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Titanium dioxide (TiO2) is one of the most widely used materials in resistive

switching applications, including random-access memory, neuromorphic computing,

biohybrid interfaces, and sensors. Most of these applications are still at an early

stage of development and have technological challenges and a lack of fundamental

comprehension. Furthermore, the functional memristive properties of TiO2 thin films are

heavily dependent on their processing methods, including the synthesis, fabrication,

and post-fabrication treatment. Here, we outline and summarize the key milestone

achievements, recent advances, and challenges related to the synthesis, technology,

and applications of memristive TiO2. Following a brief introduction, we provide an

overview of the major areas of application of TiO2-based memristive devices and

discuss their synthesis, fabrication, and post-fabrication processing, as well as their

functional properties.
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INTRODUCTION

Titanium dioxide (TiO2) is a multifunctional semiconductor that exists in three crystalline forms:
anatase, rutile, and brookite. Owing to an appropriate combination of physical and chemical
properties, environmental compatibility, and low production cost, polycrystalline TiO2 has found
a large variety of applications and is considered to be a promising material for future technologies.
One of the most distinctive physical properties of this material is its high photocatalytic activity
(Nam et al., 2019); however, more recently it has attracted growing interest because of its resistive
switching abilities (Yang et al., 2008).

The realization of neuromorphic resistive memory in TiO2 thin films (Strukov et al., 2008)
marked an important milestone in the search for bio-inspired technologies (Chua and Kang,
1976). Many research proposals urged a focus on memristivity as the common feature of two
electrical models: (i) electromigration of point defects in titanium oxide systems (Baiatu et al., 1990;
Jameson et al., 2007) and (ii) voltage-gated ionic channels in the membranes of biological neurons
(Hodgkin and Huxley, 1952). In this regard, memristors functionally mimic the synaptic plasticity
of biological neurons, and thus can be implemented in artificial and hybrid neural networks. This
includes a new paradigm of future computing systems (Zidan, 2018) and biocompatible electronics
such as biointerfaces and biohybrid systems (Chiolerio et al., 2017).

Currently, the development of TiO2 memristors is associated with their use in modern highly
technological applications, such as resistive random-access memory (RRAM), biohybrid systems,
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and sensors, as schematically shown in Figure 1A. In this mini-
review, we briefly outline and summarize the key milestone
achievements, as well as recent advances in the synthesis,
fabrication, and application of TiO2-based memristors. A special
focus is placed on the relationships between the synthesis and
deposition methods, the effects of post-synthesis treatment, and
the resistive switching properties.

OXYGEN DEFICIENCY AND RESISTIVE
SWITCHING MECHANISMS

The basic scenario of resistive switching in TiO2 (Jameson et al.,
2007) assumes the formation and electromigration of oxygen
vacancies between the electrodes (Baiatu et al., 1990), so that the
distribution of concomitant n-type conductivity (Janotti et al.,
2010) across the volume can eventually be controlled by an
external electric bias, as schematically shown in Figure 1B. Direct
observations with transmission electron microscopy (TEM)
revealed more complex electroforming processes in TiO2 thin
films. In one of the studies, a continuous Pt filament between
the electrodes was observed in a planar Pt/TiO2/Pt memristor
(Jang et al., 2016). As illustrated in Figure 1C, the corresponding
switching mechanism was suggested as the formation of a
conductive nanofilament with a high concentration of ionized
oxygen vacancies and correspondingly reduced Ti3+ ions. These
ions induce detachment and migration of Pt atoms from the
electrode via strong metal–support interactions (Tauster, 1987).
Another TEM investigation of a conductive TiO2 nanofilament
revealed it to be a Magnéli phase TinO2n−1 (Kwon et al.,
2010). Supposedly, its formation results from an increase in the
concentrations of oxygen vacancies within a local nanoregion
above their thermodynamically stable limit. This scenario is
schematically shown in Figure 1D. Other hypothesized point
defect mechanisms involve a contribution of cation and anion
interstitials, although their behavior has been studied more in
tantalum oxide (Wedig et al., 2015; Kumar et al., 2016). The
plausible origins and mechanisms of memristive switching have
been comprehensively reviewed in topical publications devoted
to metal oxide memristors (Yang et al., 2008; Waser et al., 2009;
Ielmini, 2016) as well as TiO2 (Jeong et al., 2011; Szot et al., 2011;
Acharyya et al., 2014). The resistive switching mechanisms in
memristive materials are regularly revisited and updated in the
themed review publications (Sun et al., 2019; Wang et al., 2020).

APPLICATIONS

RRAM and the New Computing Paradigm
As they mimic the synapses in biological neurons, memristors
became the key component for designing novel types of
computing and information systems based on artificial neural
networks, the so-called neuromorphic electronics (Zidan, 2018;
Wang and Zhuge, 2019; Zhang et al., 2019b). Electronic artificial
neurons with synaptic memristors are capable of emulating the
associative memory, an important function of the brain (Pershin
and Di Ventra, 2010). In addition, the technological simplicity
of thin-film memristors based on transition metal oxides

such as TiO2 allows their integration into electronic circuits
with extremely high packing density. Memristor crossbars
are technologically compatible with traditional integrated
circuits, whose integration can be implemented within the
complementary metal–oxide–semiconductor platform using
nanoimprint lithography (Xia et al., 2009). Nowadays, the size
of a Pt-TiOx-HfO2-Pt memristor crossbar can be as small
as 2 nm (Pi et al., 2019). Thus, the inherent properties of
memristors such as non-volatile resistive memory and synaptic
plasticity, along with feasibly high integration density, are
at the forefront of the new-type hardware performance of
cognitive tasks, such as image recognition (Yao et al., 2017).
The current state of the art, prospects, and challenges in
the new brain-inspired computing concepts with memristive
implementation have been comprehensively reviewed in topical
papers (Jeong et al., 2016; Xia and Yang, 2019; Zhang
et al., 2020). These reviews postulate that the newly emerging
computing paradigm is still in its infancy, while the rapid
development and current challenges in this field are related to
the technological and materials aspects. The major concerns are
the lack of understanding of the microscopic picture and the
mechanisms of switching, as well as the unproven reliability
of memristor materials. The choice of memristive materials
as well as the methods of synthesis and fabrication affect
the properties of memristive devices, including the amplitude
of resistive switching, endurance, stochasticity, and data
retention time.

Biointerfaces, Biomimicking, and Biohybrid
Systems
The neuromorphic nature of the resistive switching in TiO2

memristors has triggered a series of studies addressing their
functional coupling with living biological systems. The common
features of the electroconductive behavior of memristive and
biological neural networks have been revised in terms of
physical, mathematical, and stochastic models (Chua, 2013;
Feali and Ahmadi, 2016). The memristive electronics was
shown to support important synaptic functions such as
spike timing-dependent plasticity (Jo et al., 2010; Pickett
et al., 2013). Recently, a memristive simulation of important
biological synaptic functions such as non-linear transmission
characteristics, short-/long-term plasticity, and paired-pulse
facilitation has been reported for hybrid organic–inorganic
memristors using Ti-based maleic acid/TiO2 ultrathin films
(Liu et al., 2020). In relation to this, functionalized TiO2

memristive systems may be in competition with the new
generation of two-dimensional memristive materials such as
WSe2 (Zhu et al., 2018), MoS2 (Li et al., 2018), MoS2/graphene
(Kalita et al., 2019), and other systems (Zhang et al.,
2019a) with ionic coupling, ionic modulation effects, or
other synapse-mimicking functionalities. Furthermore, the
biomimetic fabrication of TiO2 (Seisenbaeva et al., 2010;
Vijayan and Puglia, 2019; Kumar et al., 2020) opens up
new horizons for its versatile microstructural patterning
and functionalizations.
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FIGURE 1 | (A) Technologies and applications of memristive TiO2 thin films. (B–D) Formation of the conductive filament: (B) electromigration of oxygen vacancies

inducing the n-type conductivity region; (C) detachment and migration of electrode metal atoms due to strong metal support interaction (SMSI); (D) formation of a

conductive Magnéli phase.
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The first study addressing the experimental convergence
between in vitro spiking neurons and spiking memristors
was attempted in 2013 (Gater et al., 2013). A few years
later, Gupta et al. (2016) used TiO2 memristors to compress
information on biological neural spikes recorded in real
time. In these in vitro studies electrical communication with
biological cells, as well as their incubation, was investigated
using multielectrode arrays (MEAs). Alternatively, TiO2 thin
films may serve as an interface material in various biohybrid
devices. The bio- and neurocompatibility of a TiO2 film has
been demonstrated in terms of its excellent adsorption of
polylysine and primary neuronal cultures, high vitality, and
electrophysiological activity (Roncador et al., 2017). Thus,
TiO2 can be implemented as a nanobiointerface coating and
integrated with memristive electronics either as a planar
configuration of memristors and electrodes (Illarionov et al.,
2019) or as a functionalization of MEAs to provide good cell
adhesion and signal transmission. The known examples are
electrolyte/TiO2/Si(p-type) capacitors (Schoen and Fromherz,
2008) or capacitive TiO2/Al electrodes (Serb et al., 2020). As a
demonstration of the state of the art, an attempt at memristive
interlinking between the brain and brain-inspired devices has
been recently reported (Serb et al., 2020). The long-term
potentiation and depression of TiO2-based memristive synapses
have been demonstrated in relation to the neuronal firing rates
of biologically active cells. Further advancement in this area is
expected to result in scalable on-node processors for brain–chip
interfaces (Gupta et al., 2016). As of 2017, the state of the art
of, and perspectives on, coupling between the resistive switching
devices and biological neurons have been reviewed (Chiolerio
et al., 2017).

Sensors
Apart from proximately neuromorphic technologies, TiO2-based
memristors have also found application in various sensors. The
principle of memristive sensorics is based on the dependency
of the resistive switching on various external stimuli. This
includes recording of mechanical energy (Vilmi et al., 2016),
hydrogen detection (Hossein-Babaei and Rahbarpour, 2011;
Strungaru et al., 2015; Haidry et al., 2017; Vidiš et al., 2019),
γ-ray sensing (Abunahla et al., 2016), and various fluidic-based
sensors, such as sensors for pH (Hadis et al., 2015a) and glucose
concentration (Hadis et al., 2015b). In addition, TiO2 thin
films may generate photoinduced electron–hole pairs, which
give rise to UV radiation sensors (Hossein-Babaei et al., 2012).
Recently, the biosensing properties of TiO2-based memristors
have been demonstrated in the detection of the bovine
serum albumin protein molecule (Sahu and Jammalamadaka,
2019). Furthermore, this work has also demonstrated that
the introduction of an additional graphene oxide layer may
effectively prevent the growth of multidimensional and random
conductive paths, resulting in a lower switching voltage, better
endurance, and a higher resistance switching ratio. This opens up
a new horizon for further functional convergence of metal oxides
and two-dimensional memristivematerials and interfaces (Zhang
et al., 2019a).

SYNTHESIS AND FABRICATION

The functionality of TiO2 memristors is largely related to
the phase purity, phase structure, crystallinity, and defect
structure. In turn, all these parameters depend on the synthesis
method, fabrication processing, and post-fabrication treatment
(Diebold, 2003; Chen and Mao, 2007; Goren et al., 2014).
Most TiO2 memristors consist of anatase or rutile because of
the stability of these polymorphs. The formation of oxygen
vacancies and concomitant n-type conductivity can be controlled
at temperatures above 300◦C (Hou et al., 2018).

The fabrication of a TiO2 memristive device typically consists
of (i) the synthesis of a nanostructured material, (ii) deposition
of the functional layer, (iii) arrangement of the electrodes, and
(iv) post-processing annealing at an elevated temperature under
a suitable atmosphere. The first stage is required for traditional
chemical synthesis routes, while the first two stages take place at
the same time for physical deposition methods.

The choice of fabrication route is thus a trade-off in
complexity, cost, scalability, desirable topology (film thickness
and topological feature size of the electrode areas), threshold
electroforming voltage (VT), retention time, switching time, and
the resistive switching ratio (ROFF/RON). The main technological,
topological, and exploitative characteristics of typical memristive
devices are summarized in Table 1 and will be reviewed in the
following sections.

Synthesis
Chemical Approaches

Sol–gel
In this process, a liquid solution is converted into a viscoelastic
gel phase. In the classical concept of sol–gel, the phase purity,
size, and shape of synthesized TiO2 nanoparticles are considered
in relation to the hydrolysis and condensation reactions, the
reactivity and concentration of the precursor (titanium alkoxide
or TiCl4), the solvent type, and the temperature (Cargnello et al.,
2014). In addition, the early-stage processes such as nucleation,
crystal growth, and aggregation (Teychené et al., 2020) may
play a crucial role in the sol–gel synthesis of TiO2 nanoparticles
(Cheng et al., 2017). The memristive devices fabricated using the
sol–gel method have various areas of application and operate
at a threshold voltage ranging from ∼0.5V (Abunahla et al.,
2018) to 1.5V (Vilmi et al., 2016; Hu et al., 2020) or higher
(Illarionov et al., 2019) with a resistive switching ratio ROFF/RON
of 101-105 (Table 1). Thus, the functional parameters of these
devices may be variable with respect to the morphology and
purity of the sol–gel product, deposition method (see section
Fabrication), and annealing conditions (see section Annealing
and Electric Properties).

Thermal oxidation
Polycrystalline TiO2 typically in the form of rutile can be
obtained by thermal oxidation of a titanium layer at temperatures
in the range 500–800◦C (Cao et al., 2009). This method
allows fabrication of TiO2 films with thicknesses down to
4 nm (Park et al., 2011). Furthermore, thermal oxidation is a
cost-efficient method that is compatible with standard RRAM
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TABLE 1 | Overview of the structure and electrical properties of TiO2-based memristors obtained by various synthesis methods.

Synthesis

method

Deposition method

(annealing temperature,

time, and atmosphere)

Structure Feature size*, µm2

(TiO2 phase)

Thickness, nm

(particle size, nm)

V**
T , V ROFF/RON Application Retention time, s

(switching time, s)

Reference

Sol–gel Spin coating (550◦C, 10 h, air) Cellular, Al/TiO2/FTO 2 × 106 (anatase) 35 3.9 2 × 105 General 104 (N/D) (Tao et al., 2020)

Sol–gel Inkjet (200◦C, 2 h, Air) Planar, Au/TiO2/Au 3 (anatase) 400 (7***) ∼4 ∼20 Cell biology N/D (Illarionov et al.,

2019)

Sol–gel Drop casting (N/D) Crossbar, Ag/TiO2/Cu 4 × 106 (amorphous) 4.5 × 104 0.5 107 γ-ray sensor 4 × 104 (50 ÷ 360) (Abunahla et al.,

2018)

Sol–gel Inkjet (150◦C, 15min, N2) Cellular, Ag/TiO2/Ag/PET 3,600 10–160 ∼1.5 500 Mechanical

sensor

N/D (Vilmi et al., 2016)

Sol–gel Spin coating (500◦C, 1 h, air) Cells array, Al/TiO2/FTO 2 × 105 (anatase) 100 ∼1.8 >300 RRAM 104 (10) (Hu et al., 2020)

Hydrothermal Dip coating (450◦C, 2 h, air) Sandwiched, Ag/TiO2/Al N/D (anatase) 265 0.7 100 RRAM N/D (Dongale et al.,

2014)

Hydrothermal Dip coating (500◦C, 3 h, air) Sandwiched, Al/TiO2/Ti 7.9 × 105 (anatase

nanowires)

N/D ∼3 70 RRAM 104 (N/D) (Xiao et al., 2017)

Hydrothermal Dip coating (300◦C, 2 h, air) Sandwiched, Ag/TiO2/FTO 1.3 × 107 (rutile +

anatase, rutile)

7,000 1.2 >10 RRAM 4 × 106 (N/D) (Irshad et al., 2019)

Solid state, 2D

colloid

Dip coating Crossbar, Al/TiO2/Pt/Ti/SiO2/Si 4 2 0.5 ÷ 1.5 106 RRAM 104 (20 × 10−9) (Dai et al., 2017)

Thermal

oxidation

– Sandwiched, Ir/TiO2/TiN N/D 4 >1.5 (set) ∼100 RRAM 104 (10−7) (Park et al., 2011)

Thermal

oxidation

–

(650◦C, 1 h, air)

Cellular, Ti/TiO2/Ti ∼3 × 106 (rutile) 400 (50)**** 2 ∼4 Humidity

sensor

6 × 105 (∼10−2) (Hossein-Babaei and

Alaei-Sheini, 2016)

Anodizing – Cellular, Cu/TiO2/Ti 4 8, 11, 29 −1.5 <80 RRAM N/D (Aglieri et al., 2018)

Anodizing –

(550◦C, 1 h, N2/H2 24/1)

Cells array, Pt/TiO2/Ti ∼108 <100 <1 ∼56 General N/D (Miller et al., 2010)

PVD, ALD – Crossbar, Pt/TiO2/HfO2/Pt 4 × 10−6 7 ∼1.8 450 RRAM,

computing

120 (N/D) (Pi et al., 2019)

PEALD – Crossbar, Al/TiO2/Al 3,600 (amorphous) 13 2.1 >100 RRAM N/D (Jeong et al., 2010b)

PEALD – Crossbar, Pt/Ni/TiO2/Al2O3/Pt 4,900 (amorphous) 12 ∼0.5 ÷ 1.5 ∼100 RRAM N/D (Jeong et al., 2010a)

PVD/RMS –

(600, 800◦C, 3 h, air)

Crossbar, Pt/TiO2/Pt N/D (anatase) 2,000 (40–50)*** ∼0.2 ÷ 1.0 < 6 × 105 H2 sensor N/D (5) (Haidry et al., 2017)

PVD/RFS –

(400◦C, 15min, N2)

Crossbar, Ni/TiO2/Ni 1.1 (anatase) 10 ∼0.8 104 RRAM N/D (Cortese et al., 2016)

PVD/RS – Cellular, Al/TiO2/Au 100 50 0.5 12 General N/D (10−3) (Ghenzi and Levy,

2018)

PVD/RS – Crossbar, Pt/TiO2/Pt/Cr 2.25, 9 (amorphous and

anatase)

30 (10)*** ∼0.5 ∼100 RRAM N/D (Strachan et al.,

2013)

PMCS – Planar, glass/TiO2/Al 1.77 × 108 (rutile and

anatase)

30 N/D N/D Bio-interface N/D (Roncador et al.,

2017)

PLD – Cellular, Cu/TiO2/Pt 1.26 × 105 100 ∼0.2 ∼3 × 103 RRAM 100 (250 × 10−9) (Sahu et al., 2020)

∼, estimated or recalculated values; *electrode area; **threshold voltage; ***by Scherrer equation; ****by SEM, scanning electron microscopy.

2D, two-dimensional; ALD, atomic layer deposition; MRS, magnetron reactive sputtering; PEALD, plasma-enhanced atomic layer deposition; PVD, physical vapor deposition; RFS, radio frequency sputtering; ROFF /RON , resistive switching

ratio; RRAM, resistive random-access memory; RS, reactive sputtering; VT , threshold electroforming voltage.
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manufacturing technology (Acharyya et al., 2014). However,
processing temperatures above 500◦Cmight cause the formation
of crystallographic line defects or microcracks.

Hydrothermal synthesis
This is defined as heterogeneous reactions in aqueous media
under high pressure and temperature sufficient to dissolve
and recrystallize materials that are insoluble in water under
normal conditions (Byrappa and Yoshimura, 2001). Various
metal alkoxides (Ti(OR)4, R = C2H5, i-C3H7, C4H9) or TiCl4
have been used as precursors (Oh et al., 2009; Zhang et al.,
2011; Senthilkumar et al., 2013; Dongale et al., 2014; Irshad
et al., 2019). In this process, temperatures up to 230◦C and
high pressures (around 200 bar) facilitate the formation of a
crystalline product at relatively low temperatures (Dalod et al.,
2017). The TiO2-based materials obtained by this method show
reasonable ROFF/RON switching ratios of up to 100 (Dongale
et al., 2014; Xiao et al., 2017), although higher values (>104)
have also been reported (Senthilkumar et al., 2013). Additional
control over the size and shape of TiO2 particles can be
achieved by means of a solvothermal approach (Dinh et al.,
2009). Recently, this method has been successfully applied to
obtain sub-10 nm TiO2 nanoparticles that are capable of forming
self-assembled monolayers and that possess resistive switching
properties (Schmidt et al., 2017).

Electrochemical oxidation
Using an electrochemical method or anodizing, the oxidation of
a titanium foil in an electrochemical cell provides nanostructures
of TiO2 (Yoo et al., 2013). With this method, the composition,
thickness, and structure can be controlled by choosing
an appropriate substrate, electrolyte, and electrochemical
conditions. Only a few studies have addressed this method of
fabricating TiO2-based memristors (Miller et al., 2010; Yoo
et al., 2013; Aglieri et al., 2018; Zaffora et al., 2018). Recently,
promising advances in anodizing to form a compact topology of
memristors (8–29 nm thickness and 4 µm2 feature area) have
been demonstrated (Aglieri et al., 2018). The method is relatively
cheap and is typically performed at ambient temperature.
However, precise control of film thickness and sensitivity to the
type and surface of the substrate are major challenges.

Atomic layer deposition (ALD)
Chemical vapor-based deposition techniques are widely used in
the fabrication of thin films. Ultrathin TiO2 layers in memristive
devices are usually fabricated by ALD or plasma-enhanced ALD
(PEALD). In thesemethods, Ti-based precursors (TiCl4, titanium
alkoxides) are decomposed in the presence of an oxidizer (H2O,
O3, or O2) (Seo et al., 2011; Marichy et al., 2012). The PEALD
process can be performed at relatively low substrate temperatures
(Kwon et al., 2010). The methods allow very thin TiO2 layers
in the range of 7–13 nm to be formed (Jeong et al., 2010a,b)
and are compatible with other fabrication techniques. Using a
combination of ALD and other nanofabrication processes, a very
small topological feature size of 4 nm2 has been achieved for
memristor crossbar arrays (Pi et al., 2019). The ALDmethods are

relatively costly, but provide high precision and thus scalability
and reproducibility.

Physical Approaches

Physical vapor deposition (PVD)
These methods require the transfer and deposition of materials
under vacuum. The post-processing annealing at 200–600◦C
may support adhesion and crystallization (Cortese et al., 2016;
Haidry et al., 2017). The sputtered TiO2 layers meet the criteria
of the nanometer-range electronics industry (Strachan et al.,
2013; Ghenzi and Levy, 2018) and therefore find application at
an industrial level, especially in reproducible, long-lasting, and
portable RRAM devices (Nickel et al., 2013). The methods are
sensitive to contamination inside the chamber and require high
power (Acharyya et al., 2014).

Pulsed microplasma cluster source (PMCS)
This technique forms supersonic pulsed beams of the metal
oxide clusters and deposits them on a substrate. Deposition
occurs at high energy and results in nanostructured thin films.
The method was suggested for fabrication of TiO2 memristors,
as the nanocrystalline structure and porosity can be controlled
by varying deposition parameters, while the growth can be
performed at room temperature (Baldi et al., 2015). In addition
to purely memristive applications, the method was also suggested
for fabrication of biohybrid TiO2 interfaces (Roncador et al.,
2017) that demonstrated good properties for the growth and
vitality of neuronal cell cultures and their electrical activity.

Fabrication
Thin-film fabrication implies depositing TiO2 nanomaterials
onto a substrate along with arrangement of the electrodes. In this
section we briefly outline the most widely used techniques for
fabrication of TiO2 memristive devices.

Drop Casting
This is the simplest technology. Functional layers are formed by
depositing drops of colloidal dispersions of TiO2 onto a substrate
using a syringe or pipette. The thickness of the TiO2 layers
obtained by this method typically ranges between 40 and 200µm
(Gale et al., 2014; Abunahla et al., 2018; De Carvalho et al.,
2019). This thickness range does not match the usual topological
features of RRAMmemristors, although the method has recently
been justified for various memristive sensors (Abunahla et al.,
2016, 2018; Sahu and Jammalamadaka, 2019).

Spin Coating
This method is based on spinning of the substrate, which exploits
an inertial force acting on the fixed substrate and an unfixed drop
of slurry cast on top of it. Varying the viscosity of the slurry or
solution and the rotation speed, the method may be adjusted to
obtain TiO2 thin films with thicknesses down to 35 nm (Tao et al.,
2020). Thus, the method has been proposed for fabrication of
RRAM (Hu et al., 2020).

Dip Coating
Dip coating is considered to be a high-quality and cost-efficient
deposition method, if physical adsorption between the substrate
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and the adsorbate dispersed in a colloidal solution is adopted
as a controllable process. In this way, memristive thin films
comprising two-dimensional TiO2 flakes with a thickness of
∼2 nm were obtained by dip coating. These films demonstrated
distinctive properties such as a high resistive switching ratio, fast
switching speed, and extremely low erase energy consumption
(Dai et al., 2017).

Inkjet Printing
Inkjet printing is a cost-efficient fabrication method, especially
for micro- and nanopatterning and laboratory-scale prototyping
(Menard et al., 2007). The method has been applied for
stretchable and flexible electronics (Nayak et al., 2019), including
various TiO2 memristive devices (Samardzić et al., 2015). Inkjet
printers are used for automated drop casting and typically
operate with a picoliter droplet volume and provide droplet
deposition with 10–20µm spatial resolution. The thickness of
the film may be variable and usually exceeds 100 nm (Duraisamy
et al., 2012), although a lower value of 80 nm has been reported
recently (Salonikidou et al., 2019).

Annealing and Electric Properties
Annealing in reducing atmospheres affects the concentration of
charged point defects and thus the resistive switching. Despite
many experimental studies, including the post-fabrication
thermal annealing stage (typically at 400–600◦C) under vacuum
(Schmidt et al., 2015), nitrogen (Seo et al., 2011; Cortese et al.,
2016; Regoutz et al., 2016), argon (Nelo et al., 2013), or N2 +

H2 (4–5%) gas mixtures (Yang et al., 2008; Miller et al., 2010),
only a few studies have systematically addressed the effects of
thermal treatment under various annealing atmospheres on the
resistive switching behavior of TiO2 memristive devices (Lai et al.,
2013a,b; Nelo et al., 2013).

SUMMARY AND OUTLOOK

The current renaissance of the resistive switching phenomenon
over the last 12 years has been intimately associated with studies
on TiO2 thin films that have often been addressed as prototype
oxide memristors for many research applications. Numerous
recent achievements highlighted in this mini-review demonstrate
the rapid development of TiO2-based memristors in various
application fields, while the growing interest in these devices is
seemingly far from saturation.

The major challenges of TiO2 memristors have been outlined
in several previous reviews and remain essentially unsolved.
Technologically, the emerging properties of memristive systems
concern the operational stochasticity, number of distinguishable
states, switching energy, switching speed, endurance, retention,
and feature size. Their relationship in various types of modern

memristive systems has been comprehensively addressed in a
recent topical review (Zhang et al., 2020). Besides the permanent
technological issues of increasing the integration density and
reducing the production costs, there are fundamental challenges
in understanding the mechanisms of resistive switching in solids,
which, in practice, limit the scalability and reproducibility of
the memristive devices (Acharyya et al., 2014; Jeong et al.,
2016; Zidan, 2018; Xia and Yang, 2019; Zhang et al., 2020).
Despite the apparent simplicity of the metal–insulator–metal
configuration, the mechanisms involved in the memristive
electric performance are manifold and complex. Two types
of electroforming processes, electronic (Shao et al., 2015) and
ionic (Waser et al., 2009), play essential roles in the non-
linearity and hysteresis of the voltage–current relationship. Thus,
understanding the electron band structure of TiO2 polymorphs
(Scanlon et al., 2013), the defect structure (Bak et al., 2006), and
the equilibrium relations with Magnéli phases (Padilha et al.,
2016) are of key importance and should help to address the
challenges at a theoretical level. In addition, many experimental
studies have recently addressed tuning of the electric properties
of TiO2 memristors by choosing appropriate electrodes and an
appropriate operating voltage regime or by affecting the phase
ratio, defect structure, and microstructure of the synthesized
materials using post-processing annealing under ambient or inert
atmospheres (Goren et al., 2014; Schmidt et al., 2015; Cortese
et al., 2016; Regoutz et al., 2016; Haidry et al., 2017; Tao et al.,
2020). Thus, they have contributed to our understanding of the
complex resistive switching phenomena in TiO2. Meanwhile,
only a few studies have systematically addressed the effect of
thermal annealing at reduced oxygen partial pressures on the
resistive and resistive switching properties of TiO2 thin films
(Lai et al., 2013a,b; Nelo et al., 2013). Seemingly, this issue also
remains underexplored.

In view of the current trends and challenges of TiO2-based
memristors, we can expect an increasingly large role of chemical
approaches to device fabrication, lowering of the production
costs, rapid development of neuromorphic computing systems,
and further convergence of artificial electronic neurons with
biological cells based on TiO2 thin films.
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