosslinking has been made
a breakthrough in the reprocessability of photoactuators.
Photoactuators using exchangeable covalent bonds can
be processed at high temperatures. Diels-Alder dynamic
networks and non-covalently crosslinked networks make
actuators recyclable and reprocessable directly from
melt or solution processing at room temperature. With
the development of improved processing techniques, it
provides a new opportunity for designing programmable
photoactuators involving the spatially modulation of the
orientation of liquid crystals and the control over the
geometry and composition. However, so far, the actual
applications of photoactuators still face great challenges.
In the future, more works should be done to address the
following issues:

• Balance material (re) processability, mechanical robustness,
and actuating stability: Obviously, crosslinking or
entanglement affords mechanical toughness, but it
hinders movements of polymer chains, and thus declines
reprocessability. Dynamic crosslinked networks provide
reprocessability and reconfigurability of the materials.
However, during the long-term use of the materials, the
dynamic reaction may lead to a reduction in its degree of
orientation in actuators, and thus cause performance and
reprocessability drops. Constructing new dynamic reaction
systems and adjusting the material compositions to achieve
a balance between reprocessability, mechanical toughness,
and driving stability is of great significance for the practical
applications of photoactuators.

• Develop novel non-covalently crosslinked systems and large-
scale preparation on demands: The entangled azopolymer
photoactuators cannot be large-scale prepared because it is
difficult to polymerize high-molecular-weight azopolymers
due to the large steric hindrance of azobenzene and other
side reactions. In principle, each polymer has a characteristic
average molecular weight between entanglements depending
on the chemical structure of the repeating unit. This may
also be taken into consideration in designing liquid crystal
polymers that favor the use of chain entanglements. At
present, the synthesis and design of non-covalently crosslinked
photoactuators are still in the preliminary stage, and only a few
cases are available. Since oriented polymer chains tend to relax
in the isotropic state, the actuation degree may decrease after
repeated order-disorder phase transition occurs. To exploit
new synthetic methods and explore the impact of various
chemical structures on their performance will facilitate the
large-scale preparation of photoactuators on demand.

• Develop microstructured photoactuators: The recent
studies showed that multi-smart functions or properties
were accessible using microstructured photoactuators,
while obtaining a specific function often required a
specifically designed microstructure (Lahikainen et al.,
2018; Chen et al., 2020; Ge and Zhao, 2020). Microstructured
photoactuators will enable functions such as actuation,
detection, transportation, and sensing with potential
applications ranging from robotics and photonics to
biomedical devices.
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