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We report the presence of a Weyl fermion in VI3 monolayer. The material shows a

sandwich-like hexagonal structure and stable phonon spectrum. It has a half-metal band

structure, where only the bands in one spin channel cross the Fermi level. There are three

pairs of Weyl points slightly below the Fermi level in spin-up channel. The Weyl points

show a clean band structure and are characterized by clear Fermi arcs edge state. The

effects of spin-orbit coupling, electron correlation, and lattice strain on the electronic

band structure were investigated. We find that the half-metallicity and Weyl points are

robust against these perturbations. Our work suggests VI3 monolayer is an excellent

Weyl half-metal.
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INTRODUCTION

In recent years, Weyl semimetals (WSMs) have attracted extensive research attentions (Wan et al.,
2011; Lv et al., 2015; Shekhar et al., 2015; Soluyanov et al., 2015; Sun et al., 2015; Weng et al.,
2015; Deng et al., 2016; Koepernik et al., 2016; Wu et al., 2016; Kumar et al., 2017). In a WSM, at
least one of the time reversal and inversion symmetry is broken. The crossing points, namely, Weyl
nodes, appear in pairs with different chirality (Ruan et al., 2016a,b). Such chiral anomaly can induce
interesting transport properties such as anomalous Hall effect and negative magnetoresistance (Liu
et al., 2013; Son and Spivak, 2013; Liu and Vanderbilt, 2014; Hirayama et al., 2015; Huang et al.,
2015). Besides, Weyl nodes can be classified into two categories, namely, types I and II, according
to the tilt degree of band crossing. Type IWSMs with traditional band dispersion follow the Lorentz
symmetry (Wan et al., 2011; Lv et al., 2015; Shekhar et al., 2015; Sun et al., 2015; Weng et al., 2015).
However, for type II WSMs (Soluyanov et al., 2015; Deng et al., 2016; Koepernik et al., 2016; Wu
et al., 2016; Kumar et al., 2017), the Weyl cones are completely tilted. The tilted Weyl cones can
cause the coexistence of electron-like pocket and hole-like pocket at the same energy level. As the
results, type II WSMs have different physical phenomena from type I ones, including modified
anomalous Hall conductivity, direction-dependent chiral anomaly, and momentum space Klein
tunneling (Koshino, 2016; O’Brien et al., 2016; Yu et al., 2016; Zyuzin and Tiwari, 2016).

Up to now, a large number of WSMs have been reported, and some of which have been
confirmed in experiments such as TaAs (Lv et al., 2015), NbP (Shekhar et al., 2015), and NbAs (Yang
et al., 2019). These examples are all three-dimensional (3D) non-magnetic materials. Recently,
WSMs in two-dimensional (2D) materials and magnetic materials have received increasing
interests. For 2D WSMs, the interest arises from the promising applications in spintronic
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nanodevices (You et al., 2019). For magnetic WSMs, the interest
comes from the novel interplay between the non-trivial band
topology and the magnetic ordering (Xu et al., 2011; Kübler
and Felser, 2016; Wang et al., 2016; Chen et al., 2019; He
et al., 2019; Jin et al., 2020; Meng et al., 2020a,b,c). Recently,
the VI3 material (Kong et al., 2019; Tian et al., 2019; Huang
et al., 2020; Long et al., 2020; Zhang et al., 2020), both in 3D
and 2D, has attracted great attention. The 3D VI3 material is
a ferromagnetic insulator, which is a layered material (Kong
et al., 2019). In addition, 3D VI3 compound has a R3 phase
at room temperature, and experimental evidence suggests that
it may undergo a structure phase transition at 78K (Huang
et al., 2020). Importantly, 2D VI3 had been proved by Long
et al. (2020) to be a ferromagnetic half-metal and provides an
excellent candidate material for electronic devices. In this work,
we report that VI3 monolayer is an excellent 2D WSM. We
have systematically investigated the stability, magnetism, and
band topology of VI3 monolayer. We find VI3 monolayer is
dynamically stable and naturally has the ferromagnetic ordering.
The band structure suggests VI3 monolayer is a half-metal, which
holds fully spin-polarized conducting electrons. Especially, there
exists a band crossing near the Fermi level, which forms three
pairs of Weyl fermions in the spin-up band structure. We have
further investigated the effects of spin-orbit coupling (SOC),
electron correlation, and lattice strain on the electronic band
structure. In addition, the non-trivial edge states for the Weyl

FIGURE 1 | (A) Top view and (B) side views of VI3 monolayer, the dotted line circles the primitive cell. (C) Brillouin zone for VI3 monolayer. (D) Calculated phonon

spectrum of VI3 monolayer.

points are clearly identified. These results suggest VI3 monolayer
can serve as a good platform to investigate Weyl states in 2D.

COMPUTATIONAL METHODS AND
DETAILS

The first-principles calculations in this work are performed by
using the Vienna ab initio Simulation Package (Blochl, 1994;
Kresse and Joubert, 1999). The exchange-correlation potential
is adopted by the generalized gradient approximation (GGA) of
Perdew–Burke–Ernzerhof functional (Perdew et al., 1996). For
the crystal structure of VI3 monolayer, we built a vacuumwith the
thickness >18 Å to avoid potential interactions between layers.
The cutoff energy is set as 500 eV. The Brillouin zone is sampled
by a Monkhorst–Pack k-mesh with size of 15 × 15 × 1. To
account for the Coulomb interaction, the GGA + U method is
applied during our calculations (Anisimov et al., 1991). For the
V-3d orbitals, the U value is chosen as 3eV. The phonon spectra
are calculated by using the PHONOPY code (Togo et al., 2008).

RESULTS AND DISCUSSION

Before studying the structure and electronic band of the
monolayer VI3, we want to point out that the layered compound
VI3 has already been synthesized by chemical vapor transport
method experimentally. The specific synthesis process can be
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FIGURE 2 | (A) Spin-up and (B) spin-down band structures of VI3 monolayer

without SOC. In (A,B), the total and projected density of states (PDOS) are

also shown.

found in Kong et al. (2019). In addition, monolayer VI3 is very
promising to be exfoliated from its bulk phase (Miro et al., 2014).

Next, we study the structure of single-layer VI3. Figures 1A,B
show the top and side views of the geometric structure of
VI3 monolayer. Figure 1C shows the Brillouin zone (BZ) of
monolayer VI3. In the structure, each V atom bonds with six I
atoms, forming the hexagonal structure. From the side view, we
can observe that the material has a triple-layered form, with one
V layer sandwiched by two I layers. The circled regions in (A)
and (B) show the unit cell of VI3 monolayer, which contains two
V atoms and six I atoms. The Cr2C compound shows a hexagonal
structure with space group P3M1. The lattice constant of VI3
monolayer is a = b = 7.13 Å. The bond length of V-I is 2.80 Å,
and that of I-I is 4.13 Å. These values are very close to the reported
results of He et al. (2016). We have calculated the phonon
spectrum of VI3 monolayer, as displayed in Figure 1D. We find
no negative frequency phonons in all the highly symmetric k
paths. This suggests that the VI3 monolayer can be stable.

Before studying the band structure of VI3 monolayer, we
first verify its magnetic ground state. In VI3 monolayer, the
magnetic moments are mainly contributed by the 3d transition
element V. Here, we consider three potential magnetization
directions of V moment, including [001], [010], and [100]. Our
calculation results show that the [001] magnetization direction
has the lowest energy. Then, in the [001] direction, we considered
four magnetic configurations including ferromagnet (FM), Néel

antiferromagnet (AFM), stripe AFM, and zigzag AFM. Our
calculation results show that the energy of FM is lower than
that of other magnetic structures in VI3 monolayer. The total
magnetic moment is 4 µB per unit cell, which is almost
contributed by the V atoms. In addition, we have calculated the
exchange energy 1E of VI3 monolayer, which is approximately
28 meV. Then, we can estimate the Curie temperature (Tc)
according to the following equation:

kBTc = 21/(3C) (1)

In (1), the parameter “C” represents the number of magnetic
atoms in unit cell, and “kB” represents the Boltzmann constant.
We calculated that the Curie temperature Tc value of VI3
monolayer is 106K, which is comparable with the Monte Carlo
simulations (98K) (He et al., 2016).

Here, we discuss the electronic band structure of VI3
monolayer. At first, we did not consider SOC in the calculations.
The band structures are shown in Figures 2A,B. In the spin-
up band structure, we find one band crosses the Fermi level,
manifesting a metallic signature (Figure 2A). In the spin-down
band structure, we can find a band gap around the Fermi level,
manifesting the insulating signature (Figure 2B). Therefore, VI3
monolayer is in fact a half-metal. In particular, the half-metal gap
is about 2.98 eV (Figure 2B), which is much layer than previously
reported half-metals in 2D including YN2 (1.35eV) (Liu et al.,
2017) and Na2C (0.77eV) monolayer (Ji et al., 2018). In the spin-
up band structure, we notice there shows a band crossing point
(P) in the M–K path, slightly below the Fermi level (Figure 2B).
By checking the density of states, we find the states near the Fermi
level mostly come from the d orbitals of V atom.

Figure 3A shows the orbital-projected band structure near
the crossing point P. We can observe the band inversion
of the two bands, suggesting the non-trivial band topology
in VI3 monolayer. Then we take into account the SOC
effect in the calculation. The comparison of band structure
between SOC and without SOC is shown in Figures 3B,C.
We can find that the band crossing retains under SOC, even
though its position has slightly changed. Without SOC, the
crossing point locates at 0.04 eV below the Fermi level; under
SOC, it locates at 0.08 eV below the Fermi level. Because
the band crossing happens in two bands, the band crossing
in fact forms Weyl points. To be noted, in VI3 monolayer,
the time reversal is broken, but the inversion symmetry is
retained; hence, the Weyl points are time-reversal–breaking
Weyl points.

In Figure 3D, we show the 3D plotting of band structure near
the Weyl point. We can find that the Weyl cone is titled. Because
of the preserved inversion symmetry, there are in total three
pairs of such Weyl points in the system. From the symmetry
analysis, the Weyl points in monolayer VI3 are protected by the
C3v symmetry. It is worth noticing that Weyl points have many
special physical phenomena, such as modified anomalous Hall
conductivity, direction-dependent chiral anomaly, momentum
space Klein tunneling (Koshino, 2016; O’Brien et al., 2016;
Yu et al., 2016; Zyuzin and Tiwari, 2016). However, the Weyl
fermions have been rarely found in 2D materials. Therefore,
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FIGURE 3 | (A) Orbital-projected band structure near the crossing point P. (B,C) Comparison of band structure between SOC and without SOC, where (C) is the

enlarged band structure. (D) 3D band dispersions near the Weyl point. (E) 2D Brillouin zone and its projection to the edge. (F) Edge states of VI3 monolayer.

FIGURE 4 | (A) The curves of the valence band maximum (VBM) and the conduction band minimum (CBM) under different U-values in the spin-down channel. The

shadowed area shows the band gap. (B) The position of Weyl points under different U-values. (C,D) Similar with (A,B), but for the changes under different stains.

the VI3 monolayer reported here can be a good platform to
study the Weyl fermions in 2D. In addition, in Figure 3E, the

orbital projection is performed on (010) surface, we have also
identified the Fermi arc edge states of the Weyl points, as shown
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in Figure 3F. This further verifies the non-trivial band topology
in VI3 monolayer.

Finally, we discuss the effects of electron correlation and lattice
strain on the half-metal band structure and the Weyl points.
In Figure 4A, we show the positions of the conduction band
minimum and the valence band maximum with shifting the U-
values of V atom from 0 to 6 eV. The results show that VI3
monolayer is always a ferromagnetic half-metal, and the spin-
down band gap will increase with increasing the U-values. For
the Weyl points, we find they can exist when U-values are at
2–4 eV. Figure 4B shows the positions of the Weyl points at
differentU-values. Similarly, in Figures 4C,D, we show the strain
effects on the half-metal band structure and the Weyl points. We
can find that the half-metal band structure can retain from 4%
compressive stain to 4% tensile strain (Figure 4C). Meanwhile, as
shown in Figure 4D, we find the Weyl points can exist from 1%
compressive stain to 2% tensile strain (Figure 4D). These results
show that the half-metal band structure and the Weyl points are
in some degree robust against electron correlation effects and
lattice strain.

SUMMARY

We have reported the Weyl fermion in 2D VI3 monolayer. The
phonon spectrum suggests VI3 monolayer is dynamically stable.
We have verified that VI3 monolayer has the ferromagnetic
ground state. In the ground state, we find VI3 monolayer
has a half-metal band structure with the half-metallic gap
as large as 2.98 eV; thus, the conducting electrons can
be fully spin-polarized. Very interestingly, VI3 monolayer
shows three pairs of Weyl points near the Fermi level,

locating in the spin-up band structure. Importantly, the
three pairs of Weyl points show clear Fermi arcs on the
edge. Moreover, we verify that the half-metal band structure
and the Weyl points in VI3 monolayer are robust against
proper electron correlation effects and lattice strain. These
properties make VI3 monolayer have promising applications in
spintronic nanodevices.
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