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Soybean hulls are one of the by-products of soybean crushing and find application

mainly in the animal feed sector. Nevertheless, soybean hulls have been already exploited

as source of peroxidase (soybean peroxidase, SBP), an enzyme adopted in a wide

range of applications such as bioremediation and wastewater treatment, biocatalysis,

diagnostic tests, therapeutics and biosensors. In this work, the soybean hulls after the

SBP extraction, destined to become a putrescible waste, were recovered and employed

as adsorbents for water remediation due to their cellulose-based composition. They were

studied from a physicochemical point of view using different characterization techniques

and applied for the adsorption of five inorganic ions [Fe(III), Al(III), Cr(III), Ni(II), and Mn(II)] in

different aqueous matrixes. The behavior of the exhausted soybean hulls was compared

to pristine hulls, demonstrating better performances as pollutant adsorbents despite

significant changes in their features, especially in terms of surface morphology, charge

and composition. Overall, this work evidences that these kinds of double-recovered

scraps are an effective and sustainable alternative for metal contaminants removal

from water.

Keywords: soybean hulls, adsorption, wastewater treatments, scrap reuse, metals

INTRODUCTION

The origin and early history of soybeans are unknown, but some agronomic publications recorded
origins of soybeans back to 2800 B.C. in China. Soybean (Glycine max) is an annual crop and
today represents one of the major industrial and food crops grown in every continent (Bekabil,
2015), reaching a global production of over 360 million metric tons in 2018–2019 (USDA, 2019).
Soybean hulls are one of the by-products of soybean crushing, a necessary step to produce soybean
oil and meal (Poore et al., 2002; Scapini et al., 2018). Hulls represent around 8% (w/w) of the seed
(Middelbos and Fahey, 2008; Robles Barros et al., 2020) and find application mainly in the animal
feedstuff sector, due to their low nutrient value (Li et al., 2011; Balint et al., 2020; Robles Barros
et al., 2020). When such use is not possible, hulls are burnt to recover heat or disposed in landfill as
putrescible waste (Robles Barros et al., 2020). According to previous works, they are constituted
by variable amounts of cellulose (38–51%), hemicellulose (20–25%), lignin (4–8%), pectin
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(4–8%), proteins (11–15%), minor components (fatty acids,
waxes, terpenes, essential oils, aromatic compounds, residual
sucrose), and a little fraction of ashes (Wartelle and Marshall,
2000; Rojas et al., 2014).

One of the potential uses of soybean hulls in bio-chemistry
field is their treatment to extract the soybean peroxidase
(SBP). This enzyme is quite similar in structure and properties
to the well-known horseradish peroxidase (HRP), adopted
in a wide range of applications such as bioremediation and
wastewater treatment, biocatalysis, diagnostic tests, therapeutics,
and biosensors (Lopes et al., 2014; Krainer and Glieder, 2015).
Respect to HRP, SBP shows a higher stability and a lower
susceptibility both to thermal and chemical inactivation, making
it suitable for biotechnological applications (Ryan et al., 2006;
Steevensz et al., 2014; Al-Maqdi et al., 2018; Bilal et al., 2018;
Donadelli et al., 2018; Sadraei et al., 2019; Yang et al., 2019). In a
previous study regarding the prospects for a large-scale soybean
peroxidase commercialization, Hailu et al. (2010) suggested that
investments in an SBP extraction facility can be economically
advantageous, estimating that, in a 0.5 ha plant, 6.2 metric tons
of hulls can generate 0.56 billion units of crude SBP with a total
annual revenue of 5.1 millions of CAD$.

Another possible way to valorize the soybean hulls is
their application as adsorbents of metal ions or organic
molecules (among others, those indicated as Contaminants of
Emerging Concerns) in polluted waters. The presence of these
species in water bodies represents one of the most concerning
environmental issues for their detrimental repercussions on
aquatic organism, plants, human health, and climate changes
(Inyinbor Adejumoke et al., 2018). Within the scientific
community, many efforts have been devoted to the development
of different methods to solve this problem. Adsorption on
biomasses results one of the most convenient solutions for
two aspects: the adsorption does not favor secondary pollution
if used with organic contaminants (i.e., transformation of the
toxic substances into other kinds of polluting products) and
it is a suitable method for capturing metal ions. In addition,
the employment of residual biomasses is a key factor in a
perspective of recycle and reuse. Carbon-based compounds,
such as activated carbons, graphene, or graphene-oxides (De
Gisi et al., 2016; Wang et al., 2018; Ali et al., 2019), and
(hydro)oxide-based materials like SiO2, Al2O3, zeolites, clays,
etc. (Chen et al., 2017; Shi et al., 2020) have been widely
described in the literature. More recently, supported humic-like
substances, natural polysaccharides (as chitosan, alginate, starch,
cellulose), but especially various types of agricultural/domestic
scraps have been exploited for adsorption purposes (Dai et al.,
2018; Singh et al., 2018; Tummino et al., 2019, 2020). In
this context, soybean hulls, rich of hemicellulose and cellulose,
containing oxygenated functional groups including carbonyl
groups, hydroxyl groups, and ethers, can bind heavy metal
ions and organic pollutants by different kinds of interaction
(chelation, complexation, coordination, formation of hydrogen
bonds). A short, but representative, list of substances removed by
soybean hulls-based adsorbents, as reported in the literature, is
shown in Table 1.

TABLE 1 | Inorganic ions and organic substances removed by adsorption with

soybean hulls.

Substrates References Hulls

pretreatments

Zn(II), Cu(II), Ni(II) (Marshall and

Johns, 1996;

Marshall et al.,

1999)

Different washings

and/or citric

acid-modification

Pb(II) (Li et al., 2011) Citric

acid-modification

Cr(VI) (Sheng-quan

et al., 2012)

No treatments

Hg(II) (Rizzuti et al.,

2015)

No treatments

Safranin T, Remazol brilliant

blue R, direct violet 51

(Rizzuti and

Lancaster, 2013)

No treatments

BF-4B reactive red dye (Módenes et al.,

2019)

No treatments

BF-5G reactive blue dye (Honorio et al.,

2016)

No treatments

Methylene blue (Fieira et al., 2019) No treatments

Hormones (Honorio et al.,

2019)

No treatments

Herbicides (Diuron and

Hexazinone)

(Takeshita et al.,

2020)

No treatments

Moreover, in a previous paper, Marshall and Wartelle (2006)
carried out modifications to make hulls act as dual-functional
ion exchange resins and enhance their adsorbing properties,
imparting a specific surface charge by reaction with citric acid
(negatively charged) or choline chloride (positively charged).

Soybean hulls have been also considered as source of carbon
(obtained by either thermal or chemical transformations) for
the production of micro-mesoporous adsorbents (Girgis et al.,
2011), biofillers (Balint et al., 2020), and can potentially be
employed in those fields where carbons are required as active
substrates for electrochemistry, electronics and biomedicine
(Thiha et al., 2019; Sun et al., 2020; Wang C. et al., 2020).
Finally, also cellulose and other polysaccharides, constituting the
lignocellulosic hull biomass and obtained after proper extraction
processes (Camiscia et al., 2018; Wang S. et al., 2020), can find
outlet in different branches of biotechnology (food, medicine,
bioremediation, paper industry, etc.) and of biorefinery, since
they can be converted to biopolymers, bioethanol or even to fuels
with high commercial value (Cassales et al., 2011; Camiscia et al.,
2018; Dall Cortivo et al., 2020; Wang S. et al., 2020).

Given the benefits of promoting soybean hulls revalorization,
this study is framed in the context of circular economy,
aiming to (i) recover and reuse soybean hulls at the very end
of their lifecycle after being subjected to the treatments for
SBP extraction; (ii) study the physicochemical properties and
adsorbing features of the treated hulls, also in comparison
with the untreated ones. For these purposes, soybean hulls
were characterized and tested toward solutions of the following
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inorganic ions, Fe(III), Al(III), Cr(III), Ni(II) and Mn(II), in
different aqueous matrixes, namely pure water, potable waters
and landfill leachate.

MATERIALS AND METHODS

All the reagents were purchased from Merck Life Science S.r.l.
(Italy) and used without further purification. All the experiments
were performed in triplicate.

Preparation
For the extraction of soybean peroxidase (SBP) (Tolardo et al.,
2019), the seeds were peeled, and the obtained hulls were stored
at −12◦C until use. SBP was extracted and purified by a process
based on a previously published method (Calza et al., 2016):
100 g of soybean hulls were ground in a mortar, added to 600mL
of phosphate buffer (0.025M, pH 7) and left under stirring for
2 h at room temperature. Then, the hulls were separated from
the solution by filtration with a cotton gauze and subjected to
the same treatment until the filtrate gave a negative response
to enzymatic activity test for SBP. The hulls were successively
dried at room temperature, cooled by N2 at 77K to favor their
grinding and, then, homogenized in amortar. Hulls not subjected
to SBP extraction were homogenized in the same way and used as
reference samples. In this paper, treated and untreated hulls were
labeled SBH-A and SBH-B, respectively, where A and B stands for
“After” and “Before” the extraction.

Characterization
ζ-potential measurements were performed on a Zetasizer
(Malvern Instrument, Malvern, UK). The ζ-potential values were
measured using principles of laser Doppler velocimetry and
phase analysis light scattering (M3-PALS technique). All the
suspensions were prepared by dispersing 10mg of powder in
20mL of double distilled water. The pH values were adjusted
in a range of 2–10 by addition of 0.1M HCl or 0.1M NaOH
aqueous solutions.

Attenuated total reflectance Fourier transform infrared
(ATR-FTIR) spectra (16 scans/spectrum, 4 cm−1 resolution)
were collected using a Universal ATR Sampling Accessory
assembled in a Perkin–Elmer Spectrum 100 Fourier transform
infrared spectroscope.

Scanning Electron Microscopy (SEM) analysis was carried
out using a ZEISS EVO 50 XVP with LaB6 source, equipped
with detectors for secondary electrons collection and an Energy
Dispersive X-ray Spectrometry (EDS) probe for elemental
analyses. Samples were covered with a gold layer of ∼15 nm of
thickness before the analysis to prevent charging (Bal-tec SCD050
sputter coater).

Surface area and pore volumes were obtained by N2

adsorption at 77K in an ASAP2020 gas-volumetric apparatus
(Micromeritics, Norcross, GA, USA). The samples were
previously outgassed overnight at 100◦C until a standard
residual pressure of 10−2 mbar was stably present in the
outgassing system. The specific surface area of soybean hulls
was calculated by the Brunauer–Emmett–Teller (BET) method
(Brunauer et al., 1938).

The release of substances from SBH-A and SBH-B
(1,600mg L−1) in MilliQ R© water at pH 5 and 7 was monitored.
After stirring for 24 h, hulls were separated by filtration in a
Büchner funnel and the amount of each metal ion in solution was
determined by Inductively Coupled Plasma Optical Emission
Spectrometry (ICP-OES), model Optima 7000 DV (Perkin Elmer,
Waltham, MA, USA), equipped with a crossflow nebulizer, a
Scott spray chamber and a double monochromator (prism and
Echelle grating). The instrumental conditions were: plasma
power 1.3 kW, sample aspiration rate 1.5mL min−1, argon
nebulizer flow 0.8 L min−1, argon auxiliary flow 0.2 L min−1

and argon plasma flow 15 L min−1. Moreover, in order to
follow the simultaneous loss of organic substances, UV-visible
spectra of the same solutions were recorded by an UV-visible
spectrophotometer CARY 100 SCAN (Varian, Palo Alto, CA,
USA) with a sample quartz cell of 1 cm path length.

Adsorption/Desorption Experiments
Following a previously reported procedure for the adsorption
of metallic ions (Tummino et al., 2019), aqueous solutions
(75mL) of Iron, Aluminum, Nickel, Manganese and Chromium
ions, prepared by concentrated commercial standards Tritisol R©

in MilliQ R© water [respectively, FeCl3, Al(NO3)3·9H2O, NiCl2,
MnCl2, CrCl3], were put in contact at 25 ± 1◦C with
soybean hulls in a beaker and left under mechanical stirring
throughout the measurement. During the experiments, pH and
temperature were continuously monitored by means of a pH
electrode and a thermometer introduced in the beaker. At
different times, 10mL of suspension were withdrawn and filtered
with a cellulose filter (0.45µm, Minisart, Sartorius, Göttingen,
Germany) supported on syringes with plungers devoid of rubbery
parts (BDDiscarditTM) to remove the adsorbent. After filtration,
10 µL of ultrapure HNO3 (65%, Suprapur R©, Merck) were added
to each sample and the solutions were stored at 4◦C until
further analysis. Inorganic ions concentration was determined
by Inductively Coupled Plasma Optical Emission Spectrometry
(ICP-OES), adopting the conditions previously described.

Initial tests were carried out by adding SBH-A or SBH-B at
different concentrations (800 and 1,600mg L−1) for 1 or 24 h
to a solution containing all the metallic species: Fe(III), Al(III),
Ni(II), Mn(II), and Cr(III) (1 × 10−5 M for each ion). The pH
was modulated by adding NaOH or HNO3 solutions (0.2M) in
order to reach the stable pH value of 5, chosen after preliminary
tests (not shown) to ensure the adsorption process without
incurring precipitation problems. Then, for the most efficient
system, namely SBH-A, the adsorption properties were studied
more deeply in presence of: (i) solutions of a single inorganic
ion (1 × 10−4 M) at pH 5; (ii) solutions of Cr(III) at different
concentrations (from 1 × 10−3 to 2 × 10−1 mM) to construct
the adsorption isotherm at pH 5 and 25◦C; (iii) potable waters
tested without any modification (pH 7.5); (iv) a landfill leachate
tested without any modification (pH 5.6).

The experiments with potable waters and landfill leachate
were performed for 6 h of contact time in order to optimize
adsorption while maintaining the manipulation of the leachate
within a typical working day (for safety reasons), in accordance
with a previous procedure with similar samples (Tummino et al.,
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2019). The potable waters, obtained from different municipal
wells, and the landfill leachate were supplied by Acea Pinerolese
Industriale S.p.A., a waste treatment facility connected with a
water depuration plant located in Pinerolo, Italy.

The desorption tests were performed on SBH-A, recovered by
filtration in a Büchner funnel after a 24 h-adsorption experiment
in presence of the mixed ions solution (ions concentration: 1
× 10−5 M for each ion and hulls concentration: 1,600mg L−1).
The desorption was conducted with two different solutions: (i)
MilliQ R© water at pH 5 and (ii) MilliQ R© water at pH 5 containing
NaCl salt in a 1:1 concentration ratio. The obtained suspensions
were left under stirring for 24 h, then the hulls were separated
from the solution by filtration. The ion concentrations in filtered
solutions have been determined by ICP-OES.

RESULTS AND DISCUSSION

Hulls Characterization
The treatment employed for SBP extraction clearly modified
the macroscopic aspects of hulls. The most visible effect was
the adhesion of the SBH-A hulls to each other, not observable
in SBH-B. This characteristic was assessed by measuring the
hulls thickness by a digital thickness gauge on a casual and
representative set of samples before grinding: the thickness values
were 100± 30µm for SBH-B and 533± 160µm for SBH-A.

In order to better define the surface and structural
modification induced by the SBP extraction process, SBH-
A samples were characterized by means of ζ-potential
measurements, ATR-FTIR analysis and electron microscopy,
whose relative results were compared with SBH-B properties.

ζ-Potential
ζ-potential of SBH-A and SBH-B samples suspended in double
distilled water were measured at different pH values. These
measurements indicated that the surface of both the samples
was always negatively charged also at acidic pH, approaching the
point of zero charge at pH close to 2 (Figure 1). Moreover, the
process for SBP extraction clearly influenced the surface of the
hulls since the ζ-potential values of SBH-A are less negative than
those recorded for SBH-B in the whole pH range, suggesting
that the phosphate buffer is able in removing substances with
a low pKa, which are negatively charged in a large range of
pH values and therefore resulting more soluble than other not-
charged substances (see release of organic matter in paragraph
Release From SBH-A and SBH-B). The strong impact of this kind
of pretreatment has been already ascertained by Giri et al. (2017)
who observed the modification of physical structure and thermal
stability of soybean hulls subjected to pyrolysis.

ATR-FTIR Measurements
ATR-FTIR spectrum of pure SBP enzyme (Figure 2) displayed
absorbance bands between 3,000 and 3,500 cm−1 attributed to
the N–H and O–H stretching modes, respectively, whereas the
C–H asymmetric stretching was observed around 2,930 cm−1.
Bands at 1,645 and 1,530 cm−1 were ascribed to the amide I
and amide II absorbance bands, respectively (Torres et al., 2017).
The amide I band is mainly associated with the C=O stretching

FIGURE 1 | ζ-potentials of SBH-B and SBH-A at different pH values.

FIGURE 2 | ATR-FTIR spectra of SBP commercial sample, SBH-B and

SBH-A. Main vibrational modes observed in the spectra are indicated in the

figure.

vibrations of the peptide bonds and it is closely correlated to the
protein secondary structure, whereas amide II results from the
N-H bending vibration and the C-N stretching vibration (Barth,
2007). The region between 1,200 and 1,400 cm−1 involvedmainly
C–H bendingmodes (Torres et al., 2017), whereas the signal at ca.
1,050 cm−1 was associated to O–H+–O stretching or bending of
hydrated protons in proteins (Barth, 2007).

In general, ATR-FTIR spectra of hulls showed a broad band
between 3,000 and 3,500 cm−1 of the N–H and O–H stretching
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modes, the peaks at 2,920 and 2,850 cm−1 were attributed
to –CH2 asymmetric and symmetric stretching vibrations,
respectively (Chandane and Singh, 2016). The peak at 1,740 cm−1

represents the carbonyl group (–C=O) stretching (Chandane and
Singh, 2016), typical of ligno-cellulosic materials (Widiarto et al.,
2019). The signal at 1,640 cm−1 (for SBH-B) and 1,620 cm−1

(for SBH-A) was associated to C=O stretching vibrations of the
peptide bonds, if present, (Torres et al., 2017), to olefinic C=C
stretching vibration (Qin et al., 2011) and to δHOH vibrations
of molecularly adsorbed water (Widiarto et al., 2019). The peak
at 1,540 cm−1 was due to N-H bending vibration and C-N
stretching related to proteins (Torres et al., 2017) and/or to
aromatic –C=C– stretching, which are vibrations mainly related
to the ligno-cellulosic backbone (Chandane and Singh, 2016).
At 1,420 and 1,370 cm−1 there are the regions of CH2 bending
vibration and deformation of C-H in aromatic ring (Widiarto
et al., 2019). The broad band centered at 1,010 cm−1 was assigned
to ether (–C–O–C–) stretch (Chandane and Singh, 2016) and the
peak at 870 cm−1 was attributed to glycoside bond of cellulose
(Widiarto et al., 2019). The most remarkable differences between
spectra of SBH-B and SBH-A concerned: (i) the peaks between
2,920 and 2,850 cm−1, sharper in the case of SBH-A; (ii) the
intensity of the peak at 1,740 cm−1 of the carbonyl group
(–C=O), stronger for SBH-A; (iii) the shift of the peak at 1,640
to 1,620 cm−1 and the decrease of the signal at 1,540 cm−1 in
the case of SBH-A. These evidences suggested that the peptidic
portion on the surface hulls was almost completely lost after the
SBP extraction treatment, whereas the ligno-cellulosic backbone
signals became prevailing.

Morphological Characterization
Nitrogen adsorption at 77K revealed a very low surface area,
<1 m2 g−1, for both treated and untreated samples. On the
other hand, SEM micrographs (Figure 3) confirmed the surface
modifications highlighted before showing evident morphological
differences between SBH-A and SBH-B. Indeed, SBH-B had a
rough surface with some cavities (Chandane and Singh, 2016)
and scales with a diameter comprised between 5 and 10µm. After
the SBP extraction, the hull surface structure seemed to collapse,
the section appeared more compact and the order constituted by
the scales was lost.

Release From SBH-A and SBH-B
The release of the metal ions involved in this study was
detected at pH 5 and 7 after the hulls were soaked in pure
water for 24 h (Table 2), in order to probe the metal content
which could interfere in the adsorption/desorption tests. The
reproducibility of the results is confirmed by low percent relative
standard deviation (RSD %) which was always <5%. SBH-B
released a higher content of metals than SBH-A, confirming
that SBP extraction procedure resulted in the removal of
impurities present in the ligno-cellulosic structure of the hulls.
Relevant amounts of iron, aluminum and, to a lesser extent,
manganese were found in solution, in accordance to their
ubiquitous presence as essential elements for living matter and
their widespread diffusion in soils (Spehar, 1994; Noya et al.,
2014). At increasing pH, the release process became less favorite.

Nevertheless, in all cases, the amount of metals detected in
the solution was lower than the concentration used in the
adsorption tests to evaluate hulls’ sequestrating capacity. The
aqueous solutions were further analyzed by means of UV-vis
technique, in order to follow the simultaneous loss of organic
matter. The UV-visible spectra in Figure 4 show a non-negligible
shoulder centered at 275 nm, indicating the release of water
soluble organic substances (Khan et al., 2014), in particular in the
case of SBH-B. A similar behavior have been already evidenced
by Fieira et al. (2019), who evaluated such release in terms of
Chemical Oxygen Demand (COD).

An overall view of the characterization outcomes for SBH
assesses a sort of cleaning effect of the protein extraction
with phosphate buffer from inorganic and organic substances
present in the main lignocellulosic structure. It is reasonable
to image that, together with the loss of a part of hulls’ mass,
the interactions keeping together the lignocellulosic matter
components were subjected to changes: in particular, several
functional groups, initially interacting each other in the non-
modified structure, remained isolated, and available to form
other interactions with other substrates (in this case, metal ions).
Simultaneously, the changes induced in the surface morphology
can be ascribable to the swelling of the lignocellulosic matter
and subsequent drying that, probably, caused a partial structure
collapse (Fidale et al., 2008).

Adsorption/Desorption Experiments
Adsorption of Metal Ions Mixture
SBH-A and SBH-B were tested for their adsorbing capability
and the correspondent results are shown in Figure 5. Adsorption
% was calculated by the following equation, where C0 is the
starting concentration of each ion (1 × 10−5 M) and Cion is the
concentration of each ion left in the solution at the end of the
experiment. The error was calculated with respect to the total
amount of the adsorbed ions. To highlight the differences in the
adsorption of different metal ions, the contribute of each ion was
indicated in a proper color in Figure 5.

Adsorption % =
[

C0 − CFe(III)
]

+
[

C0 − CAl(III)
]

+
[

C0 − CCr(III)
]

+
[

C0 − CNi(II)
]

+
[

C0 − CMn(III)
]

5× 10−5
× 100

Figure 5, left panel, displays the different performances of SBH-
A and SBH-B (800mg L−1) in contact with a solution containing
the five metal ions (1 × 10−5 M for each ion) for two different
contact times: 1 and 24 h. Many differences are highlighted
from the experimental data, both concerning the adsorption
properties of the sample before and after the SBP extraction,
and the behavior toward the metal ions. Observing the trends
related to iron adsorption, the use of SBH-A was evidently
advantageous with respect to SBH-B sample, particularly after
a longer contact time. Similarly, 1 day-contact favored the
removal of Cr(III), mostly for SBH-A. In the cases of Ni(II) and
Mn(II), the adsorption levels resulted comparable for SBH-A and
SBH-B both after 1 and 24 h, whereas a peculiar behavior was
demonstrated toward Al(III), which was captured significantly
only by SBH-A after 24 h.
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FIGURE 3 | Micrographs of SBH-B (a,c) and SBH-A (b,d) surfaces at different magnifications and, at the bottom, pictures of SBH-B (e) and SBH-A (f) sections.

In the right panel of Figure 5, the degrees of adsorption
reached after 24 h with 1,600mg L−1 of hulls are represented.
In general, the hull increment did not significantly affect the
adsorption in the presence of the trivalent cations, whereas
the adsorption observed for the two divalent cations, Mn(II)
and Ni(II), almost doubled. A better adsorptive activity was

once more achieved by SBH-A than SBH-B toward iron and
aluminum ions.

From the interpretation of the two graphs of Figure 5,
it can be noticed that, although the adsorption is generally
a fast process, involving the adsorbent surface and multiple
interactions, the simultaneous presence of different ions slowed
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down the process, establishing a certain selectivity, as well. The
equilibria varied over time, favoring the species with a higher
positive charge, Fe(III), Al(III) and Cr(III), possibly due to their
electrostatic affinity with the negatively charged hulls surface.
Nevertheless, the description of the adsorption phenomenon
cannot be associated only to the electrostatic forces. Indeed,
the hulls behavior toward aluminum resulted very peculiar:
Al(III) has the lowest ionic radius (then, less steric hindrance)
and a strong positive charge (3+), but it was not sequestrated
by SBH-B and 1 h was not a sufficient contact time to allow
an efficient adsorption. This occurrence can be justified by
taking into account the solvation degree: smaller ions with high
density charge are more solvated and less rapidly attracted by
the adsorbent surface (Zhu et al., 2016). In general, a complex
frame of factors connected to the adsorbate nature influences the
adsorption effectiveness, as valence, electronegativity, hydration
radii, hydration enthalpies, solubility of the cations (Zhu et al.,
2016) and hard—soft, acid–bases affinity [according to Pearson’s
principle (Alfarra et al., 2004)]. Moreover, it is worth to underline
that the modifications induced by SBP extraction, including a
lowering of the surface’s negative charge, did not compromise
the adsorptive properties of hulls, but rather improved them in
some cases. The most probable reasons are the lower competition

TABLE 2 | Species released from SBH-A and SBH-B (1,600mg L−1) in MilliQ®

water at pH 5 and 7.

Species released (nM)

Fe Al Ni Mn Cr

pH 5 SBH-B 994 320 8.0 30 2.9

SBH-A 103 19 1.1 6.3 3.2

pH 7 SBH-B 572 188 13 19 1.8

SBH-A 64 16 1.7 5.7 1.6

Average errors (4–5%) are not shown in the table.

with intrinsically present metal ions, which were mostly released
during the SBP extraction treatment, and the exposure of a higher
number of active sites on the surface of ligno-cellulosic matter
after the same procedure. In particular, the SBH functionalities
capable of positive ion attraction are mainly hydroxyl and
carboxylic groups (Dai et al., 2018), which are present to a
different extent in SBH-A and SBH-B, according to FTIR results.

Desorption Tests
Taking into account the adsorption capacity of SBH-A for most
of the metals considered, the desorption tests were conducted
on this material only. The hulls were recovered by filtration
after 24-h adsorption experiment, the sample was divided in
two aliquots and each successively added to a different solution,
namely ultrapure water at pH 5with or without NaCl. The intense
interaction already found for hulls toward Al(III), Fe(III) and
Cr(III) was responsible for the extremely reduced desorption
observed for these ions, namely 1–3% maximum. Ni(II) and
Mn(II) were slightly released, but always <20%. In general,
the adsorption on SBH-A was not reversible in the adopted
conditions, without any advantage provided by the presence of
other metal ions (Na+) in the washing solution.

Adsorption of Metal Ions Separately
Deepening the behavior of SBH-A, the hulls underwent
adsorption of the same metal ions separately, using a
concentration 10 times higher than the previous ones. As
shown in Figure 6, high levels of metals removal were already
reached in 1 h. Except for manganese, the entity of metals
removal was ∼90%, despite of different kinetic trends. In the
absence of competition among different ions, the adsorption was
favored for all the ions tested but the highly charged metal ions
showed faster adsorption kinetic as confirmed by the first order
kapp, reported in Table 3. In particular, aluminum and iron ions
show the highest kapp values and were almost totally adsorbed
in few minutes, supporting the hypothesis that the present trials
were mainly driven by charge interactions.

FIGURE 4 | UV-visible spectra of the solutions obtained after the release tests of SBH-A and SBH-B (1,600mg L−1) in MilliQ® water at pH 5 (A) and 7 (B).
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FIGURE 5 | Adsorption % of Fe(III), Al(III), Cr(III), Mn(II), and Ni(II) mixed together (1 × 10−5 M for each ion) at pH 5 in presence of SBH-B and SBH-A; Left panel

conditions: hulls concentration 800mg L−1 and contact times 1 or 24 h; Right panel conditions: hulls concentrations 1,600mg L−1, contact time 24 h. The adsorption

% was calculated in relation to the total initial amount of metal ions in solution as described in the text.

FIGURE 6 | Adsorption kinetics of Fe(III), Al(III), Cr(III), Mn(II), and Ni(II), single ion solutions 1 × 10−4 M at pH 5, in presence of SBH-A (800mg L−1).

Frontiers in Chemistry | www.frontiersin.org 8 August 2020 | Volume 8 | Article 763

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tummino et al. Adsorbing Properties of Soybean Hulls

FIGURE 7 | Results of the 6 h-adsorption treatment of landfill leachate at its natural pH 5.6 with SBH-A. The left panel reports the adsorption % for each metal ion. On

the right panel, the removed concentration (µM) of each ion is shown and the labels are referred to the starting concentration (µM) of each ion.

TABLE 3 | First order kinetic constants calculated on the basis of single ion

adsorption reported in Figure 6 (ion concentration 1 × 10−4 M at pH 5, in

presence of SBH-A 800mg L−1).

Ion kapp (min−1) R2

Fe(III) 0.823 ± 0.281 0.998

Al(III) 0.765 ± 0.081 0.999

Cr(III) 0.047 ± 0.009 0.992

Mn(II) 0.082 ± 0.012 0.992

Ni(II) 0.012 ± 0.006 0.993

To get some preliminary information on the adsorption
mechanism of SBH-A, Cr(III) was chosen as a representative
ion to obtain an adsorption isotherm. In this case, the amount
of adsorbed Cr(III) by SBH-A was measured after 24 h of
contact between SBH-A and variable concentrations of Cr(III).
Preliminary measurements confirmed that the equilibrium
was reached at all the Cr(III) concentrations considered in
the experiment.

The experimental data were fitted both with the Langmuir and
Freundlich equations reported below:

Langmuir :

1

qe
=

1

qm b Ce
+

1

qm

Freundlich : Log qe = Log Kf +
1

n
LogCe

TABLE 4 | Values of Langmuir and Freundlich constants, related to adsorption of

Cr(III) ions on SBH-A (800mg L−1) at pH 5, time of contact 24 h.

Langmuir Freundlich

qm (mmol g−1) 0.27 Kf (L g−1) 11.2

b (L mmol−1) 129 1/n 0.94

R2 0.98 R2 0.88

In both the equations, qe is the concentration of adsorbate on
the solid and Ce is the concentration of Cr(III) at equilibrium.
In the Langmuir equation, qm is the sorption capacity (namely
the amount of adsorbate at complete monolayer coverage) and
b the Langmuir isotherm constant that relates to the energy of
adsorption. In Freundlich equation, the value of Kf is indicative
of the adsorption capacity and 1/n represents the adsorption
intensity (Islam et al., 2013).

The parameters determined by fitting the experimental data
with the two equations are reported in Table 4. The highest value
of R2 obtained using the Langmuir model showed that it could
be the most suitable model describing the system under study,
indicating a homogenous distribution of adsorption sites and the
presence of a single layer of Cr(III) ions on the surface of the
hulls, rich of negatively charged functional groups (Saruchi and
Kumar, 2019). On the other hand, from the Freundlich model,
the value of 1/n value obtained in the range between 0 and
1, indicated that the interaction between Cr(III) and the hulls
occurred easily (Saruchi and Kumar, 2019).
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Tests on Potable Waters and Landfill Leachate
On the basis of previous results, final trials were carried out
on real potable waters and a landfill leachate. Such experiments
were performed as described above and in accordance to a
previously reported procedure with similar samples (Tummino
et al., 2019). Other metal ions (zinc and lead) were also followed,
albeit not considered in the previous tests, but present in the real
water samples.

Potable waters from two different urban well-sources were
tested: in both cases the presence of iron, aluminum and
chromium species were negligible, whereas low concentrations
of nickel, zinc, and lead (respectively, 0.03, 0.61, and 0.006 µM)
were observed. Adsorption test with SBH-A led to the removal of
63% of Ni, 85% of Zn and 41% of Pb.

In the case of the landfill leachate, it is important to note
that the matrix was constituted also by organic molecules,
creating a competition among the multiple components and
then influencing SBH-A performances toward metallic ions.
Nevertheless, the results showed in Figure 7 are encouraging
since SBH-A hulls maintained their sequestrating ability, in
particular toward Fe and Al, since more than 75% of these ions
was removed from the solution. Moreover, it is also interesting to
consider that, in the case of Fe, this percentage corresponds to a
concentration of 1.7 × 10−4 M, confirming the good adsorption
levels reached by SBH-A toward iron ions in ultrapure water, as
previously discussed.

CONCLUSIONS

Soybean hulls were recovered after the extraction of soybean
peroxidase, an enzyme employed as green biocatalyst. The results
of hull physicochemical characterization evidenced a remarkable
impact of the enzyme extraction procedure, which varied the hull
surface morphology and decreased the content of intrinsically
adsorbed metallic/organic substances. Such treated hulls were
applied as adsorbents of metal ions [Fe(III), Al(III), Ni(II),
Mn(II), Cr(III)] in different aqueous matrixes, revealing an
improvement of their sequestrating capability with respect to
untreated samples. In conclusion, such residual hulls deriving
from agro-industrial scraps, not only can be successfully

processed to obtain a high-value enzyme, but it is also possible
to extend their exploitation in water remediation field, further
decreasing their environmental impact as waste and giving them
an additional technological and economical value.
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