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This Perspective describes the challenges and objectives associated to the development

of new chemical technologies for the conversion of lignocellulose (non-food or waste) into

chemicals and materials; it also provides an outlook on the sources, potential products,

and issues to be addressed.
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INTRODUCTION

Plant-based biomass plays a pivotal role in the development of economically and environmentally
sustainable biorefinery processes. Three different biopolymers are included in lignocellulosic
biomass, namely cellulose, hemicellulose, and lignin, which are characterized by different chemical
composition and reactivity. The chemical diversity of raw biomass represents a challenge toward
the development of energy and resource efficient chemical processes and of the associated
technological tools (Xu et al., 2019). For example, most of 50–70 MT/year of lignin produced by
both the pulp and paper industry and modern saccharification processes are currently employed
in low added-value applications (e.g., burned for energy co-generation) (Luo and Abu-Omar,
2017). Back in 2004, a rational selection of biobased platform chemicals was reported and became
a strategic tool to develop focused valorization strategies (Werpy and Petersen, 2004); since then,
the list of renewable-based platform chemicals and the associated chemical- and biochemical-based
valorization strategies is constantly monitored and updated (Bozell et al., 2007; Bozell and Petersen,
2010; Esposito and Antonietti, 2015; Lee et al., 2019; Huo and Shanks, 2020). Currently, a plethora
of commercial cellulose and hemicellulose valorization processes are available (Aresta et al., 2015),
while examples of integrated biorefinery processes were reported only recently (BBI JU Annual
Activity Report, 2019; Liao et al., 2020).

This Perspective showcases some recent examples of (i) preparation of selected building
blocks derived from established biobased platform chemicals [e.g., levulinic acid (LVA) and
OH-bearing biobased derivatives (BBDs) ] and (ii) non-destructive technologies for the valorization
of lignin. For both classes of biobased chemicals, valorization occurred employing mild,
eco-friendly technologies.
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LVA HYDROGENATION

LVA is an important renewable-based platform chemical,
which can be obtained selectively upon acidic hydrolysis of
polysaccharides (Bozell and Petersen, 2010; Kang et al., 2018).
LVA is characterized by a significant synthetic potential in
different fields of applications: for example, it is employed as
intermediate for the preparation of drugs bearing heterocyclic
scaffolds but can also be used as co-monomer for the preparation
of renewable-based materials (Esposito and Antonietti, 2015;
Adeleye et al., 2019). LVA can be selectively reduced to γ-
valerolactone (GVL), which is a low-toxicity, biodegradable five-
membered ring heterocyclic compound employed as a fully
renewable-based aprotic solvent, fuel additive, and precursor
for added-value chemicals (Alonso et al., 2013; Mellmer et al.,
2014). LVA reduction to GVL is a sequential process composed
of two steps by which LVA is initially hydrogenated to the
intermediate γ-hydroxyvaleric acid that, in turn, undergoes a
dehydration/cyclization reaction to give GVL (Figure 1, top).
These transformations typically occur in solution in presence
of homogeneous metal complexes based on Ru, Ir, Pd, and,
more recently, Fe (Omoruyi et al., 2016). Nevertheless, GVL
recovery by distillation is non-practical and anti-economical,
due to its high boiling point (Teb = 207–208◦C). Consequently,
heterogenized Ru-based catalysts were developed, including
complexes with sulfonated ligands for effective confinement in
the aqueous phase, and/or Ru-based catalysts supported on
mesoporous or amorphous materials (Wright and Palkovits,
2012). Performing LVA hydrogenation in multiphasic systems
(MPs) represents a promising strategy to improve selective GVL
formation as well as catalyst recovery. A MP consisting of three
immiscible phases (e.g., water, an apolar solvent, iso-octane, and
an ionic liquid, IL) was initially proposed. The catalyst (Ru/C)
was effectively segregated in the IL phase and recycled up to eight
times without losing its performance; in all catalytic runs, GVL
was formed quantitatively (LVA Conv. = 81%; GVL Sel. > 99%)
and exclusively in the aqueous solution (Selva et al., 2013). More
recently, Ru/C catalyzed quantitative conversion of LVA to GVL
was observed even in a simple biphasic H2O/iso-octane system.
In the absence of any IL, the catalyst could be selectively confined
(suspended) in the hydrocarbon medium, on condition that the
aqueous solution was acidic in a pH range of 2.5–3. Ru-leaching
in water was neglectable (Ru < 0.01% w/w) (Bellè et al., 2019).

VALORIZATION OF OH-BEARING BBDs
WITH DIMETHYL CARBONATE (DMC)

The lightest term of the dialkyl carbonates series, dimethyl
carbonate (DMC), has an established role as a low environmental
impact reagent and solvent (Fiorani et al., 2018; Selva et al.,
2019). DMC embeds different non-equivalent electrophilic
groups within its structure (one sp2 carbonate C and two sp3

hybridized methyl C) and can therefore react as an ambident
reagent for selective carboxymethylation and/or methylation
of a variety of O-, S- C-, N-, and P-based nucleophiles (e.g.,
alcohols, phenols, methylene active compounds, amines, and

phosphines). Figure 1, center, exemplifies the case of alcohols
and phenols. At low temperatures (T ≤ 90◦C) and in the
presence of base catalysts, only transcarbonation reactions take
place via a BAc2 mechanism: equilibrium product (ROCOOMe)
formation is favored by continuous removal of MeOH via
azeotropic distillation with DMC or by adding suitable adsorbing
porous materials (molecular sieves, zeolites, etc.). At higher
temperatures (T > 120–150◦C) and in the presence of weak bases
or amphoteric catalysts like alkali metal exchanged faujasites,
methylation occurs selectively following a BAl2 mechanism. In
the latter case, methylation products (ArOCH3) are formed
irreversibly with release of CO2. Within our long-lasting
interest in eco-compatible processes using renewable-based
starting materials, our group has developed a solid expertise
on the use of DMC for the selective chemical upgrading of
biosourced platform chemicals, as depicted in Figure 1, bottom.
In-depth chemical valorization studies have been carried out
by us on various OH-BBDs, including glycerol (Glyc), its
cyclic acetals solketal and glycerol formal and other bioderived
aliphatic alcohols. DMC-based protocols allowed for the selective
preparation of OH-BBDs methyl ether derivatives, which find
applications as fuel additives as well as solvents and chemical
intermediates (Rorrer et al., 2019) or for the synthesis of
symmetrical aliphatic dialkyl carbonates, which are rapidly
gaining importance and expanding the range of applications
as biobased polar aprotic solvents (Mao et al., 2019). For
instance, the reactivity of Glyc and DMC under thermal (catalyst-
free) conditions was thoroughly studied: (i) in batch mode,
glycerol carbonate methyl ether was obtained selectively when
working in large DMC excess (DMC/Glyc = 60:1 mol/mol, T
= 180◦C, t = 5 h, yield = 82%). Interestingly, under a CO2

atmosphere [DMC/Glyc = 20:1 mol/mol, T = 180◦C, t = 5 h,
p (CO2) = 20 bar], the reaction led to the formation of glycerol
carbonate in up to 84% yield; (ii) in continuous-flow (CF) mode
(DMC/MeOH/Glyc = 10:6:1 mol/mol, p = 50 bar, F = 0.1
ml·min−1, T = 230–250◦C); instead, glycerol carbonate was
achieved in up to 92% yield at T = 230◦C (Guidi et al., 2016).
The CF-reaction of DMC with OH-BBDs was further explored
using weakly basic hydrotalcite catalysts (HTs). O-alkylation,
with formation of the corresponding methyl ethers (> 99%
yield) was the preferred pathway (DMC/ROH = 20:1 to 5:1
mol/mol, p= 1 bar, F= 0.1ml·min−1, T = 150–260◦C) (Cattelan
et al., 2017). Interestingly, HT catalysts displayed a high activity
and selectivity also for the preparation of symmetrical dialkyl
carbonates via a two-step carbonate interchange reaction (CIR).
In this case, alkyl methyl carbonate intermediates were initially
formed by batch reaction of various alcohol(s) with DMC at T =

90◦C. Thereafter, intermediates were converted into the desired
symmetrical carbonates through disproportionation reactions
carried out under CF conditions at high T (T = 180–275◦C)
(Cattelan et al., 2018).

LIGNIN

The potential of lignin as a feedstock is enormous due to
its abundance and rich chemical nature, consisting mainly
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FIGURE 1 | Top: multiphasic systems based on Ru/C active for the reduction of LVA to GVL; center: dimethyl carbonate (DMC) reactivity; bottom: reactivity of DMC

and OH-BBDs.

of aromatic and phenolic subunits. Different valorization
pathways have been explored, such as direct lignin valorization,
i.e., development of innovative renewable-based materials,
or chemical transformation in aromatic commodities and
chemicals such as for example, in the “lignin first” approach
consisting in reductive treatments of biomass yield complex
mixtures of partially reduced lignin derivatives useful for biofuel
production (Sun et al., 2018). Nevertheless, industrially and
commercially relevant lignin valorization processes are still
needed (Argyropoulos and Crestini, 2016; Sun et al., 2018).
Lignin stream valorization is hampered by two main factors:
(i) lignin is an extremely complex biomaterial lacking a defined
primary structure, with a specific composition severely affected
by the botanical origin and location, altering monomers’ ratio
and their linking modes; (ii) industrially available lignins are

highly variable heterogeneous, polyfunctional complex mixtures
of unpredictable specifications, with distinct physicochemical
properties compared to native lignin, largely due to the different
processes required for their isolation (Figure 2). Therefore,
to fully exploit lignin streams as feedstocks for further
utilization, they should initially be refined to reproducible “cuts”
with consistent specifications. At the same time, structural
characterization studies and development of ad hoc analytical
techniques are vibrant and challenging research topics useful
to accelerate the development of circular lignin valorization
value chains (Sette et al., 2011; Meng et al., 2019). For
example, the structural features of milled wood lignin (MWL,
which strongly resembles native lignin) were elucidated only
in 2011 by an array of NMR techniques, unambiguously
showing that MWL is a linear oligomer rather than a highly
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FIGURE 2 | Structures of relevant technical lignins. (A) Softwood kraft lignin; (B) softwood lignosulfonate; (C) wheat straw organosolv lignin.

branched polymer (Crestini et al., 2011). Structural elucidation
studies performed on softwood kraft lignin highlight the
presence of two different components: one derived from native
lignin and the other composed of repolymerized oligomeric
fragments generated during the Kraft pulping process (Crestini
et al., 2017). Given the high variability and diversity of
commercially available lignin streams, design and development
of fractionation protocols for the isolation of distinct lignin
fractions characterized by the samemolecular weight distribution
and chemical properties represent a key purification technology.
Several studies on lignin fractionation have been reported,
mainly relying on fractional precipitation and/or sequential
dissolution in the presence of solvents with different polarity,
aqueous solutions at different pHs, or membrane filtration
(Cui et al., 2014; Sevastyanova et al., 2014; Duval et al.,
2016; Lange et al., 2016). Lignin fractionation opens the
door to a more widespread exploitation of commercial lignin
stream derivatives in materials science. Moreover, specific
fractions can be selectively modified (e.g., varying solubility,
hydrophobicity, surface adhesion, antioxidant activity, UV
screening, antimicrobial activity, anti-inflammatory activity,
etc.). Development of accessible and reproducible tailoring
processes will promote lignin inclusion in a large variety of
consumer products, i.e., home and/or personal care products
(Brooker et al., 2016a,b), composites, packaging materials
coatings, and resins, retaining the desiredmacroscopic properties
and, at the same time, mitigating the overall environmental
footprint and improving their biodegradation.

The development of innovative materials derived from
biomass is a timely fundamental research challenge. To
this aim, in recent years, several different renewable-based

micro- and nanostructured materials were developed and
successfully applied, among others, in microelectronics,
cosmetics, nutraceutical, and pharmaceutical applications.
Lignin nanoparticles were initially developed for agricultural
applications as vectors for the controlled release of active
principles, or in nanocomposites formulation (Tortora et al.,
2014; Bartzoka et al., 2016; Sipponen et al., 2018). However,
thanks to their high biocompatibility, lignin microcapsules
can also be employed for the controlled and synergic release
of pharmaceutical and/or cosmetic active principles and for
the design and development of functional foods. The range
of potential applications of lignin-based nanomaterials is
expanding continuously and now also includes preparation of
renewable-based lignin nanofibers suitable for carbon nanofiber
production and use in structural composites and energy storage
applications (Kumar et al., 2019).

CONCLUSIONS

Plant-based biomass plays a pivotal role in the development
of economically and environmentally sustainable biorefinery
processes. The chemical complexity of plant biomass, however,
still represents a challenge toward the development of energy-
and resource-efficient chemical processes and of the associated
technological tools. Reliable convergent chemical strategies
enabling transformations of biomass-derived matrices in discrete
families of platform chemicals will be crucial to improve
the biorefinery efficiency. This Perspective article, showcasing
some recent examples of valorization of biopolymers and
platform chemicals derived from lignocellulosic biomass, aims
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at offering the Reader the scenario of issues associated to
the implementation of new chemical technologies for the
conversion of lignocellulose (non-food or waste) into chemicals
andmaterials; at the same time, it also provides an outlook on the
sources and potential products to be addressed using multiphase
systems, eco-compatible reagents like DMC, and the design of
protocols for lignin fractionation. Notably, this approach should
be complemented with the advance of analytical techniques for
the identification of the most promising added-value structures
of a given valorization process.
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