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Because undesirable pharmacokinetics and toxicity are significant reasons for the failure

of drug development in the costly late stage, it has been widely recognized that drug

ADMET properties should be considered as early as possible to reduce failure rates in

the clinical phase of drug discovery. Concurrently, drug recalls have become increasingly

common in recent years, prompting pharmaceutical companies to increase attention

toward the safety evaluation of preclinical drugs. In vitro and in vivo drug evaluation

techniques are currently more mature in preclinical applications, but these technologies

are costly. In recent years, with the rapid development of computer science, in silico

technology has been widely used to evaluate the relevant properties of drugs in the

preclinical stage and has produced many software programs and in silico models,

further promoting the study of ADMET in vitro. In this review, we first introduce the two

ADMET prediction categories (molecular modeling and data modeling). Then, we perform

a systematic classification and description of the databases and software commonly

used for ADMET prediction. We focus on some widely studied ADMT properties as well

as PBPK simulation, and we list some applications that are related to the prediction

categories and web tools. Finally, we discuss challenges and limitations in the preclinical

area and propose some suggestions and prospects for the future.

Keywords: drug discovery, pre-clinical studies, ADMET, pharmacokinetics, PBPK modeling

INTRODUCTION

Drug development is a complicated, risky, and time-consuming process that can be divided
into several stages, including disease-related genomics, target identification and validation, lead
discovery and optimization, preclinical studies, and clinical trials (Tang et al., 2006) (Figure 1).
During early drug discovery, the activities and specificities of candidate drugs are usually assessed
at an early stage, and pharmacokinetics and toxicities are evaluated at a relatively late stage
(Selick et al., 2002). However, the undesirable efficacy and safety, mainly caused by absorption,
distribution, metabolism, excretion, and toxicity (ADMET) characteristics, resulted in the failure of
many candidate drugs in the final stage (Caldwell et al., 2009). Cook et al. (2014) comprehensively
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FIGURE 1 | Schematic flow chart summarizing the process of drug discovery and the main content of the preclinical study. Preclinical studies mainly include in silico

ADMET prediction and PBPK simulation, which play important roles in helping the selection and optimization of drug candidates.

reviewed the results of AstraZeneca’s small-molecule drug
projects from 2005 to 2010 based on a longitudinal study.
They found that unacceptable safety and toxicity were the most

important reasons for the failure of more than half of all project
closures. As with the development of drug discovery, it was
realized that it is important to filter and optimize the ADMET
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properties for drugs at an early stage, which has been accepted
and widely used to reduce the attrition rate in drug research and
development. A “fail early, fail cheap” strategy has been employed
by many pharmaceutical companies (Yu and Adedoyin, 2003).
Pharmacokinetics and toxicity assessments of preclinical drugs
are of great value in reducing the failure rate of new chemical
entities (NCEs) in clinical trials (Kola and Landis, 2004; Yang
et al., 2018b; Ferreira and Andricopulo, 2019). In recent years, in
vitro and in vivo ADMET prediction methods have been widely
used, but it is impractical to perform complex and expensive
ADMET experiments on a large number of compounds (Cheng
et al., 2013; Patel C. N. et al., 2020). Thus, an in silico strategy
to predict ADMET properties has become very attractive as
a cost-saving and high-throughput alternative to experimental
measurement methods.

With the rapid development of computer technologies,
the high-throughput screening of compounds, application of
combinatorial chemistry, and ability of compound synthesis
have increased dramatically. The early demands for ADMET
data on lead compounds have also significantly increased, and
methods for evaluating ADMET in vitro are gradually increasing.
Many in silico methods have been successfully applied to the
in vitro prediction of ADMET, and in silico models have also
been developed to replace in vivo models for the prediction of
pharmacokinetics, toxicity, and other parameters (Zhu et al.,
2011; Wang et al., 2015; Alqahtani, 2017). In silico ADMET
prediction has progressed with the continuous development of
cheminformatics and has entered the era of big data (Ferreira
and Andricopulo, 2019). Two in silico approach categories can
be used for ADMET prediction: molecular modeling and data
modeling. Molecular modeling is based on the three-dimensional
structures of proteins. It includes multiple methods such as
molecular docking, molecular dynamics (MD) simulation, and
quantum mechanics (QM) calculation (Bowen and Guener,
2013; Cheng et al., 2013; Silva-Junior et al., 2017). Data
modeling includes quantitative structure–activity relationship
(QSAR) (Cumming et al., 2013) and physiologically-based
pharmacokinetic (PBPK) modeling (Fan and de Lannoy, 2014).
Due to the increase in number of properties that need to be
predicted, a series of ADMET software programs capable of
comprehensive property prediction have been developed. The
development from in silico approaches to ADMET software has
undergone a long process of predicting property parameters
from less to more at early to late timepoints (Figure 2). This
review first provides a detailed introduction to the two in
silico approaches of ADMET prediction. Then, we summarize
the widely used databases and software related to ADMET
prediction. Finally, we analyze the problems and challenges faced
by computer model prediction methods as well as the tools, and
we propose some of our own prospects for future development in
this area.

IN SILICO APPROACHES

Molecular Modeling
Molecular modeling, based on the three-dimensional structures
of proteins, is an important category in predicting ADMET

properties and includes methods such as pharmacophore
modeling, molecular docking, MD simulations, and QM
calculations (Figure 3). As more and more three-dimensional
structures of ADMET proteins become available, molecular
modeling can complement or even surpass QSAR studies (Moroy
et al., 2012). Applying molecular modeling to perform ADMET
prediction is a challenge because the ADMET proteins usually
have flexible and large binding cavities. Many promising results
of molecular modeling in predicting compoundmetabolism have
been reported. The methods in these cases can be generally
divided into ligand-based and structure-based and help not only
to analyze metabolic properties but also to further optimize
compound toxicity, bioavailability, and other parameters (Lin
et al., 2003).

Ligand-Based Methods
Ligand-based methods derive information on proteins’
active sites based on the shapes, electronic properties, and
conformations of inhibitors, substrates or metabolites; this
information depends on the assumption that the metabolic
properties of compounds are entirely the result of their chemical
structures and characteristics (de Groot et al., 2004; Andrade
et al., 2014). In this category, pharmacophore modeling is one of
the most widely used methods. The interactions between ligands
and receptors can be predicted by constructing a pharmacophore
model to cover the structures or properties of ligands in three-
dimensional space and then to simulate the spatial and chemical
properties of binding sites (de Groot, 2006). Therefore, the
availability of ligand data is essential to the construction of
pharmacophore models. In recent years, there have been many
cases of using pharmacophore models to screen promising
compounds with outstanding ADMET properties (Nandekar
et al., 2016; El-Zahabi et al., 2019; Mohan et al., 2020; Patel D.
B. et al., 2020; Rawat and Verma, 2020). For example, Nandekar
et al. (2016) generated and validated a pharmacophore model to
screen anticancer compounds acting via cytochrome P450 1A1
(CYP1A1). Nine compounds that have preferred pharmacophore
characteristics and are capable of generating reactive metabolites
were finally selected for further study. Rawat and Verma
(2020) developed a pharmacophore model to discover new
dual target inhibitors of Plasmodium falciparum dihydroorotate
dehydrogenase (PfDHODH) and cytochrome bc1 complex
(PfCytbc1) to treat malaria. The molecule MMV007571, which
has been validated as an efficient multi-target inhibitor, was used
to extract features from the binding information for the model
construction. The model was used to screen a library including
more than 40,000 molecules. After a series of experiments,
two compounds were developed with the desired properties in
binding potential and pharmacokinetic characters.

The shape-focused method is another category of ligand-
based methods. This method is based on the fact that the
shapes of a ligand and the binding site of its receptor should
be complementary. Thus, molecules that have a comparable
shape should be able to bind to the same receptor. It is
more possible for a ligand to bind with the same target if
it has greater similarity with the reference molecule (Putta
and Beroza, 2007). This method requires only one reference
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FIGURE 2 | Classification of ADMET prediction strategies. The ADMET prediction includes the primary in silico approaches and the usage of ADMET software. The

development from in silico approaches to ADMET software has undergone a long process of predicting property parameters from less to more.

molecule (shape) to perform a screening. However, more models
should be constructed to cover more diverse chemical space if
different shapes are available (Perez-Nueno and Ritchie, 2011),
particularly for highly flexible proteins. Some studies using
the shape-focused method have been reported in recent years
(Reddy et al., 2013; Chen et al., 2015; Kumar et al., 2015;
Prabhu and Singh, 2019). For example, Chen et al. (2015)
presented a shape-based virtual screening to find new cores
for the design of acetylcholinesterase (AChE) inhibitors. The
shape of commercial inhibitor tacrine was used to search
for new potential inhibitors. Two hit compounds were finally
identified with good ADMET properties and better activity
than tacrine.

With the improvement of computer hardware performance,

the time-consuming QM calculation in ADMET prediction has
become possible and popular. The QM calculation can be used to
evaluate the bond break, which is a step required for metabolic
transformation (Andrade et al., 2014). Moreover, this calculation
uses an accurate means of describing electrons in atoms and
molecules (Modi, 2003). Hence, QM calculation is very helpful
in ADMET prediction. Extensively increasing studies involving
the application of QM methods have been conducted to describe
ADMET properties of new compounds (Li et al., 2012; Taxak
et al., 2013; Kavitha et al., 2015; Sasahara et al., 2015; Evangelista
et al., 2016; Mondal et al., 2017). The ab initio (Hartree-Fock),
semiempirical (AM1 and PM3), and density functional theory
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FIGURE 3 | Strategy of molecular modeling in ADMET prediction. Molecular modeling is divided into ligand-based methods and structure-based methods and mainly

used for the prediction of metabolic sites, potential metabolic enzymes, and effects of compounds on metabolic enzymes.

(DFT) approaches are most commonly used in these studies
(Silva-Junior et al., 2017). For example, Mondal et al. (2017)
used the DFT method to study the absorption profile and
antimicrobial activity for five sulfonamide Schiff bases. The
geometries compared well with the experimental value. Sasahara
et al. (2015) used the DFT method to evaluate the metabolic
selectivity of antipsychotic thioridazine by CYP450 2D6. This
study revealed the importance of the substrate orientation in the
reaction center of this enzyme for the metabolic reaction.

All ligand-based methods need to address the problem of
the uncertainty of metabolic enzyme binding sites. If reliable
structural data for a metabolic enzyme are lacking, the properties
of ligand binding to the enzyme can only be speculative, and
minor modifications to a ligand may cause a significant decrease
in ligand-protein affinity (Kirchmair et al., 2012). Therefore, it is
difficult to predict ADMET using ligand-based methods without
reliable protein structure data. However, the use of ligand-
based methods in metabolism prediction can easily eliminate
inappropriate compounds and reduce the number of compounds
that fail during the synthetic evaluation cycle andmore expensive
late stages.

Structure-Based Methods
Structure-based methods can be used not only to predict the
ADMET properties of compounds, but also to study specific
interactions between small molecules and ADMET proteins.
In general, they focus on obtaining binding modes from the

static structures of protein-ligand complexes, regardless of time-
dependent conformational fluctuations (Cheng T. et al., 2012).
For structure-based methods, changes in receptor conformation
must be considered mainly because of the possible interaction
between the existing large and flexible binding cavities with
diverse ligands. By performing MD calculation to simulate
the dynamic changes of spatial shape, we may obtain an
adequate conformation sampling to search a stable and reliable
binding mode for ADMET prediction. In recent years, structure-
based methods have been widely used, for instance, to predict
the binding patterns of substrates (Macalino et al., 2015),
conformational changes in enzymes (Cheng T. et al., 2012), and
their catalytic effects on physiological systems (Cui and Karplus,
2003), to evaluate substrate affinity, instability and metabolic
pathways (Sun and Scott, 2010), and to assess the relationship
between metabolism and carcinogenicity (Fratev and Benfenati,
2008).

The molecular modeling strategy makes important
contributions to the rationalization of metabolic reactions of
compounds, allowing the simulation of binding modes between
drugs and macromolecules in the ADMET process at atomic
or molecular levels. With the rapid development of structural
elucidation and pharmacokinetic calculation techniques,
structure-based methods are becoming increasingly predictive
and accurate. However, the molecular modeling strategy is
still limited by drawbacks such as a requirement to accurately
analyze the structural flexibility of proteins (Kazmi et al., 2019).
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Additionally, high-resolution experimental structural data of
the target will be more conducive to our accurate prediction of
the drug metabolic fate (Doss et al., 2014). Surely, combining
improved structure-based and ligand-based methods can create
synergistic effects in metabolic prediction, enabling more
comprehensive descriptions of metabolic reactions (Issa et al.,
2017; Kar and Leszczynski, 2017).

Data Modeling
There are two widely used data modeling methods to predict
ADMET-related properties, QSAR, and PBPK modeling
(Cheng et al., 2013). ADMET analysis and prediction in QSAR
mainly depends on many molecular descriptors, including
topological, geometrical physicochemical, or electronic
descriptors. Many properties, such as blood-brain barrier
(BBB), clinical adverse effects, percent protein binding (%PPB),
lipophilicity (logP), preclinical toxicological endpoints, and
metabolism of pharmaceutical substances, can be predicted
using the QSAR method. The PBPK modeling always predicts
parameters concerning the dose size and dose frequency, such
as the volume of distribution at steady-state (Vss), total drug
clearance (CL), and fraction of dose that reaches the portal vein
(Fabs), because most drugs are taken orally.

QSAR
QSAR, which employs mathematical models to describe
relationships between molecular structures and their biological
activities, has been used in pharmaceutical chemistry since
the 1960s (Hansch, 1981). The classical QSAR developed by
Hansch was used to predict ADMET (Hansch, 1981). It is
mainly based on the hypothesis that similar molecules exhibit
similar properties (Patterson et al., 1996). Thus, two prediction
methods are primarily considered: (1) prediction based on
molecular similarity (pharmacophore- and molecular fragment-
based methods) and (2) prediction based on property similarity
(log P, log D, and others) (Yongye and Medina-Franco, 2013).
In these two methods, the accuracy of prediction depends on
the attribute characteristics in the applicability domain contained
in the training set. Thus, when using a model constructed with
a specific training set, prediction should be performed using
compounds that have a similar structure space to those in the
training set to improve the prediction accuracy of the QSAR
model, since compounds with similar distribution in chemical
space are more likely to exhibit similar biological activities
(Huang and Fan, 2011).

QSAR is a method for using various biochemical and
physical data to construct models. In QSAR studies, compounds
can be mathematically codified as molecular descriptors, and
the relationship between molecular descriptors and defined
properties is constructed by statistical methods, after which a
generated model is used to predict the corresponding properties
of new compounds (Michielan and Moro, 2010). This method
first transforms molecular structure into molecular descriptors,
which are then used to establish prediction models by using
statistical approaches or machine learning techniques such as
support vector machine (SVM) and K Nearest Neighbor (kNN)
(Wang S. et al., 2016; Wu et al., 2019; Yang et al., 2019;

Fu et al., 2020). For example, Schyman et al. (2017) used
the variable nearest neighbor (vNN) method to develop 15
ADMET prediction models and to use them to quickly assess
some potential drug candidates, including toxicity, microsomal
stability, mutagenicity, and likelihood of causing drug-induced
liver injury. Belekar et al. (2015) developed a computational
model to identify compounds as breast cancer resistance protein
(BCRP) inhibitors or not by using various machine learning
approaches like SVM, k-NN, and the artificial neural network
(ANN). The prediction accuracy of all three approaches was
over 85%. Finally, internal and external cross-validation were
performed to confirm the reliability of the model before it is
used on new predictions to find molecules outside the training
set (Figure 4).

QSAR modeling uses a large number of descriptors that
allow lookups, enable structure/response associations, and help
with similarity and substructure searches (Khan, 2010). Most
of the available descriptors can be divided into three categories:
(1) two-dimensional molecular topology information; (2)
three-dimensional molecular structure; and (3) physicochemical
and electronic descriptors, which are commonly used to
predict ADMET-related properties (Danishuddin and Khan,
2016; Tabeshpour et al., 2018; Zhang et al., 2018). Jiang
et al. (2020) developed a series of QSAR models by using
379 molecular descriptors to discriminate BCRP inhibitors.
The descriptors characterized the physicochemical, two-
dimensional substructures, and drug-like properties of the
studied compounds. Lapins et al. (2018) constructed a QSAR
model to predict the lipophilicity of compounds by using a
signature molecular descriptor, which is related to the molecular
two-dimensional topology information from 1.6 million
compounds. Xu et al. (2017) developed three deep learning-
based QSAR models to evaluate the acute oral toxicity (AOT)
of compounds. The atom and bond information extracted from
over 2,000 two-dimensional molecule structures were used as
descriptors to construct the models. The best model achieved an
external prediction accuracy over 94%, which is more efficient
than traditional fingerprints or descriptors. Bujak et al. (2015)
predicted the permeability of the BBB of chemical compounds
using molecular energy-related descriptors in combination
with the well-known lipophilicity descriptors. The data indicate
that the QSAR model has important information value, and
these descriptors may have supportive value in predicting the
blood brain distribution (Bujak et al., 2015). Therefore, accurate
prediction of ADMET parameters mainly depends on the
selection of a suitable modeling method, molecular descriptors
of specific ADMET endpoints, and large experimental data sets
related to these endpoints. Only in this way can the ADMET
properties of the candidate compounds be predicted precisely.

At present, many tools used for ADMET prediction have
been developed based on QSAR methods. These tools utilize
different descriptors to define the collected data, and then
the mathematical model fitted from the training set is used
to predict the properties. We listed three widely used QSAR-
based ADEMT prediction tools and related studies herein. (1)
The Danish QSAR Database (http://qsar.food.dtu.dk/) collected
estimates from over 200 QSARmodels from free and commercial
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FIGURE 4 | Workflow for the use of pharmacodynamic, pharmacokinetic, and toxicity databases and models. The molecular data were first collected from different

databases, and the QSAR model was constructed using the collected or calculated molecular descriptors. Internal and external validation were then performed using

the model. Finally, the validated model was used to predict ADMET properties for new chemicals.

platforms, including descriptors like ecotoxicity, environmental
fate, physicochemical properties, and ADMET. Trivedi et al.
(2019, 2020) used the online tool Danish QSAR database to
determine the ADMET properties for potential hits for Dengue
fever and H1N1 flu, respectively. Multicase acute aquatic toxicity,
carcinogenicity, arylhydroxylase activity, lethal body burden,
bioconcentration, mutagenicity, biodegradation, environmental
partitioning, and general properties are included in the ADMET
properties. Finally, 12 compounds were identified as potential
leads against dengue fever and 18 compounds against H1N1 flu.
(2) The OCED Toolbox (https://www.oecd.org/chemicalsafety/
risk-assessment/oecd-qsar-toolbox.htm), a package for toxicity
prediction, was also developed based on QSAR. Han et al. (2019)
used OECD QSAR Toolbox 4.1 to predict the genotoxicity for
ceftazidime (CAZ) and its impurities to improve quality control
of drugs. (3) ADMET PredictorTM (https://www.simulations-
plus.com/software/admetpredictor/) is another tool utilizing
QSAR to predict ADMET parameters of compounds. Takac et al.
(2019) used ADMET PredictorTM to investigate the potential
impact and safety profile with respect to the environment
and health for 25 selected entactogen molecules. The chemical
structure (including 1D and 2D) information was used as the
input for ADMETPredictorTM. Lipophilicity parameters, volume
of distribution, jejunal permeability, solubility, and logarithm
of the brain/blood partition coefficient were predicted in this
case. Alarn and Khan (2019) used the ADMET PredictorTM

to predict pharmacokinetics, pharmacodynamics, and toxicity
parameters of flavone analogs to reveal their anticancer
activity. Different physicochemical properties were calculated as
descriptors to build the model, and then numerous properties
were predicted, such as solubility, lipophilicity, permeability,

absorption, bioavailability, BBB, transporters, plasma-protein
binding, and volume of distribution.

Although the use of QSAR models has made considerable
progress in ADMET prediction, these models cannot yet be
used to replace in vitro or in vivo studies for all endpoints.
The QSAR method is always limited by its model expansion
capability, and large experimental data are always needed for
model construction. The narrow data distribution may induce
over fitting and lead to inaccurate prediction results. For example,
Verheyen et al. (2017) estimated the QSAR models used for the
prediction of eye and skin irritation/corrosion in Derek Nexus,
Toxtree and Case Ultra. They found that the prediction results
were unsatisfactory because of the narrow application range
and low accuracy. Thus, validation and documentation for a
constructed model is important prior to use.

PBPK Modeling
Most traditional models for predicting drug pharmacokinetics
are empirical models. With a deeper understanding of the
pharmacokinetic mechanism of drugs, PBPK models have been
developed to predict PK properties (De Buck and Mackie,
2007). The PBPK model is an arithmetical model that combines
drug data (e.g., drug concentration and clearance rate) and
species physiology parameters to replicate the PK profile of
a drug in plasma and tissues, aiming to describe in vivo
drug pharmacokinetics that are related to tissue volume,
administration routes, blood flow, biotransformation pathways,
and interactions with tissues or organs in the body (Espie et al.,
2009; Jones et al., 2015). The origin of the PBPK models can
be traced back to Teorell’s work in 1935. Teorell introduced a
multicompartment model to simulate pharmacokinetics, which
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organically combined physiology and biology for the first time
(Teorell, 1935; Zhao et al., 2011). Teorell’s work has since
attracted serious attention to the PBPK model.

In recent years, PBPK modeling has been substantially
improved, making it more widely applicable for the research
and development of drugs (Edginton et al., 2008; Rowland
et al., 2011; Zhuang and Lu, 2016). Moreover, the increase
in preclinical data, especially in vitro data, has promoted the
development of PBPK models and simulations in drug discovery
(Zhuang and Lu, 2016). PBPK modeling describes the physical
and biological disposition of each compartment by dividing
organisms into individual organs, and the most common
processes are related to blood transportation and penetration,
distribution between blood and organ tissue, and metabolic
excretion, among others (Schmitt and Willmann, 2004). Since
PBPK integrates large amounts of drug-specific data, parameters,
and species physiology (systematic data), there are two kinds of
parameters in PBPK models, which use the concentration-time
curves of all organs and blood as output information (Nestorov,
2003). The first type consists of physiological parameters, such
as tissue volume, blood flow, and cardiac output. Recently, due
to the extensive application of in vitro-in vivo extrapolation
(IVIVE) in PBPK, many researchers have predicted the disposal
of drugs in vivo through in vitro metabolism and transport data,
indicating that metabolic enzymes and transporter expression
data have become important physiological parameters (Rostami-
Hodjegan, 2012). The second type consists of drug-related
parameters, such as the plasma ratio, organ/blood partition
coefficient, and permeability (Nestorov, 2003). Recently, PBPK
models have been widely constructed to predict drug-related
parameters (Chow et al., 2016; Pathak et al., 2019; Song et al.,
2020). For example, Chow et al. used a physiologically based
model to predict drug solubility and effective permeability (Chow
et al., 2016) to examine the potential impact of excipients on oral
drug absorption.

DATABASES

In the past 10 years, with rapid development, a number
of related databases storing pharmacokinetic parameters have
emerged. We collected some of the most commonly used
databases and classified them as ADMET-related databases and
auxiliary databases. A brief introduction to these databases,
including website links, data scales, and descriptions, is provided
in Tables 1, 2. For the ADMET-related databases, users can
submit information on the compounds they want to query
through the corresponding modules. Then, shape screening or
pharmacophore screening will be performed to obtain additional
targets or bioactivity information on similar ligands that match
the query molecule. The ADMET-related properties can also be
obtained from the query result. The auxiliary databases mainly
focus on providing structural information about compounds.
Although some ADMET-related information is provided in the
search results, it is not complete, and not every compound is
associated with such information.

ADMET-Related Databases
At present, many in silico models are used to predict ADMET,
but massive amounts of data are needed to build them. The
quality and quantity of the data are closely related to the
accuracy of model prediction, so reliable experimental data are
the key to successful prediction (Dearden, 2007; Alqahtani, 2017).
Currently, there are some databases that can help ADMET
prediction, such as the ADME Database (Shang et al., 2017),
SuperToxic (Schmidt et al., 2009), PKKB (Cao et al., 2012),
and DSSTox (Williams et al., 2017). By using these databases,
users can obtain helpful data sets for use in external algorithms
to generate prediction models. The databases can also be used
directly to perform prediction through search functions, such as
the similarity search or prediction. In addition, these models can
be updated as new experimental data are added to the database.

The ADME Database (https://www.fujitsu.com/jp/group/
kyushu/en/solutions/industry/lifescience/admedatabase/),
developed by Zagreb University and Fujitsu in 2004, is a
commercial database that specializes in pharmacokinetics
information. It provides comprehensive data on drug-
metabolizing enzymes and drug transporters that are specific
to humans. The data have been widely used in drug research
and development, such as ADME prediction and drug-drug
interactions. Users can search for classification, metabolic
reactions, and kinetics-related information about compounds
by structure or substructure. However, the database currently
limits large-scale downloads of user data, as well as public
dissemination of some models.

SuperToxic collects toxins from different sources (animals,
plants, synthetic, etc.), compiles ∼60 000 compounds with
their structures, and integrates some chemical properties and
commercial availability information (Schmidt et al., 2009). These
compounds are classified based on their toxicity, which derives
from more than 2 million measurements. The values can be
used to study the relationship between chemical structures
and functions of toxins for evaluating the risk of their use.
Users can easily query the structure and toxicity information
of all compounds with corresponding properties through a
structure search, name search, or property search. SuperToxic
also allows users to browse the data by choosing an alphabetic
character or numbers to present all entries starting with the
selection (Schmidt et al., 2009). The available CASRN or NSC
numbers in the database can also be recorded. The toxicity
information retrieved from the database includes the dosage,
type of test (toxicity measurement, such as LD50), and cell
lines or organisms that determine the toxicity (Schmidt et al.,
2009). The database also integrates software packages that
are widely used in modern composite database construction,
such as Marvin Sketch (molecule drawing), JMol (visual
inspection), and MyChem/OpenBabel (property calculation).
Furthermore, SuperToxic was connected to the Protein Data
Bank, UniProt, and KEGG databases to identify potential targets
in biochemical pathways to search for compounds (Schmidt et al.,
2009).

The EPA Distributed Structure-Searchable Toxicity (DSSTox)
database, which provides a series of documented, standardized
and complete structure annotated toxicity information files,
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TABLE 1 | Some widely used ADMET-related databases.

Database name Availability Description URL

ACD/Percepta Commercial Used to calculate PhysChem properties, ADME properties, and

toxicity endpoints

https://www.acdlabs.com/products/percepta/

index.php

ADME Database Commercial A commercial database for studying drug interactions and ADME,

updated quarterly

https://www.fujitsu.com/jp/group/kyushu/en/

solutions/industry/lifescience/admedatabase/

AurSCOPE ADME Commercial A complete annotated, structured knowledge base can be used to

design predictive models and identify potential drug interactions

http://www.aureus-sciences.com/

Knowitall Commercial The world’s largest mass spectrometry library, can be used to

quickly and accurately identify the spectrum

http://www.bio-rad.com/

ToxBank Commercial A cross-cluster project can be used for comprehensive data

analysis of toxicology and alternative detection of repeated dose

toxicity tests

http://toxbank.net/

ACToR Free Exploring and visualizing complex computational toxicology

information

https://actor.epa.gov/actor/home.xhtml

BRENDA Free Database of enzyme and enzyme-ligand information http://www.brenda-enzymes.org/

CEBS Free A toxicological resource that can be used to model, predict

analyze and assess effects of time and dose on responses to

experimental conditions

https://manticore.niehs.nih.gov/cebssearch

ChemTunes Free A unique cheminformatics platform and expert QC’ed database

that facilitate and support the safety and risk assessment process

for chemical substances

https://www.mn-am.com/products/chemtunes

CTD Free A public resource storing scientific data about relationships

between genes, chemicals, and human diseases

http://ctdbase.org/

DIDB Free Allows researchers to perform the assessment of human

PK-based drug interactions and drug safety

https://www.druginteractioninfo.org/

DSSTox Free A public resource of chemical structure information with existing

toxicity data for supporting better predictive toxicology

https://www.epa.gov/chemical-research/

distributed-structure-searchable-toxicity-

dsstox-database

eChemPortal Free Chemical substance search, chemical property data search and

GHS search are available

http://www.oecd.org/chemicalsafety/risk-

assessment/echemportalglobalportalto

informationchemicalsubstances.htm

IDA2PM Free An integrated database for data access transformation and

analysis visualization and prognostic modeling

http://idaapm.helsinki.fi/

Liceptor Database Free A ligand database containing 2D structures, related molecular

descriptors and bioactivity data consisting of assays, functions

and therapeutic hints

http://www.evolvus.com/

Metabolism and Transport

Database

Free A database related to small molecule transport metabolism that

can be used for computational analysis and modeling

http://www-metrabase.ch.cam.ac.uk/

MetaCyc Free A database of metabolic pathways that can predict the metabolic

pathways of sequenced genomes

https://metacyc.org/

NTP Free NTP studied at any chemical with the potential to impact health https://sandbox.ntp.niehs.nih.gov/neurotox/

Pharmaco Kinetics

Knowledge Base (PKKB)

Free A free database that collects ADMET data and can be used for

ADMET modeling

http://cadd.zju.edu.cn/pkkb/

Repdose Free A toxicity database storing in vitro and in vivo data and a

prediction system for the safety and risk evaluation

https://repdose.item.fraunhofer.de/about_

repdose.html

RTECS Free Contains additional information related to the chemical industry

and occupational safety and health that can be used to assess

workers’ exposure to chemicals

https://www.atsdr.cdc.gov/substances/index.

asp

SuperToxic Free Can perform similarity screening, risk assessment, and link to

other databases

http://bioinformatics.charite.de/supertoxic/

T3DB Free Describe the relationship between toxins and targets and the

mechanism of toxic action, which can be used for prediction of

toxicity, prediction of toxic targets, etc.

http://www.t3db.ca/

TOXNET Free It is composed of a set of databases dealing with environmental

health of toxicological hazardous chemicals and related fields

https://toxnet.nlm.nih.gov/

ToxRefDB Free Store data from in vivo animal toxicity tests and provide toxicity

endpoints for predictive modeling

https://catalog.data.gov/dataset/toxcast-

toxrefdb
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TABLE 2 | Some auxiliary databases for ADMET prediction.

Database Name Availability Description Scale URL

PubChem Free A public database storing biological properties

of small molecules

Contains biological test results for

more than 700,000 compounds

http://pubchem.ncbi.nlm.

nih.gov/

DrugBank Free Storing information about drugs and related

targets

Contains 13,490 drug entries https://www.drugbank.ca/

STITCH Free A search tool and resource for interactions of

chemicals and proteins

Interaction data for more than 68,

000 different chemicals

http://stitch.embl.de/

ChEMBLdb Free An open large bioactive database that can

display metabolite pathways and link to

metabolite metabolizing enzymes and

information document source data

Containing more than 1.6 million

individual compound structures

denoted in the database, with 14

million activity values from more than

1.2 million assays

https://www.ebi.ac.uk/

chembldb/

BindingDB Free A web-based resource containing experimental

binding affinities, focusing mainly on the

interactions between potential drug-targets

and drug-like molecules

1,794,819 binding data, for 7,438

protein targets and 796,104 small

molecules

http://www.bindingdb.org/

bind/index.jsp

ChemProt Free A resource to perform in silico estimation of

small molecules with the integration of

molecular, cellular, and disease-related proteins

complexes

over 1.7 million compounds with 7.8

million bioactivity measurements for

19,504 proteins

http://potentia.cbs.dtu.dk/

ChemProt/

SIDER Free Contains information about marketed drugs

and their adverse reactions, which can be used

to quickly track trace the origin of an extracted

side effect

5,868 side effect and 1,430 drugs

and 139756 drug-SE pairs

http://sideeffects.embl.de/

drugs/

MetaADEDB Free A comprehensive database of adverse drug

reactions (adr), which is used to predict clinical

adr and the source of adverse drug side effects

of personalized drugs, and to predict drug

interactions with targets and drug action

patterns

3,060 chemicals (including more than

1,300 FDA approved and

experimental drugs) and 13, 256

ADEs

http://lmmd.ecust.edu.cn/

online_services/metaadedb/

TTD Free Provides data about known and studied

therapeutic macromolecules, the targeted

disease, pathway information, and the

associated drugs directed at each of these

targets

2,589 targets and 31,614 drugs http://bidd.nus.edu.sg/

group/cjttd/

KEGG Free A reference repository that is widely used to

integrate and interpret large-scale datasets

obtained by genome sequencing and other

high-throughput experimental technologies

4 categories (systems, genomic,

chemical and health information) from

18 databases

https://www.kegg.jp/

can be very useful for SAR model development (Richard and
Williams, 2002; Williams et al., 2017). To allow wider use of
the database, DSSTox was designed to use a structure data file
(SDF), a public and industry-standard import/export file format
storing chemical structures and property information that can
be used as input for any chemical relational database (CRD)
application or converted to data tables. It is one of the best-
curated public datasets available at present, and the data stored
in it are regarded as a standard reference for publicly available
structural toxicity-based data.

Except for the databases introduced above, some newly
constructed ADMET-related databases should also be of concern,
for example, Comparative Toxicogenomics Database (CTD)
(Davis et al., 2019), The Toxicity Reference Database (ToxRefDB)
(Watford et al., 2019), and The Chemical Effects in Biological
Systems database (CEBS) (Lea et al., 2017). CTD is a powerful
and public database designed to enhance understanding of how
environmental exposures influence human health. It provides

data on chemical–gene/protein interactions, chemical–disease
and gene–disease relationships that are combined with pathway
and function data to help develop hypotheses about the inherent
mechanisms of diseases affected by the environment (Davis et al.,
2019). ToxRefDB collects data from in vivo animal toxicity
tests and provides toxicity endpoints for predictive modeling.
Approximately 28,000 datasets from nearly 400 endpoints have
been generated and stored. The recent update of ToxRefDB
has added connections to other resources and significantly
enhanced the utility of predicting toxicology (Watford et al.,
2019). CEBS offers a toxicology resource that compiles individual
and concise animal data from 11,000 test articles and more than
8,000 studies encompassing all available National Toxicology
Program (NTP) carcinogenicity, genetic toxicity, and short-
term toxicity studies. The high-quality data in CEBS is very
useful for constructing a more accurate model for toxicity
prediction (Lea et al., 2017). We may infer from the recent
constructed databases that the quantity and quality of the data
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determine the quality of the model and will be our focus in
the future.

Auxiliary Databases
In addition to ADMET-related databases, databases of biological
activity, pathways, and side effects are important for ADMET
prediction. Most of these databases are free and open to
visitation, such as DrugBank (Wishart et al., 2018), PubChem
(Kim et al., 2019), and ChEMBL (Gaulton et al., 2017). Although
they are rarely used to predict ADMET-related properties
directly, they can provide structural information to build models
or be queried for information about compounds. Users can also
download the predicted compound structure and use it as an
input file for other software.

DrugBank, a comprehensive database, integrated thousands
of well-studied drugs and drug targets with their physical,
chemical, biological, and pharmaceutical data (Wishart et al.,
2006, 2008). DrugBank 4.0 was further expanded to contain data
on ADMET and other kinds of QSAR information (Law et al.,
2013). DrugBank 5.0, the latest version, has further updated
this information (Wishart et al., 2018). Users can use chemical
shifts or mass-to-charge ratio (m/z) lists to search DrugBank’s
spectral library for approximate or exact matches. DrugBank also
systematically classifies compounds into different types based on
structural features and structural similarities and allows users to
query it by using a simple text (Law et al., 2013).

Pubchem, a public database of small molecules with their
biological properties, consists of three interconnected parts: (1)
Compound, storing over 102 million unique chemical structures
provided by various depositors; (2) Substance, containing more
than 251million records including complexes, extracts, mixtures,
and non-characteristics; and (3) BioAssay, containing more than
1,067,000 bioassays, providing composite adjacent structures,
substructures, similar structures, bioactivity data, and other
search functions (Kim et al., 2019).

ChEMBL is an open data database containing two-
dimensional structures, calculated properties (molecular
weight, lipophilicity, etc.) and abstract biological activities
(pharmacology and ADMET data) for numerous drug-like
bioactive compounds (Gaulton et al., 2017). It is composed
of three different datasets that were originally developed by
Inpharmatica, including StARlite, CandiStore, and DrugStore
(Overington, 2009). The data in ChEMBL were extracted from
the scientific literature and designed to meet the needs of users
to intelligently cluster relevant information and integrate data
across therapeutic studies and areas.

SOFTWARE

Favorable ADMET characteristics are important as early
requirements for drug candidates to reduce late failure and
cost. However, many ADMET properties are highly dependent
on each other, so they need to be optimized simultaneously
in preclinical studies on drug discovery and development.
Nevertheless, concurrent optimization of multiparameter
ADMET is the most difficult and least attractive stage. As a
result, early prediction of ADMET involved only some simple

properties, such as logP, logD, and logS. With increasing
experimental data, an increasing number of in silico models
were developed to predict more complex ADMET parameters,
such as the human intestinal absorption rate, oral bioavailability,
blood-brain barrier permeation rate, Caco-2 permeability,
human intestinal absorption, drug interactions, P-glycoprotein,
plasma protein binding rate, CYPmetabolic enzymes, and kidney
clearance (Pires et al., 2015; Dong et al., 2018) (Figure 5). People
have also attempted to integrate these models to predict ADMET
parameters concurrently, and many studies have described
these in silico models and their predicted properties (Dickins
and van de Waterbeemd, 2004; Wang et al., 2015). In addition,
software integrating these models to predict ADMET parameters
concurrently has been developed. Tables 3, 4 list some of these
software packages (free and commercial) with their functions.
We also compared five commonly used software in Table 5 with
each other to visualize their detailed functions.

SwissADME is a hybrid web server that was developed by
the Swiss Institute of Bioinformatics (Daina et al., 2017). It
supports diverse input formats and can predict and analyze
the ADME properties of numerous compounds in batches
submitted from all over the world. This software outputs
different types of physicochemical properties of drugs:
water solubility, lipophilicity, physicochemical properties,
druglikeness, pharmacokinetics, and medicinal chemistry,
which can be directly exported and saved as a data file in CSV
(comma-separated values) format and read by programs such
as WordPad and Excel (Daina et al., 2017). In addition, it
supplies a bioavailability radar map to quickly and intuitively
evaluate the druglikeness of small molecules, facilitating its use
for non-experts without professional knowledge (Daina et al.,
2017). The server uses a variety of rules to evaluate the same
property and provides the evaluation criteria and basis for most
of the predicted data. However, in the prediction of whether the
compound is a substrate or an inhibitor of the CYP enzyme, only
a propensity is output, rather than a probability output similar
to that of admetSAR. SwissADME also supplies a link for the
one-click submission of the queried molecules to other servers in
the Swiss series for further analysis (Daina et al., 2017).

Although in vivo toxicology is still the gold standard for
identifying drug side effects, it is now believed that this
method will not help reduce the large consumption rate in
late clinical development (Merlot, 2010). Many computational
tools have been developed to predict drug toxicity, helping to
decrease the attrition rate of molecular compounds in drug
discovery and reduce drug development time and cost. In
recent years, the predictive power of these toxicology prediction
systems has tremendously improved, covering more complex
toxicological endpoints, such as hepatotoxicity, teratogenicity,
nephrotoxicity, and carcinogenicity (Muster et al., 2008; Yang
et al., 2018b). Currently, many commercial and free web-based
toxicity predictors are available, such as Lazar (Maunz et al., 2013)
and Toxtree (Patlewicz et al., 2008; Bhhatarai et al., 2016).

Lazar, developed by in silico toxicology GMBH, is a tool
based on OpenTox (an integrated interface for an interoperable
prognostic toxicology framework) to predict toxicological
endpoints such as carcinogenicity, reproductive toxicity, and

Frontiers in Chemistry | www.frontiersin.org 11 September 2020 | Volume 8 | Article 726

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Wu et al. Computational Approaches in Preclinical Studies

FIGURE 5 | Crucial properties of ADMET.

long-term toxicity (Hardy et al., 2010). It uses data mining
algorithms to predict the toxicity of new compounds based on
the experimental training data. Data sets with chemical structure
and biological activity can be used as training data. Thus, Lazar
can serve as a universal predictive algorithm for any biological
endpoint if sufficient experimental data are available, so users
no longer need to consider chemical, biological, or toxicological
expertise but derive in silico models from statistical standards
(Maunz et al., 2013). Users need only to input the structure of
the compound, and Lazar will search the database for a series of
similar compounds and corresponding experimental data, which
will be used to construct a local QSAR model. The prediction
results using the model will be displayed in a graphical interface,
which provides structural features and compounds similar to
the query compounds and toxicity properties for each fragment
(Helma, 2006; Maunz et al., 2013).

Toxtree is a free software program that was commissioned
by the European Chemicals Agency (ECB), the joint research
center of the European Commission (Bhatia et al., 2015). It was
originally designed to enable effective development of the Cramer
decision tree. The latest version of Toxtree included additional
projects, such as corrosion rules, BfR/SICRET skin irritation,

and the Verhaar scheme, with a total of 14 functional modules
(Bhatia et al., 2015). It includes physiochemical exclusion rules
and structural alert inclusion rules, which are used to categorize
compounds (Bhhatarai et al., 2016). Unlike Lazar, it has no
training set. Its prediction is based on structural filters, so
there is no applicability domain. It handles molecular structure
information by using a decision tree model for risk assessment
(Bhhatarai et al., 2016). Users can access it at http://toxtree.
sourceforge.net/ to predict the toxicity of structures of interest.

ADMETlab is a platform for systematic ADMET estimation
based on a comprehensive collection of ADMET databases (Dong
et al., 2018). The platform includes four functional modules,
which are used for drug similarity assessment (based on Lipinski’s
rule of five and the Druglikeness model), ADMET endpoint
prediction, system evaluation, and database/similarity search
(Dong et al., 2018). Among them, “ADMET prediction” is
the main module used; the other three are auxiliary modules.
Users can query one or more compounds with the platform by
using the SMILES, uploading an SDF format file, or drawing
the chemical structure using the embedded JME editor. After
the compound is uploaded, the platform will use multiple
pharmacokinetics models built by the different integrated data
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TABLE 3 | Some free ADMET software and related properties in their prediction.

Software URL LogS LogP LogD Sol TPSA HIA Caco-2 PPB BBB Vd Met CL Tox P-gp per pKa MDCK

ACD/I-lab http://www.acdlabs.com/home/
√ √ √ √ √ √ √ √ √ √ √ √

ADMETlab http://admet.scbdd.com/
√ √ √ √ √ √ √ √ √ √ √ √ √ √

admetSAR http://lmmd.ecust.edu.cn/admetsar1/
√ √ √ √ √ √ √

FAF-Drug4 http://fafdrugs4.mti.univ-paris-diderot.fr.
√ √

Lazar https://www.in-silico.de
√

OCHEM http://ochem.eu
√ √ √ √ √ √ √ √

OECD Toolbox http://toolbox.oasis-lmc.org/
√ √

OSIRIS property explorer http://www.organic-chemistry.org/prog/peo/
√ √ √ √ √

pkCSM https://smartcyp.sund.ku.dk
√ √ √ √ √ √ √ √ √ √

SMARTCyp https://nodepit.com/node/org.lhasalimited.knime.metabolism.

encapsulated.smartcyp.SMARTCypNodeFactory

√

SwissADME http://www.swissadme.ch
√ √ √ √ √ √ √ √ √

ToxCreate https://github.com/opentox/toxcreate
√ √

ToxTree http://toxtree.sourceforge.net/#carousel0
√ √

VCCLAB (ALOGPS 2.1) http://www.vcclab.org
√ √ √ √ √

vNN-ADMET https://vnnadmet.bhsai.org/vnnadmet/login.xhtml
√ √ √ √

logS, aqueous solubility; LogP, octanol-water partition coefficient; LogD, octanol-water distribution coefficient; Sol, solubility; TPSA, topological polar surface area; HIA, human intestinal absorption; PPB, plasma protein binding; BBB,

blood-brain barrier; Vd , volume of distribution; Met, metabolism; CL, clearance; Tox, toxicity; P-gp, P glycoprotein; Per, Permeability; pKa, acidity coefficient; MDCK, madin Darby canine kidney cell line.

TABLE 4 | Some commercial ADMET software and related properties in their prediction.

Software URL LogS LogP LogD Sol TPSA HIA Caco-2 PPB BBB Vd Met CL Tox P-gp Per pKa MDCK

ACD/Percepta Platform https://www.acdlabs.com/products/percepta/
√ √ √ √ √ √ √ √ √ √ √

ADMEWORKS
https://www.fujitsu.com/jp/group/kyushu/en/solutions/industry/

lifescience/admeworks/

√ √ √ √ √ √ √ √

CompuDrug’s Pallas System http://www.compudrug.com/pallas_system
√ √ √ √ √ √

Derek Nexus https://www.lhasalimited.org/products/derek-nexus.htm
√

MCASE, CASE, CASETOX https://www.multicase.com/
√

MetaSite http://www.moldiscovery.com/soft_metasite.php
√

PASS http://genexplain.com/pass/
√ √

Schrodinger QikProp https://www.schrodinger.com/qikprop/
√ √ √ √ √ √ √ √

Simulations Plus ADMET Predictor https://www.simulations-plus.com/software/admetpredictor/
√ √ √ √ √ √ √ √ √ √ √ √ √

StarDrop https://www.optibrium.com/stardrop/stardrop-p450-models.php
√ √ √ √ √ √ √ √ √ √

TIMES http://oasis-lmc.org/products/software/times.aspx
√

TOPKAT http://www.moldiscovery.com/software/vsplus/
√

VolSurf+ http://www.moldiscovery.com/software/vsplus/
√ √ √ √ √ √ √

logS, aqueous solubility; LogP, octanol-water partition coefficient; LogD, octanol-water distribution coefficient; Sol, solubility; TPSA, topological polar surface area; HIA, human intestinal absorption; PPB, plasma protein binding; BBB,

blood-brain barrier; Vd , volume of distribution; Met, metabolism; CL, clearance; Tox, toxicity; P-gp, P glycoprotein; Per, Permeability; pKa, acidity coefficient; MDCK, madin Darby canine kidney cell line.
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sets to make extensive predictions of the ADMET properties.
Model prediction results are output in an interactive data table
containing predicted values and structures. The software allows
batch prediction, and users can apply the “drug similarity
assessment” module to filter out compounds that are unlikely
to be lead compounds or drugs, achieving the purpose of
preliminary screening (Dong et al., 2018). Users must select one
model to acquire results for one or multiple molecules, which
is proper for screening compounds at specific endpoints, and
the results will provide reasonable ADMET recommendations
for each endpoint. Therefore, users can perform rapid screening
of ADMET properties based on these independent specific
prediction models and even further deliberately optimize the
chemical structures of compounds, making them more likely
to become drugs (Dong et al., 2018). Considering the very
large amount of collected data and numerous constructed QSPR
models, ADMETlab is currently one of the most comprehensive
platforms used in ADMET prediction.

AdmetSAR is a free and comprehensive tool for ADMET
property prediction (Cheng F. et al., 2012). The ADMET-related
property data stored in AdmetSARwere collected from published
literature. AdmetSAR also includes a searchable tool called
ADMET-Simulator, which combines predictive and superior
QSAR models in a toolbox based on chemical informatics and
can predict ∼50 ADMET endpoints. AdmetSAR enables users
to easily search for ADMET properties by querying CASRN,
the common name, or the structure (Yang et al., 2018a). The
new version of admetSAR (version 2.0) mainly focuses on in
silico prediction of chemical ADMET properties (Yang et al.,
2018a). More than 40 predictive models trained by state-of-the-
art machine learning methods were implemented in admetSAR.
Four functions were developed: (1) customizable ADMET risk
filters, (2) QSAR-based ADMET property prediction, (3) toxicity
prediction for environmental chemicals, and (4) environmental
hazard assessment. ADMETopt (Yang et al., 2018c) is a new
module added in version 2.0 for lead compound optimization
according to the predicted ADMET properties.

Except for ADMET software, an increasing number of PBPK
software have been developed to perform systematics of the drug
process in human body. The development of PBPK software has
further promoted the use of PBPK modeling methods (Bouzom
and Walther, 2008; Edginton et al., 2008; Perdaems et al., 2010).
PBPK software was used to build and use the PBPK models,
which can be useful for the estimation of pharmacokinetic
parameters during the drug development process. At present,
PBPK software can be roughly divided into two categories, the
user customized software and user-friendly software. A brief
introduction to the two types of software is provided in Table 6,
including the company/institute and website links. In Table 7, we
compare the functions of the commonly used software packages
for both categories, such as WinNonlin (https://www.certara.
com/) and GastroPlus (https://www.simulations-plus.com/).

It was initially used in engineering and mathematics of the
user customized software because the essence of PBPK modeling
is mathematical modeling (Bouzom et al., 2012). Hence, the
application of these software programs in PBPK modeling is a
natural transformation. The user customized software requires

users to write their own programs to build the PK model at the
beginning stage of development. This procedure requires users
to have proficient programming skills as well as expertise in
the field. Recently, specific PK or PBPK modules and equation
libraries, as well as visual graphical interfaces, have been added
to some of these software programs (Bouzom et al., 2012).
By using these software programs, users can quickly generate
standard PBPK models by following existing templates that
already contain standard codes and equations, greatly facilitating
user operation.

The user-friendly type, customized for PBPK modeling, has
a graphical interface. It requires no modeling language and
programming, so it is relatively simple to operate. Originally,
some such software programs were specifically modeled for
predicting a specific property of the ADME process, such
as absorption (GastroPlus, Tian et al., 2011) or metabolism
(SimCYP, Jamei et al., 2009). These software programs gradually
evolved into complex PBPK modeling tools for the entire
body. Recently, the function of updated versions has become
increasingly sophisticated. Now, they not only model their
specific areas but also simulate the whole-body pharmacokinetic
process, which is absorption, metabolism, and excretion, etc. (Li
M. et al., 2017; Byun et al., 2020). These software programs can
perform various tasks, such as simulation, parameter evaluation,
and sensitivity analysis, simply by inputting specific drug
parameters and choosing certain model options (Bouzom et al.,
2012).

APPLICATIONS

The in silico applications of predicting ADMET profiles in 2016-
2018 were collected by searching PubMed. We analyzed the
search results and briefly introduce how software programs and
methods predict the properties of ADMETs.

Molecular Modeling
Most applications of molecular modeling focus on predicting the
strength of the interaction between a molecule and a metabolic
enzyme or transporter. For instance, Niu et al. (2016) performed
docking studies of flavokawain A (FKA) and its target CYP450.
FKA shows obvious inhibition of different CYP isoforms, and
subsequent inhibition experiments showed that CYP3A2 was
the primary isoform contributing to the metabolism of FKA.
Gong et al. (2018) performed a molecular docking experiment
to study the binding mode between sauchinone and CYPs. The
results showed the interactions of sauchinone in the active site of
CYP2B6, 2C19, 2E1, and 3A4. In addition to the above examples,
the details of 22 representative studies are included in Table 8.

QSAR
Prediction of the pharmacokinetic properties of compounds
using QSAR relies mainly on traditional models or software
developed based on constructed data sets. Table 9 lists seven
typical applications of the QSAR method. For example, Khan
et al. (2016) utilized the QSAR model in ACD/I-lab to determine
multiple ADMET properties (such as logS, logP, logD, BBB)
for 6 compounds targeting heat-shock protein 90 (Hsp90).
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TABLE 5 | Comparison of five commonly used ADMET software programs.

Tools Availability Batch

computation

Endpoints Database Druglikeness

rules

Druglikeness

model

Systematic

evaluation

Medicinal

chemistry

friendliness

properties

Physico-

chemistry

properties

Similarity QSAR

model

Algorithms Training

sets

Pattern

recognition

SwissADME Free
√

Number, 19

Contents: B, A, D,

M

×
√

×
√ √ √ √

× × × ×

ADMETlab Free
√

Number: 31

Contents: B, A, D,

M, E, T

√
(288,967

entries; 5

similarity

searching

strategies)

√
(5 rules)

√ √
×

√ √ √ √ √
×

admetSAR 2.0Free × Number: 47

Contents: B, A, D,

M, E, T

√
(210,000

entries)

× ×
√

×
√ √ √ √ √

×

Lazar Free × Number: 11

Contents: T: Acute

toxicity; BBB;

Carcinogenicity,

LOAEL, Maximum

Recommended

Daily Dose,

Mutagenicity

× × × × × ×
√ √ √ √ √

ToxTree Free × Number: 6

Contents: M, T

× × × × × ×
√

× × ×
√

B, basic physicochemical property; A, absorption; D, distribution; M, metabolism; E, excretion; T, toxicity.
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Then, six compounds were designed according to BBB and
antiangiogenic properties. One molecule (compound 6) was
observed to inhibit Hsp90 with a predicted efficiency of BBB
permeation of 0.55 kcal/mol in comparison to the experimental

TABLE 6 | Two types of several PBPK software programs.

Software Company/Institute URL

USER CUSTOMIZED SOFTWARE

Kinetica Thermo Fisher Scientific Inc. http://kineticadownload.com/

Kinetica5.1-SP1/Default.asp

MATLAB-simulink The MathWorks Inc. https://www.mathworks.com/

NONMEN ICON https://www.iconplc.com/

innovation/nonmem/

SAAM II Washington University https://tegvirginia.com/software/

saam-ii/

WinNonlin Certara USA Inc. https://www.certara.com/

software/phoenix-winnonlin/

USER-FRIENDLY SOFTWARE

Cloe® PK Cyprotex https://www.cyprotex.com/

insilico/

GastroPlus Simulations Plus Inc. https://www.simulations-plus.

com/

Medici-PK Computing in Technology http://www.cit-wulkow.de/

PK—Sim Bayer Technology Services http://www.systems-biology.

com/sb/

SimCYP Certara USA Inc. https://www.certara.com/

software/simcyp-pbpk/

value of 0.625 kcal/mol. Ajay Kumar et al. (2018) performed 3D-
QSAR studies to filter compounds based on ADME properties by
using Schrodinger. Fifty hit compounds targeted to transforming
growth factor-β (TGF-β) type I were screened based on predicted
ADME properties (such as BBB, logS, and Lipinski’s rule of five).
Seven molecules were finally selected as the lead compound for
subsequent research.

PBPK
PBPK modeling has been consistently performed to predict
pharmacokinetics with the help of some widely used software
programs (Table 7). Seventy-four applications using three
software packages are listed in Table 10. WinNonlin is one
of the most widely used software programs in the prediction
of pharmacokinetics. For example, Gestrich et al. (2018)
used WinNonlin (v6.4) to analyze compartmental and non-
compartmental gentamicin plasma concentrations vs. time. The
peak drug concentrations and AUCs in young adults and older
alpacas were compared, and both were significantly lower in
young adults than in geriatric alpacas. The increased drug
exposure and decreased clearance in geriatric alpacas created
a greater risk of ADRs and/or therapeutic failure. Another
software, NONMEM, is also widely used to predict the impact of
drugs on the target population. It is the “gold standard” software
package for analysis of population PK/PD data. For example,
Polepally et al. (2018) used non-linear mixed-effects modeling
in NONMEM (version 7.3) to analyze concentration-time data
to estimate the effect of age on the pharmacokinetic parameters
of lamotrigine (LTG). By comparing the pharmacokinetic

TABLE 7 | Comparison of commonly used PBPK software programs for two categories.

User customized software Latest version Modeling language Auxiliary tool Operation method Model

WinNonlin WinNonlin v6.4 R Phoenix® NLMETM Built-in options or a

combination of

graphics and text

commands

Non-compartmental analysis

(NCA)

NONMEM NONMEM v7.3 FORTRAN Wings for NONMEM,

priana

Fully based on text Two-compartment or

three-compartment model

User-friendly software Company Species Routes of

administration

Features Application

GastroPlus Simulations Plus Inc. Human, rat, dog,

mouse, monkey, user

defined

i.v., p.o., ocular,

pulmonary, lingual,

sublingual, buccal

ACAT model PEAR

function

Ten modules for PBPK modeling,

built-in multi-person

physiological treatment model,

IVIVC; single simulation, batch

simulation, parameter sensitivity

analysis (PSA), population

simulation

SimCYP Certara USA Inc. Human, rat, mouse,

dog

i.v., p.o., pulmonary,

skin

ADAM model,

Extensive data base

with physiological

information

PBPK modeling function, IVIVE;

DDI simulation and population

differential prediction; time

course of simulated metabolites

PK-Sim Bayer Technology

Services

Human, rat, mouse,

dog, monkey, minipig

i.v., p.o.,

subcutaneous, dermal,

user defined

WB-PBPK model,

various PBPK

calculation methods

High-flexibility-all model

parameters accessible for

specific investigations;

Simulating physiological

variability in reactions
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TABLE 8 | Applications of molecular modeling in predicting metabolic properties from 2016 to 2018.

Year Compound Metabolizing enzyme Tool References

2016 4 Steroid derivatives CYP1B1 (3PM0) Gold-5.4 Poirier et al., 2016

2016 8 omeprazole-based analogs CYP2C19 (4GQS) GOLD 5.2 Li et al., 2016

2016 Flavokawain A CYP2D6 (3QM4) SYBYL-X2.0 Niu et al., 2016

2016 Ketoconazole, Resveratrol, MAR,

DAR and TAR

CYP3A4 (2V0M) Discovery Studio 4.0 Basheer et al., 2016

2016 Naringenin,

6’,7’-dihydrox-ybergamottin

CYP1A1 (4I8V) Autodock Santes-Palacios et al.,

2016

2016 Pyridine, Piperidine and Azol scaffolds UBE2D4 Discovery Studio 3.5 Ramatenki et al., 2016

2016 Rab38 inhibitors Rab38 Discovery Studio 4.0 Abdelmonsef et al.,

2016

2017 1
′
-S-1

′
-acetoxychavicol acetate CYP1A2 (2HIF), CYP2D6 (3QM4),

CYP3A4 (4D6Z)

AutoDock Vina version

1.1.2

Haque et al., 2017

2017 12 estrone (E1), 17 β-estradiol (E2)

derivatives

CYP1B1(3PM0) GOLD 5.4 Dutour et al., 2017

2017 Progesterone (PGS) CYP3A4 (1W0F)
Schrödinger Suite,

2012

Du H. et al., 2017

2017 Quinoxaline, Diazepine, Piperazine UBE2NL enzyme LigPrep version 5.6,

Schrödinger

Ramatenki et al., 2017

2017 Resveratrol, Nitrostilbene,

Dimethoxy-nitrostilbene,

Ketoconazole

CYP3A4(2V0M) Discovery Studio 4.0

(CDOCKER),

Schrodinger Suite 2016

platform (Glide docking)

Basheer et al., 2017

2017 Sulfonyl hydrazones MAO-A and B AutoDock Vina Abid et al., 2017

2017 Wilfortrine, Wilforine, Wilfordine,

Euonymine, Wilforgine

CYP3A4 (1W0F) Discovery Studio

(CDOCKER)

Wang L. et al., 2017

2017 XIAP Caspase-3 AutoDock Vina Prokop et al., 2017

2017 α-Naphthoflavone (ANF)

7-ethoxyresorufin (7ER)

CYP1A2 (2HI4) GOLD 5.2.2 Watanabe et al., 2017

2018 15 Vinca derivatives CYP3A4 (3NXU), CYP3A5 GOLD 5.2 Saba and Seal, 2018

2018 3 Compounds CYP3A4 (4NY4) Schrödinger Release

201702

Vaz et al., 2018

2018 Bavachina, Neobavaisoflavoneb,

Corylifol Ac

CYP1A2 (2HI4)a,b,c, CYP2C9

(1R9O)a,b,c, CYP2C19 (4GQS)a,b,c,

CYP2D6 (3TGB)a,b,c, CYP3A4

(1WOF)a,b,c, CYP2E1 (3T3Z)a,b,c

Discovery Studio 4.1

(CDOCKER)

Wang L. et al., 2018

2018 FAK and Triazinic inhibitors FAK Schrödinger 9.0 Cheng P. et al., 2018

2018 Metconazole (MEZ) isomers CYP3A4 (2V0M) AutoDock Vina Zhuang S. et al., 2018

2018 Paracetamola, Pilocarpineb CYP2E1 (3T3Z)a,b, CYP3A4a SYBYL-X 1.3 Wang Y. et al., 2018

2018 Sauchinone CYP3A4 (3UA1), CYP2B6 (3IBD),

CYP2C19 (4GQS), CYP2E1 (3GPH)

AutoDock 4.2.6 Gong et al., 2018

2018 Sulfaphenazole, Chondroitin

disaccharide 1di-4S (C4S),

Glucosamine 3-sulfate, Glucosamine

6-sulfate, Diacerein, Rhein

CYP2C9 (1R9O) Discovery Studio 4.0

(CDOCKER)

Tan et al., 2018

Superscript values denote that the metabolizing enzymes in the second column correspond to the query molecules in the first column, respectively.

characteristics of young adult and elderly epilepsy patients, it was
concluded that the bioavailability of LTG was not affected by age
(Polepally et al., 2018). However, LTGCL in the elderly was 27.2%
lower than in young epilepsy patients. These findings are very
useful for clinicians to offer optimal epilepsy care and support
to elderly patients starting low-dose treatment (Polepally et al.,
2018).

GastroPlus and SimCYP are the mainstream PBPK emulation
software programs. In recent years, applications have shown

a growing trend in the use of these software programs along
with the improvement of software functions. For example, Ye
et al. (2018) constructed an absorption model using GastroPlus
to predict the potential effects of different gastric pH levels on
the pharmacokinetics of lanabecestat and found that changes
in gastric pH had a minimal influence on clinical exposure
to lanabecestat. They also compared the bioavailability of
two tablet formulations and an oral solution. The results
showed that the 90% confidence intervals for geometric mean
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TABLE 9 | Applications of QSAR in predicting ADMET properties from 2016 to 2018.

Year Tool/Method Compound Properties References

2016 ACD/I-lab Angiogenic inhibitor for brain tumor logS, logP, logD, logBB, hERG

inhibition, HBA, HBD, MW

Khan et al., 2016

2016 QikProp 4.6 N-pyridyl, Pyrimidine benzamides logS, logBB, MDCK, logKP, metab,

CNS, loghERG, HOA

Malik et al., 2016

2017 ACD ChemSketch Flavonoids MW, IC50, Index of refraction, Surface

tension, Density, Polarity, logP

Das et al., 2017

2017 CoMFA model CITCO, α-naphtholphthalein,

diethylstilbestrol, TPP, phenytoin,

(R)-ethotoin, (S)-ethotoin

Drug-drug interactions, logP Kato et al., 2017

2017 Discovery Studio v3.5 Novel dibenzofuran derivatives PSA, Solubility, HIA, Cytochrome

P450 2D6, BBB, PPB, Hepatotoxicity

Ma et al., 2017

2017 Self-organizing molecular field

analysis (SOMFA)

Curcumin analogs MW, IC50, logP Verma and Thareja,

2017

2018 CoMFA and CoMSIA Scopoletin Phenolic Ether Derivatives LC50, TPSA Luo et al., 2018

2018 MLR, SYBYLX v1.3, CoMFA and

CoMSIA

Amyloid β aggregation inhibitors IC50 Aswathy et al., 2018

2018 Quantum Mechanics/ Molecular

Mechanics (QM/MM)

DCHA inhibitors IC50 Kollar and Frecer, 2018

2018 QikProp 4.6 TGF-type I inhibitors IC50, BBB, logS Ajay Kumar et al., 2018

LogP, octanol-water partition coefficient; LogD, octanol-water distribution coefficient; logS, aqueous solubility; logBB, blood-brain barrier; hERG, human ether-a-go-go related gene

block; HOA, human oral absorption; PPB, plasma protein binding; MW, Molecular weight; LC50, median lethal concentration; TPSA, topological polar surface area; PSA, polar surface

area; IC50, half maximal inhibitory concentration; HIA, human intestinal absorption; MDCK, madin Darby canine kidney cell line.

ratios were within standard bioequivalence boundaries for all
other pharmacokinetic parameters, indicating that both tablet
formulations were located in the accepted bioequivalence criteria
compared with the oral solution (Ye et al., 2018). Boland et al.
(2018) used SIMCYP to generate a dose-concentration model
by using data from different genders, ages, and oral morphine
formulations. The model was then validated against clinical
pharmacokinetics data and used to calculate the association
of the morphine dose with the plasma concentration. Finally,
the analysis showed that older age, female sex, modified-release
formulation, and inferior renal function were related to higher
plasma concentrations (Boland et al., 2018). This result can help
clinicians provide personalized prescription decisions.

ADMET
We listed ADMET prediction applications by using AdmetSAR,
SwissADME, Lazar, or Toxtree in Table 11. For example,
Petrescu et al. (2019) used the AdmetSAR computational
program to study the cytotoxicity of 15 phenolic compounds.
The results showed that these compounds were much less toxic
to aquatic life than synthetic pesticides. Roman et al. (2018) used
SwissADME, FAFDrugs4, and admetSAR to predict the ADMET
profiles and pharmacokinetics of 31 anabolic and androgen
steroids in humans. The results revealed that the investigated
steroids showed high gastrointestinal absorption and good oral
bioavailability, which may be useful in the inhibition of human
cytochromes associated with the metabolism of xenobiotics. In
addition, the side effects of the studied steroids in humans
were also predicted. Silva et al. (2019) predicted the theoretical
toxicity of fluconazole (FNZ) by using Lazar to study the toxicity
profile of FNZ toward human peripheral blood mononuclear

cells (PBMCs) cultured in vitro. The results showed that FNZ had
potential mutagenic, tumorigenic, stimulating, and carcinogenic
effects (Silva et al., 2019). Zhuang J. et al. (2018) used Toxtree
(version 2.6.13) to evaluate the toxicity of extractables from
multilayer coextrusion bags, and their prediction results revealed
the types of extractables as well as the bioaccumulation factor
and mutagenicity.

DISCUSSION

Deficiencies in Current in silico Methods
Each in silico method has its own characteristics and application
scope. Hence, we need to select the most proper method for
more accurate prediction. However, some methods have obvious
deficiencies that may affect the prediction results. For example,
molecular modeling plays a major role only in predicting
metabolism and can assess only the possible interactions between
compounds and metabolic enzymes; it cannot explicitly evaluate
the ADMET risks of candidate compounds. The scoring function
in molecular docking also affects the accuracy of ADMET
prediction (de Graaf et al., 2006; Zhou et al., 2006). For instance,
Kemp et al. (2004) and de Graaf et al. (2006) used different
scoring functions to evaluate the binding affinities between
cytochrome P450 and its inhibitors or substrates, respectively.
Kemp et al. (2004) docked 33 compounds to P450, and the
results revealed a correlation coefficient of R2 = 0.61 between the
docking scores and active compounds. The docking scores were
only able to identify several compounds as CYP2D6 inhibitors.
Although de Graaf et al. (2006) integrated six scoring functions
to identify the substrates of P450, the highest predicted accuracy
(GOLD-Chemscore) identified 60% known substrates in the
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TABLE 10 | Applications of PBPK in predicting ADMET properties from 2016 to 2018.

Year Tool Compound /Preparations Properties References

2016 GastroPlus Alectinib Oral bioavailability, Aqueous

solubility, Cmax, AUC

Parrott et al., 2016

2016 GastroPlus Bisoprolol, Nifedipine, Cimetidine,

Furosemide

Oral absorption Hansmann et al., 2016

2016 GastroPlus Carvedilol loaded nanocapsules (CLN) AUC, Cmax George et al., 2016

2016 GastroPlus Ketoconazole, Erythromycin AUC, Cmax Boetsch et al., 2016

2016 GastroPlus Levofloxacin logP, Plasma protein binding,

AUC, Cmax

Zhu et al., 2016

2016 GastroPlus Met XR 1000mg tablets Dose, logD, AUC, Cmax Chen W. et al., 2016

2016 PKSim Azathioprine Hepatotoxicity Thiel et al., 2016

2016 PKSim Morphine and Furosemide Vss value Schlender et al., 2016

2016 WinNonlin 6-chloro-9-nitro-5-oxo-5H-benzo-(a)-

phenoxazine

(CNOB)

AUC, Vd, CL, half-life Wang J. H. et al., 2016

2016 WinNonlin Arbekacin Vd Hagihara et al., 2016

2016 WinNonlin Busulfan (BU) AUC, apparent clearance de Castro et al., 2016

2016 WinNonlin Cetuximab (CTX), Capecitabine (CCB) Cmax, AUC, Vd Rachar et al., 2016

2016 WinNonlin Glibenclamide CL, Vd, half-life Rambiritch et al., 2016

2016 WinNonlin Imatinib mesylate Bioavailability, Tmax, Cmax Arora et al., 2016

2016 WinNonlin Midazolam Cmax, Vd Vuu et al., 2016

2016 WinNonlin Midazolam, Irinotecan Clearance rate Lee et al., 2016

2016 WinNonlin Perfluorooctanoic acid (PFOA),

Perfluorooctanesulfonic acid (PFOS),

Perfluorohexane sulfonic acid (PFHxS)

AUC, renal clearance, Cmax, Vd Kim et al., 2016

2016 WinNonlin Propofol Plasma concentrations, Vd Chen J. Y. et al., 2016

2016 WinNonlin Sodium succinate, Polysorbate,

Arginine, Phosphate-buffered saline

(PBS)

CL, Half-life, Cmax Gupta et al., 2016

2016 WinNonlin Tacrine hydrochloride Skin penetration Patel et al., 2016

2016 WinNonlin Tilmicosin AUC, Cmax Zhang et al., 2016

2016 WinNonlin Treosulfan (TREO) Cmax, AUC Romanski et al., 2016

2017 WinNonlin Tacrolimus Plasma clearance David-Neto et al., 2017

2017 GastroPlus Basmisanil logD, Solubility Yang et al., 2017

2017 GastroPlus Buagafuran Plasma Protein Binding, logP Yang et al., 2017

2017 GastroPlus Compound A (CPD A) Bioavailability, Cmax, AUC Stillhart et al., 2017

2017 GastroPlus Mangiferin Aqueous solubility, logD, logP,

Permeability

Khurana et al., 2017

2017 PKSim Cefazolin, Cefuroxime, Cefradine CL Dallmann et al., 2017

2017 PKSim Endogenous IgG CL, Vd Niederalt et al., 2017

2017 PKSim Fentanyl, Alfentanil, Thiopental,

Omadacycline, Amiodarone,

Propylthiouracil

Plasma concentration Pilari et al., 2017

2017 PKSim Vorinostat Dose Moj et al., 2017

2017 WinNonlin Acetylkitasamycin Cmax, Tmax, AUC Nan et al., 2017

2017 WinNonlin Benznidazole Cmax, AUC Molina et al., 2017

2017 WinNonlin Ceftiofur CL, Vd Wang J. et al., 2017

2017 WinNonlin Cloxacillin Dose Burmanczuk et al., 2017

2017 WinNonlin Danofloxacin AUC Zhang N. et al., 2017

2017 WinNonlin Diaveridine Oral bioavailability, Cmax, AUC Li Y. F. et al., 2017

2017 WinNonlin Enrofloxacin Plasma concentration Shan et al., 2017

2017 WinNonlin Iohexol CL Zhang C. et al., 2017

2017 WinNonlin Lurasidone Cmax, AUC Hu et al., 2017

(Continued)
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TABLE 10 | Continued

Year Tool Compound /Preparations Properties References

2017 WinNonlin Meropenem Plasma concentration Kong et al., 2017

2017 WinNonlin Metolazone AUC, Cmax, Tmax Li X. et al., 2017

2017 WinNonlin Psilocybin Nephrotoxicity Brown et al., 2017

2017 WinNonlin Pyrazinamide Cmax Voelkner et al., 2017

2017 WinNonlin Sarafloxacin Dose Yu et al., 2017

2017 WinNonlin Sildenafil CL, Tmax, Vd Olguin et al., 2017

2017 WinNonlin Tenofovir CL, Plasma concentration Du X. et al., 2017

2017 WinNonlin Tilmicosin AUC, Tmax, half-life Zhang L. et al., 2017

2017 WinNonlin Treosulfan Liver, Brain toxicity Romanski et al., 2017

2017 WinNonlin Tulathromycin Dose Zhou et al., 2017

2018 GastroPlus Cefadroxil Permeability, logP, Aqueous

solubility, Distribution volume

Hu and Smith, 2018

2018 GastroPlus Compound-A Bioavailability, logP, Permeability,

Aqueous solubility

Kou et al., 2018

2018 GastroPlus Dasatinib AUC, Cmax, Tmax Vaidhyanathan et al., 2018

2018 GastroPlus DPP-4 inhibitors Bioavailability Daga et al., 2018

2018 GastroPlus Lanabecestat (AZD3293) Bioavailability Ye et al., 2018

2018 GastroPlus Tramadol Renal clearance T’Jollyn et al., 2018

2018 PKSim Carvedilol Plasma concentration Ibarra et al., 2018

2018 PKSim Escitalopram Plasma exposure Delaney et al., 2018

2018 PKSim Indomethacin, Felodipine Plasma exposure Keemink et al., 2018

2018 PKSim Pregabalin Plasma concentrations Idkaidek et al., 2018b

2018 WinNonlin Cefquinome Cmax, AUC Shan et al., 2018

2018 WinNonlin Dexmedetomidine CL, Vd Song et al., 2018

2018 WinNonlin Gentamicin AUC Gestrich et al., 2018

2018 WinNonlin Gliclazide Vd, CL Shaik et al., 2018

2018 WinNonlin Letrozole Dose Arora et al., 2018

2018 WinNonlin Moxidectin CL, Tmax, Cmax Xiao et al., 2018

2018 WinNonlin Penicillin G Vd, CL, half-life Padari et al., 2018

2018 WinNonlin Seroquel XR, Quesero XR AUC, Cmax, CL Huang et al., 2018

2018 WinNonlin Sitagliptin Cmax, Tmax, AUC, T1/2 Sangle et al., 2018

2018 WinNonlin Vitacoxib Plasma concentrations, Cmax,

AUC

Wang et al., 2018a

2018 WinNonlin Amoxicillin/clavulanic acid tablets Cmax, Tmax, AUC, T1/2 De Velde et al., 2018

2018 WinNonlin Phenylbutyric acid (PBA),

phenylacetic acid (PAA), and

phenylacetylglutamine (PAGN),

UPAGN

Plasma concentrations, AUC,

Tmax

Berry et al., 2018

2018 WinNonlin Siponimod T1/2 Jin et al., 2018

2018 WinNonlin Lacosamide T1/2, Vd, Cmax, CL, AUC Franquiz et al., 2018

2018 WinNonlin Tildipirosin (TD) Cmax, AUC, Tmax Wang et al., 2018b

2018 WinNonlin Streptomycin T1/2, AUC, Tmax, Cmax Chen and Gao, 2018

2018 WinNonlin Pantoprazole T1/2, AUC, Vd/F, CL/F Shakhnovich et al., 2018

2018 WinNonlin FVIII concentrates T1/2 Cheng X. et al., 2018

2018 WinNonlin Adherence to tenofovir disoproxil

fumarate/emtricitabine (TDF/FTC)

Cmax, AUC Ibrahim et al., 2018

2018 WinNonlin Valsartan, Hydrochlorothiazide (HCT) Cmax, Tmax, AUC, T1/2, Kel Idkaidek et al., 2018a

2018 WinNonlin Individual total serum cortisol,

unbound serum cortisol and salivary

cortisone

Cmax, AUC, Tmax, Bioavailability Johnson et al., 2018

LogP, octanol-water partition coefficient; LogD, octanol-water distribution coefficient; AUC, area under the curve; Cmax , peak concentration; Vss, steady-state; Vd , volume of distribution;

T1/2, half-life; logP, octanol-water partition coefficient; logD, octanol-water distribution coefficient; CL, clearance; CL/F, body clearance corrected for bioavailability; Vd/F, volume of

distribution corrected for bioavailability. Kel , elimination rate constant; F, bioavailability; Tmax , time to maximum concentration.
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TABLE 11 | Applications of predicting ADMET properties using software from 2016 to 2018.

Year Tool Compound/Preparations Properties References

2016 admetSAR GSK-3 targeting ligands Mutagenicity, BBB, HIA, Caco-2, MDCK,

PPB, AMES test, carcinogenicity, rat acute

toxicity, P-gp substrate/inhibitor probability

Nisha et al., 2016

2016 Lazar A dataset of air toxins (332 chemicals), A subset of

the gold carcinogenic potency database (480

chemicals)

Carcinogenicity, mutagenicity Pradeep et al., 2016

2016 Lazar The Schiff bases of Benzothiazol-2-ylamine,

Thiazolo [5, 4-b] pyridin-2-ylamine

Max, daily dose, acute toxicity, LC50 Shukla et al., 2016

2016 ToxTree Cinnamaldehyde, Eugenol Biodegradability, genotoxicity,

carcinogenicity, bioaccumulation,

developmental toxicity, mutagenicity,

LD50, LC50

Absalan et al., 2016

2016 ToxTree PC-replacement products—the 48 substances

chosen based on the publications of (Simoneau

et al., 2012) and (Onghena et al., 2014, 2015)

Genotoxic carcinogenicity Mertens et al., 2016

2016 ToxTree Vaccine constituents Carcinogenicity, mutagenicity, genotoxicity,

LD50

White et al., 2016

2017 admetSAR 3-bromopyruvate, Dibromopyruvate (DBPA),

Propionic acid (PA)

BBB, Human intestinal absorption, Caco-2

permeability, P-glp substrate, AMES

toxicity, Acute oral toxicity, Acute toxicity,

CYP450 substrate and inhibitor, hERG

Yadav et al., 2017

2017 admetSAR Histone deacetylase (HDACs) inhibitors LogS, Caco-2 permeability Uba and Yelekci, 2017

2017 admetSAR Vernonia anthelmintica (L.) Bioavailability, HIA, Caco-2, metabolism

CYP

Wang J. Y. et al., 2017

2017 Lazar 2-amino6-methylpyridine, 6-heptenoic acid,

2-methylphenol

Carcinogenicity, mutagenicity Frenzel et al., 2017

2017 Lazar, ToxTree 8 volatile organic compounds (VOC) Carcinogenicity, mutagenicity Guerra et al., 2017

2017 SwissADME 3,7-dimethyl-2,6-octadienal, 2-pentene-2-methyl Physicochemical properties, lipophilicity,

hydrophilicity

Simhadri Vsdna et al.,

2017

2017 SwissADME 338 different chemical pesticides Lipophilicity, TPSA, molar refractivity, BBB

permeant, GI absorption

Chedik et al., 2017

2017 SwissADME Ginger GI absorption, BBB, skin permeability,

P-gp substrate

Sanni and Fatoki, 2017

2017 SwissADME Polyphenols Lipophilicity, water solubility Yugandhar et al., 2017

2017 SwissADME Tributyltin (IV) complex carboxylic acid derivative GI absorption, BBB, LogP, water solubility,

GI, Caco-2 Cells, Ames Test

Waseem et al., 2017

2017 SwissADME Xeronine Lipophilicity, GI absorption, solubility,

bioavailability

Sanni et al., 2017

2017 ToxTree 400 compounds skin/eye irritation, corrosion Verheyen et al., 2017

2017 ToxTree 80 commercially available chemicals (38 liquids and

42 solids)

Eye irritation, corrosion Geerts et al., 2017

2018 Lazar (-)-Asimilobine, Aloin, Annoretine, Chrysothrone,

Coptisine, Elymoclavine, Thalicminine

Genotoxicity, carcinogenicity, mutagenicity Gluck et al., 2018

2018 Lazar Newly proposed heterocyclic derivatives Carcinogenicity, mutagenicity Azad et al., 2018

2018 Lazar The synthesized 1,3,5-trisubstituted−2-pyrazoline

derivatives (5a-5t)

Maximum recommended daily dose,

reproductive toxicity, carcinogenicity,

Mutagenicity, Acute toxicity, LC50

Tripathi et al., 2018

2018 SwissADME 21 Organosilicone compounds TPSA, logP, GI absorption, BBB Shaaban et al., 2018

2018 SwissADME Mycotoxins (DON,3-AcDON,15-AcDON) HIA, BBB penetration, Mutagenicity,

Carcinogenicity, Acute toxicity

Taroncher et al., 2018

2018 SwissADME NAZ2329 Lipophilicity, Water Solubility, GI

absorption, BBB permeant

Agoni et al., 2018

2018 SwissADME,

admetSAR,

ToxTree

31 anabolic hormones and androgen hormones Gastrointestinal absorption, Blood brain

barrier, P-gp substrate, Skin permeability,

Carcinogenicity, hERG, Ames toxicity

Roman et al., 2018

2018 ToxTree 48 selected sensitizing and non-sensitizing AS Skin sensitization Braeuning et al., 2018

(Continued)
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TABLE 11 | Continued

Year Tool Compound/Preparations Properties References

2018 ToxTree Bis [2,4-bis(2-methyl-2-propanyl) phenyl] hydrogen

phosphate

LD50, Bioaccumulation factor,

Mutagenicity

Zhuang J. et al., 2018

2018 ToxTree Printed paper and board FCM substances Ames/bacterial mutagenicity Van Bossuyt et al.,

2018

2018 SwissADME,

ToxTree

Dominant phytochemicals from Rheum palmatum,

Rubus coreanus and Sanguisorba officinalis

logP, logD, TPSA, log S, GI absorption,

CYP450 isoforms inhibitor probability,

Genotoxicity

Nosrati et al., 2018

2018 SwissADME 8 mPGES-1 binders PAINS Lauro et al., 2018

2018 SwissADME A new series of synthesized quinazoline derivatives Molecular weight, logP, HBA, HBD, TPSA,

Lipinski’s RO5, Leadlikeness

Nasab et al., 2018

2018 SwissADME 107 Compounds containing biaryl scaffold Molecular weight, logP, HBA, HBD,

Lipinski’s RO5, TPSA, BBB, GI absorption

Khalid et al., 2018

2018 SwissADME Genistein, Daidzein and Glycitein Lipinski’s RO5, TPSA, Num. rotatable

bonds

Shaji, 2018

2018 SwissADME Four series of diphyllin-related compounds LogP, PAINS Lindstrom et al., 2018

BBB, blood brain barrier; P-gp, P glycoprotein; HIA, human intestinal absorption; MDCK, madin Darby canine kidney cell line; PPB, plasma protein binding; GI absorption, gastrointestinal

absorption; TPSA, topological polar surface area; LogP, octanol-water partition coefficient; LogD, octanol-water distribution coefficient; logS, aqeous solubility; F, Bioavailability; hERG,

human ether-a-go-go related gene block; PAINS, pan-assay interference structures; LC50, median lethal concentration; LD50, median lethal dose; RO5, rule of five.

top 5% results during the virtual screening. Only high-affinity
CYP2D6 ligands could be predicted. Therefore, docking methods
with scoring functions are mostly applied for coarse screening of
a series of compounds.

Compared with molecular modeling, data modeling can
predict more properties, but its prediction accuracy depends
on the quality and quantity of data. The QSAR method, the
main strategy in data modeling, has limited value without an
estimated model applicability domain for predicting biological or
physicochemical properties (Sushko et al., 2010). The predictive
ability of models will be limited if the predicted chemical is
outside the chemical space where the models were developed
(Sheridan et al., 2004). Furthermore, the descriptors used
in the model construction for structural transformation are
too simplistic and inadequate to predict the behavior of a
drug in a whole organism. Therefore, there is a need to
develop molecular descriptors containing more information.
Many developed QSAR models have been validated only by
internal validation without sufficient external validation, which
is considered a necessary factor to build a reliable QSAR model
(Roy et al., 2012). QSAR prediction is based on the principle
that similar molecules have similar properties (Patterson et al.,
1996), but in some special cases, such as CYPmetabolism, similar
molecules may have different activities, which are known as
activity cliffs (Guha, 2011). Therefore, the ADMET properties
of the compounds in the human body are not independent but
are also affected by other factors. The PBPK method can predict
multiple properties, but only provides common information
about the biological behavior of organs or tissues. It is also
limited by the mathematical form of the PBPK equations, which
ignores the structural and physical properties of drug compounds
(Huynh et al., 2009). Moreover, a large amount of experimental
data is required when constructing models. Due to the lack of
proper and easily accessible databases related to physiological
properties, the data used to build models can be obtained only

from the literature (Rowland et al., 2004). However, the obtained
data are relatively limited, which reduces the predictability of the
models. Finally, although some PBPK software programs have
been developed, most of them are commercial, and users must
participate in the training of software companies to make them
more useful (Lave et al., 2007).

The existing ADMET software can perform faster and more
convenient predictions of multiple properties to obtain more
comprehensive prediction results. However, we can see in
practical applications that the software is applicable only for
qualitative analysis of compounds and cannot accurately predict
the quantitative values of some properties. Moreover, issues are
observed in the data quality and quantity of these software.
While more experimental data are needed to further optimize
the software, integrating unconfirmed data into the software to
predict new compounds will decrease the prediction accuracy.

Comparison of the Applications of Three
Methods in Predicting ADMET Properties
To compare the application trends of each method more
intuitively, we counted the number of applications of these three
methods from 2016 to 2018 (Figure 6). Applications using PBPK
modeling software have exhibited an upward trend in recent
years, which means that this approach will be the mainstream
pharmacokinetic evaluation in the future. We believe that more
user-friendly software will be developed, making the prediction
process more convenient for users. Applications using ADMET
software for forecasting are also on the rise. The main reason
for these changes may be the demand for multi-property
prediction and the phenomenon of drug recall, leading to
the hope of predicting more pharmacokinetic properties in
advance to reduce drug development costs. This increase also
confirms that researchers have gradually integrated software
predictions into the early stages of drug discovery to improve
the success rate of drug development through complementarity
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FIGURE 6 | Application trends for each method from 2016 to 2018.

and collaboration. In addition, we found that the QSAR method
is rarely used alone, potentially due to the limitations of the
QSARmethod prediction. Therefore, we can increase or integrate
the data volume of some specific QSAR models to generate
a more comprehensive prediction model. Researchers can also
combine different modeling methods and then perform relevant
predictions. If a combined model can predict the properties well,
then it can be used as a consensus approach to improve ADMET
prediction accuracy.

Previous Review and Prospective Studies
of ADMET and PBPK Simulations
To date, there have been many reviews on ADMET and
PBPK, which provide summaries from different perspectives. We
found 11 articles that are closely related to this review after
careful retrieval of the published literature. We have classified
these articles into three categories based on the perspective
of the descriptions: (1) directly related to our review, (2)
machine learning (ML) methods, and (3) advances in in silico
ADMET modeling.

Five reviews are directly related to this article. Yamashita
and Hashida (2004) reviewed the application of structure-
based methods and QSAR methods in predicting ADMET in
detail. Cheng et al. (2013) introduced the recent progress and
current challenges of QSAR in predicting ADMET and then
discussed several new promising research directions that could
be employed for systemic in silico ADMET prediction. Alqahtani

(2017) reviewed the in silico models for predicting the ADMET
properties of compounds and provided a comprehensive
overview of the latest modeling methods and algorithms,
as well as the application prospects of PBPK in predicting
pharmacokinetics. Wang et al. (2015) briefly introduced the
development of in silico models for ADMET prediction. They
also focused on the modeling approaches, related applications,
and potential advantages or disadvantages of these models used
in drug discovery. Wishart (2007) highlighted ADMET property
prediction, as well as ADME-related databases and software, and
briefly introduced the application of PBPK and related software
in ADMET.

Three out of 11 reviews are about machine learning methods
for predicting ADMET. Ferreira and Andricopulo (2019)
provided a detailed description of current machine learning
approaches to ADMET modeling, focusing on key advances
from 2017 to 2018. Tao et al. (2015) reviewed the progress of
machine learning methods in ADMET prediction and discussed
the performance, applications, and challenges in developing
machine learning methods. Maltarollo et al. (2015) described the
applications of ML methods in ADMET prediction.

The remaining three reviews addressed the progress of
ADMET modeling. Specifically, Lin et al. (2003) introduced the
desirable properties of new chemical entities (NCEs) from an
ADMET perspective and discussed basic concepts, important
tools, reagents, and experimental approaches used by researchers
in predicting human pharmacokinetics. van de Waterbeemd and
Gifford (2003) summarized the endpoints of pharmacokinetics,
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metabolism, and toxicity. Wang and Hou (2009) introduced the
properties of ADMET, discussed the latest corresponding in silico
models, and provided a brief summary of some software and
databases. These articles introduced ADMET, PBPK, and related
research progress from different perspectives.

CONCLUSION

In this review, we provide a detailed and comprehensive
introduction to currently used approaches or tools in predicting
ADMET properties, including the basic principles, classification,
and applications. In addition, we collect related applications from
published articles over the past 3 years and analyze the trends in
these applications. The purpose of this review is to help readers
quickly understand these approaches and the characteristics of
the related tools (databases and software). It may also provide
readers with a better understanding of how existing tools can be
applied to pharmacokinetic predictions. We are convinced that
more accurate predictions due to users’ familiarity with existing
online services will increase the importance of in silico ADMET
prediction in pharmacokinetics. In the future, we expect not only
a reduced failure rate in drug development and drug recalls but

also a faster timeline from R&D to market, as well as decreased
costs during the late stage of development.
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