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The conformational change associated with membrane fusion for Influenza A

Hemagglutinin is investigated with amodel based upon pre- and post-fusion structures of

the HA2 component. We employ computational methods based on the potential energy

landscape framework to obtain an initial path connecting these two end points, which

provides the starting point for refinement of a kinetic transition network. Here we employ

discrete path sampling, which provides access to the experimental time and length scales

via geometry optimization techniques to identify local minima and the transition states that

connect them. We then analyse the distinct phases of the predicted pathway in terms of

structure and energetics, and compare with available experimental data and previous

simulations. Our results provide the foundations for future work, which will address

the effect of mutations, changes in pH, and incorporation of additional components,

especially the HA1 chain and the fusion peptide.
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1. INTRODUCTION

The influenza virus is a major cause of morbidity and mortality in humans. Viral infection is
initiated by the binding of the trimeric hemagglutinin (HA) surface glycoprotein to glycans, which
are terminated by the monosaccharide sialic acid, found on host cells in the upper respiratory tract.
The virus is subsequently internalized via endocytosis. A prerequisite of fusion is the proteolytic
cleavage of the HA protein into two chains, HA1 and HA2. The lower pH of the endosome
triggers a structural rearrangement of HA, causing it to extend (Bullough et al., 1994). This process
is thought to be driven through the protonation of amino acids, precipitating the loss of key
interactions between the chains, allowing the disassociation of HA1 and HA2. The N-terminal
region of HA2 then separates from the helical “stem,” leading to the formation of a linear helical
structure via a “spring-loaded” mechanism (Carr and Kim, 1993). The latter structural change is
thought to be energetically favorable and does not depend on low pH. The largely hydrophobic 20
N-terminal amino acids, often called the fusion peptide, can then insert into the target membrane,
initiating fusion.

The conformational changes of HA2 throughout this process are not well-characterized at an
atomic level of detail, and our knowledge of the effect of mutations is sparse. Histidine is the only
amino acid with a pKa value close to the pH of the endosome (pKa = 6.0), although aspartic acid
(pKa = 3.9) and glutamic acid (pKa = 4.3) come close to the pH of the late endosome, and have
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been implicated in the fusion process. Amongst others, Asp109
and Asp112 in HA2 have been shown to influence the pH at
which fusion occurs (Trost et al., 2019).

In the present contribution we report the initial results
from our calculations of the pathway for the conformational
changes of a model system based on HA2 pre- and post-
fusion structures. We have employed the computational tools
of potential energy landscape theory, which exploits geometry
optimization procedures to locate transition states and the
minima they connect. For this complex conformational change,
obtaining an initial connected path of minimum-transition state-
minimum triples is itself a significant challenge. The refinements
necessary to produce a physically acceptable initial path are
described in section 3.

Our initial path contained around 4,500 steps, each one
associated with a particular geometrical transition state (Murrell
and Laidler, 1968), connecting a chain of local minima between
the two selected pre- and post-fusion end points. We then
employed the discrete path sampling approach to refine this
pathway via creation of a kinetic transition network (Rao and
Caflisch, 2004; Nóe and Fischer, 2008; Prada-Gracia et al., 2009;
Wales, 2010), as described in section 3. New double-ended
connection attempts between selected pairs of local minima were
conducted to locate shorter and faster pathways between the two
end points. As for creation of the initial pathway, these searches
run in parallel, and new transition states and minima are added
to the database as they are located.

The results described in section 4 correspond to a database
containing 33,715 minima and 41,388 transition states. The
phenomenological rate constant for interconversion of the pre-
and post-fusion configurations then becomes a sum over all
possible pathways through the network, (Wales, 2002, 2004,
2009; Swinburne and Wales, 2020) which can be computed
deterministically using the graph transformation procedure
(Trygubenko and Wales, 2006; Wales, 2009; Stevenson and
Wales, 2014;MacKay and Robinson, 2018; Swinburne andWales,
2020). The pathway that makes the largest contribution to this
sum (the “fastest path” as defined in section 3) has around 3,200
steps. We judged convergence of the database by visualizing
the landscape using disconnectivity graphs (Becker and Karplus,
1997; Wales et al., 1998) and from changes in the fastest path.
Our description of the mechanism by which the pre-fusion
conformation changes to post-fusion in section 4 is based on
extracting and visualizing this path. The corresponding database
will be made available online, and will be employed as a starting
point for future work, where we will investigate the effects
of protonation states, mutations, extensions to the model, and
further database refinement. Our focus in this report is on our
initial mechanistic insights and how they were obtained.

2. FUSION PEPTIDE MODEL

2.1. Definition of Pre- and Post-fusion
Structures
In this study, the crystal structure of Influenza
A(H3N2)/Aichi/1968(X-31) (PDB:2YPG), solved at neutral

pH, was used as the pre-fusion structure (Lin et al., 2012).
The extended post-fusion coiled-coil structure was taken from
the stable recombinant low pH form of the HA2 subunit
of the same strain of virus (PDB:1QUI) (Chen et al., 1999).
It has previously been shown that the HA1 subunit, and the
transmembrane domains of HA2, are not required for membrane
fusion (Kim et al., 2011). Thus, only the portion of the HA2
common between the crystal structures (amino acids 33-172)
was used. Here we consider only the monomeric structure
of HA2. The protonation state was chosen to correspond to
acidic pH, with histidines doubly protonated, but aspartate and
glutamates neutral.

2.2. Force Field
We used the OPTIM1 interface to AMBER (Cornell et al., 1995)
to obtain all the energies and gradients employed in geometry
optimization. The force field employed was AMBER ff99sb
(Weiner et al., 1986; Pearlman et al., 1995; Hornak et al., 2006;
Case et al., 2012) with a generalized Born implicit solvent model,
(Onufriev et al., 2000, 2004) corresponding to the AMBER
igb2 parameterizations. No cutoffs were used for any of the
interactions, and an effective monovalent ionic concentration
of 0.1M was modeled using the Debye-Hückel approximation
(Srinivasan et al., 1999). The force field was symmetrized to
assure that feasible permutations of atoms of the same element
give identical energies and gradients (Małolepsza et al., 2010,
2012). The GPU implementation of the AMBER potential was
used (Götz et al., 2012) with the DPDP precision model, where
the forces are computed in double precision. This approach is
necessary for accurate convergence of transition states.

3. EXPLORING THE ENERGY LANDSCAPE
AND FUSION PATHWAY

The initial HA2 pre- and post-fusion structures, described in
section 2.1, are illustrated in Figure 1. Two numbering schemes
are commonly used, namely starting from HA2 after cleavage,
or from the start of the HA gene. In some subtypes of influenza
viruses the HA1 region as well as the HA1/HA2 cleavage region
vary in length, so we prefer to use HA2 numbering. For the
virus considered in the present study, the alternative full gene
numbering can be obtained by adding 329. We have colored
each range of amino acid residues in the sequence that can be
identified with local rearrangement events in particular phases
of the pathway. These phases of the mechanism are described
in section 4, and compared with existing experimental and
simulation results as far as possible. New features that emerge
from this analysis constitute predictions, which can be tested in
future experiments. Specifically, we find that the B-loop achieves
a helical conformation in two stages, while the highest barriers
are associated with the rearrangement of region F and helices E
andG to point in the opposite direction (see Figure 1).We return
to these predictions in the Conclusions.

1OPTIM: A Program for Geometry Optimisation and Pathway Calculations.
Available online at: http://wwwwales.ch.cam.ac.uk/software.html.
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FIGURE 1 | The pre-fusion and post-fusion structures selected as the end

points for the pathway search in the present work. The labels A to G refer to

the regions identified from the crystal structure (Ni et al., 2014). Here, we

distinguish between the N-terminal section of the B-loop, which readily forms

an alpha helical conformation (positions 56-66), from the C-termimal section,

which converts later in the pathway (positions 67-75). The coloring scheme

reflects sections of the protein that can be identified with rearrangements in

specific parts of the pathway, as follows: red, helix A (positions 38-55); cyan,

helix B (positions 56-66); orange, B-loop (positions 67-75); yellow, helix C

(positions 76-105); green, loop D (positions 106-111); blue, helix E (positions

112-125); pink, beta-hairpin F (residues 126-144); mauve, helix G (residues

145-154); gray, C-terminal fragment (residues 155-181); all structures were

visualized using VMD (Humphrey et al., 1996). The numbering scheme starts

from HA2 after cleavage.

3.1. Identifying Pathways Using Geometry
Optimization
Having defined the end points for the pathway of interest our
first task is to find a connected path between them, in terms
of a sequence of minimum-transition state-minimum-transition
state-· · · -minimum stationary points. Once an initial path is
located, we use it as the starting point for construction of a
kinetic transition network (Rao and Caflisch, 2004; Nóe and
Fischer, 2008; Prada-Gracia et al., 2009; Wales, 2010), with the
emphasis on identifying the most kinetically relevant paths.
Hence we explore the potential energy landscape, evolving a
coarse-grained description in terms of the database of transition
states and local minima. These stationary points are all located
using geometry optimization techniques, as summarized below,
which are well established, and have been reviewed elsewhere
(Wales, 2003, 2010, 2018; Joseph et al., 2017). Observable
properties are extracted from the database using standard tools
of statistical mechanics and unimolecular rate theory is employed

to calculate minimum-to-minimum rate constants (Forst, 1973;
Laidler, 1987) using consistent approximations.

The standard geometry optimization techniques will only be
summarized briefly here. Some additional considerations,
necessitated by the complexity of the pathway under
investigation, are highlighted below. Our geometrical definition
of a transition state as a stationary point (vanishing gradient)
with precisely one negative eigenvalue for the Hessian (second
derivative) matrix, follows Murrell and Laidler (1968). A
local minimum is a stationary point with no negative Hessian
eigenvalues, where any infinitesimal displacement of internal
coordinates raises the energy. All local minimizations employed
the L-BFGS (Nocedal, 1980) (limited memory, Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) implementation
of Wetzl and Taubmann2 (Wetzl et al., 2013) with a modified
line search (Asenjo et al., 2013). Double-ended transition state
searches between selected pairs of local minima start from a
doubly-nudged (Trygubenko and Wales, 2004) elastic band
(Henkelman and Jónsson, 2000; Henkelman et al., 2000) (DNEB)
calculation, where the images are only optimized sufficiently
to distinguish local maxima in the profile. These local maxima
are taken as transition state candidates and refined using
hybrid eigenvector-following (Henkelman and Jónsson, 1999;
Munro and Wales, 1999; Kumeda et al., 2001; Zeng et al.,
2014) with custom CUDA kernels (Mantell et al., 2016) and
calls to the cuBLAS library3 to exploit GPU hardware. The
connectivity defined by each transition state is established by
characterizing the two downhill steepest-descent pathways
initiated by small displacements parallel and antiparallel to
the Hessian eigenvector corresponding to the unique negative
Hessian eigenvalue. The initial displacements were determined
using a golden section search to locate the lowest energy along
the search direction within a maximum displacement range of
0.4 Å. The convergence condition for all stationary points was
defined by a root-mean-square gradient below 10−6 kcal/mol/Å.

When seeking connections between local minima with very
different structures, which lie far apart in configuration space,
an initial straight line interpolation for the DNEB images is
likely to produce unphysical structures. This problem is especially
prevalent at the beginning of the whole procedure, before we even
have a connected discrete path between the target minima. We
therefore employed the quasi-continuous interpolation (QCI)
scheme (Wales and Carr, 2012; Röder andWales, 2018) whenever
the optimal alignment of end points produced a distance in excess
of 5Å. Below this threshold the standard DNEB procedure was
used. The updated version of QCI (Röder and Wales, 2018),
where covalent bonds are defined directly from the AMBER
topology, and various other improvements are exploited, was
actually developed to tackle the present system. The benchmarks
for smaller biomolecules, which enabled us to choose efficient
parameters for HA2, are described in detail elsewhere (Röder
and Wales, 2018). In brief, QCI works by defining an effective

2CudaLBFGS. Available online at: https://github.com/jwetzl/CudaLBFGS
(accessed Oct 1, 2013).
3cuBLAS. Available online at: https://developer.nvidia.com/cublas (accessed Sep
21, 2016).
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potential based on springs and repulsive charges, which enables
the system to be interpolated one atom at a time. The quasi-
continuous feature corresponds to additional penalty terms
when a local minimum in distance is detected for atoms in
neighboring images.

Proper alignment of the two minima selected for
double-ended searches can have a significant effect on the
characterization of pathways, in terms of efficiency, and in terms
of locating the most kinetically favorable routes (Bauer et al.,
2010; Wales and Carr, 2012). Here we must consider alignment
with respect to overall translation and rotation, as well as feasible
atomic permutations (Griffiths et al., 2017). Translational
alignment is optimal when the centers of coordinates coincide,
and orientational alignment can be achieved using quaternions
(Kearsley, 1989; Coutsias et al., 2004) or Lagrange multipliers
(Kabsch, 1978). For fixed position and orientation the optimal
permutational alignment can be obtained using the shortest-
augmenting path algorithm (Jonker and Volgenant, 1987).
We have recently benchmarked a variety of other procedures,
and reported an alternative branch and bound algorithm (Go-
PERMDIST), which is competitive with the shortest-augmenting
path procedure (Griffiths et al., 2017). In fact, there is one
further subtlety, which we have found to be essential in locating
physically relevant pathways efficiently for larger biomolecules.
The global minimum distance between endpoints for fixed
center of coordinates and orientation can produce structures
with incorrect local atomic permutations (Wales and Carr,
2012). Such misalignments produce unphysical interpolations.
To overcome this issue we instead use a local permutational
alignment procedure, where each group of permutable atoms is
treated separately, building up a neighborhood by progressively
adding atoms within a cutoff distance, with the condition that
the optimal distance between the atoms in the local cluster does
not exceed a predefined tolerance. The local optimal distance
is obtained by aligning the clusters with respect to translation
and orientation, and employing the shortest augmenting path
algorithm for local permutations (Wales and Carr, 2012). This
approach was used for all the double-ended searches in the
present work, for a maximum of 11 neighbor atoms within
a cutoff distance of 5Å from the center of coordinates of the
permuting set, and an alignment tolerance of 0.5Å for inclusion
of atoms in the local cluster. Further details of the procedure can
be found in the original report (Wales and Carr, 2012).

Two further changes to the DNEB implementation were
also introduced. The images were redistributed every 350
DNEB steps to space them at equal distances along the path
defined by the straight line segments of the current band.
We also adjusted the DNEB spring constant that defines the
harmonic potential between images, starting from a value
of 100 kcal/mol/Å2. Every five DNEB steps the value was
increased or decreased by a factor of 1.03 if the mean
deviation of the image spacing divided by the average was
more or less than 6%. Maximum and minimum bounds
on the force constant were set to 100 and 5 kcal/mol/Å2,
respectively. These values were found to perform well in
systematic benchmarks for smaller systems (Röder and Wales,
2020).

3.2. Refining the Kinetic Transition Network
The local minima and transition states obtained in producing
the initial connected pathway constitute the first entries in a
kinetic transition network (Rao and Caflisch, 2004; Nóe and
Fischer, 2008; Prada-Gracia et al., 2009; Wales, 2010) (KTN).
Here, the local minima are nodes in a graph representation,
and the transition states define the edges that connect them.
Observable thermodynamic and kinetic properties are extracted
from the network using standard tools of statistical mechanics
and unimolecular rate theory (Forst, 1973; Laidler, 1987). In
the present work we employed harmonic vibrational densities
of states from normal mode analysis to compute the partition
functions, and the corresponding harmonic transition state
theory rate constants (Forst, 1973; Laidler, 1987) to estimate the
rates for eachminimum-to-minimum connection. The transition
rates between pre- and post-fusion minima are calculated from a
master equation (van Kampen, 1981; Kunz, 1995) representation
of the overall kinetics using the graph transformation procedure
(Trygubenko and Wales, 2006; Wales, 2009; Stevenson and
Wales, 2014), which assumes that the dynamics are Markovian.

The kinetic transition network was refined by alternating
strategies for selecting candidate pairs of end point minima
in new double-ended searches. To locate shorter pathways,
with lower barriers, we employed SHORTCUT procedures
(Carr et al., 2005; Strodel et al., 2007; Wales et al., 2009) in
the PATHSAMPLE program.4 The current fastest discrete path
between the target pre- and post-fusion minima, including the
conditional occupation probability for the starting minimum,
was first identified using Dijkstra’s shortest path algorithm
(Dijkstra, 1959) with edge weights (Carr et al., 2005; Carr and
Wales, 2008a) − ln Pαβ , where Pαβ is the branching probability
that the next step from minimum β is to adjacent minimum α.
Pαβ is calculated as kαβ/

∑
γ kγβ , where the sum is over all the

pathways out of β and kαβ is the rate constant for transitions
from β to γ . Pairs of minima for shortcutting were then selected
in two ways: (1) from either side of the highest barrier within
a maximum number of steps, or (2) the closest unconnected
minima separated by between 10 and 75 steps. These shortcutting
searches were combined with pair selection to remove artificial
frustration, where low-lying minima are separated by a high
barrier because a lower pathway has not yet been located (Strodel
et al., 2007). This untrapping procedure selects pairs based on the
downhill barrier height between them, divided by the potential
energy difference. The corresponding ratio is similar to the Z-
score parameter (Godzik et al., 1993) and the ratio of folding
temperature to glass-transition temperature (Bryngelson and
Wolynes, 1987), which are used in various energy landscape
analysis procedures.

Further details of the discrete path sampling (DPS) approach
described above are available in reviews (Joseph et al., 2017;
Wales, 2018; Röder et al., 2019). Here we simply note that
construction of a master equation framework using geometry
optimization procedures is complementary to methods based on

4PATHSAMPLE: A Program for Generating Connected Stationary Point Databases

and Extracting Global Kinetics. Available online at: http://www-wales.ch.cam.ac.
uk/software.html
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FIGURE 2 | Comparison of the initial connected path and the fastest path

after refinement of the database. The relative energy in kcal/mol is plotted

against the number of stationary points, which are organized in a connected

sequence minimum-transition state-minimum-transition state-minimum, etc.

from pre- to post-fusion structures. The initial path has 4,326 transition states

and 8,653 stationary points; the refined path has 3,420 transition states and

6,841 stationary points.

explicit dynamics (Schütte C et al., 1999; Shirts and Pande, 2000;
Singhal et al., 2004; Swope et al., 2004; Chodera et al., 2007; Pande
et al., 2010; Prinz et al., 2011; Husic and Pande, 2018). The main
advantage of DPS is that rate-determining steps corresponding
to high barriers can be located efficiently using geometry
optimization, which addresses the problems caused by trapping
and broken ergodicity directly. The principal approximations
are the sampling of stationary points and the assumption of
Markovian dynamics; the use of harmonic densities of states is
a further approximation, but more accurate descriptions of the
partition functions and rate constants could be employed. Of
course, the underlying force field also places a fundamental limit
on the accuracy of our predictions.

4. RESULTS

Figure 2 shows a comparison of the initial discrete path and
the fastest path extracted from the much larger database after
refinement. Here we plot the energy of the minimum-transition
state-minimum-transition state-· · · -minimum connected
sequence as a function of the number of stationary points.
The total number of minima in a discrete path is always one
more than the total number of transition states. The initial
path contains 4,326 transition states (8,653 stationary points)
and the fastest path after refinement has reduced to 3,420
transition states (6,841 stationary points). This simplification is
typical of previous results for biomolecules, where the number
of steps in the initial path usually decreases by 20% or more
when discrete path sampling is used to locate more kinetically
relevant pathways. We note that the initial pathway obtained for
a reasonably complex system, such as this HA2 model, is unlikely
to contribute to the true kinetics, and database refinement

is essential. This refinement constitutes the majority of the
computational effort.

The key result, summarized graphically in Figure 2, is that the
overall mechanism does not change when the pathway is refined.
Instead, the profile basically shortens in terms of the number of
steps, which means that the database refinement has succeeded
in removing unnecessary local rearrangements. Our analysis of
the key steps in the transformation from the pre- to extended
post-fusion coiled-coil conformation, presented in section 4, can
therefore focus on essential changes in structure.

The disconnectivity graph (Becker and Karplus, 1997; Wales
et al., 1998) in Figure 4 shows how the pathway illustrated
in Figure 3 fits into the overall energy landscape. In this
construction a vertical line begins at the potential (or free Krivov
and Karplus, 2002; Evans andWales, 2003) energy corresponding
to each local minimum, with energy increasing on the vertical
axis. The positions of branches on the horizontal axis are
chosen to highlight the organization of the landscape as clearly
as possible. At regular intervals of 4 kcal/mol we define an
energy threshold, and partition the minima into disjoint sets,
whose members can interconvert via pathways that lie below
the threshold value. The branches corresponding to individual
minima join at the threshold energy where they lie in the same
superbasin. Hence we obtain a visualization of the landscape
that provides a faithful account of the barriers that separate the
minima, avoiding the problems of projections that may group
together structures inappropriately (Bolhuis et al., 2002; Krivov
and Karplus, 2004, 2006, 2008; Nóe and Fischer, 2008).

The fastest path shown in Figure 3 reports on the progression
of the rearrangement as a function of the number of steps
corresponding to each individual transition state. Each one of
these steps involves a local barrier between two minima. The
disconnectivity graph provides a view of the global structure.
Starting from the representative pre-fusion minimum, and
proceeding from left to right in Figure 3, the next three minima
illustrated on the path correspond to higher energy structures in
one local subfunnel of the landscape. The first (I) corresponds
to the rotation of the N-terminal helix A away from the main
HA2 stem. The second step (II) consists of the initial bending of
helix D at position 110. After the detachment and reorientation
of helix A, the N-terminal end of the B-loop forms an alpha
helical conformation, increasing the length of helix A by 2 turns
(III). At this stage, the conformation of the C-terminal part of
the B-loop is still identical to the initial prefusion state. Within
this sub-funnel of structures, a conformation of the B-loop,
similar to that seen experimentally, (Xu and Wilson, 2011) is
observed in which the backbone and the sidechain of the Phe
at position 63 has rotated, making it more exposed relative to
the prefusion state. However, it frequently reverts back to the
prefusion conformation along the pathway, in combination with
other conformational transitions.

The next main structural change requires the system to
surmount an energy barrier of about 50 kcal/mol moving into an
adjacent local funnel. This change involves further extension of
helix A along with unwinding of helix D into a loop separating
the two helices C and E (IV). Mutations in this region have
been associated with stabilizing the pre-fusion structure (Xu and
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FIGURE 3 | Fastest path after refinement of the database, with selected local minima illustrated for the stationary points at position 81(I), 223(II), 541(III), 1183(IV),

1391(V), 1577(VI), 2283(VII), 3717(VIII), 4737(IX), 5829(X), 6137(XI), and 6693(XII) (the post-fusion end point minimum). The relative energy in kcal/mol is plotted against

the number of stationary points, as in Figure 2.

Wilson, 2011) and may involve increasing the energy barrier
between these local funnels. After further unwinding of loop
D, helix E moves at right-angles to helix C (V), followed by
helix G and C-terminal fragment (VI). After further structural
rearrangements, helix G begins to detach from the beta hairpin F
(129-140) and the helix E (VII). These structural rearrangements
are similar to motions observed in previous molecular dynamics
simulations (Lin et al., 2014).

The next minimum belongs to the highest energy part of
the path, which corresponds to a relatively shallow local funnel
structure. The structural change involves helices E and Gmoving
to point in the opposite direction from the prefusion state (VIII).
As the C-terminal peptide extends to interact with this elongated
helix (X), the kink in helix B finally straightens resulting in the
extended post-fusion structure (XII).

The structure of the disconnectivity graph is also of interest.
At a coarse-grained level the landscape has two principal funnels,
associated with structures related mainly either to the pre-
or post-fusion structures. The highest barrier between these
funnels is expected to constitute the rate-determining step. We
have recently discussed how multi-funnel landscapes may be
associated with multi-functional systems, for biomolecules and
more generally (Chebaro et al., 2015; Joseph et al., 2017; Röder
et al., 2019). In particular, a double-funnel landscape can define
a molecular switch (Chakrabarti and Wales, 2011; Röder and
Wales, 2017; Chakraborty and Wales, 2018). Such features have
been investigated in detail for atomic clusters with competing
morphologies, and are associated with features in the heat
capacity and multiple relaxation time scales (Wales et al., 1998;
Doye et al., 1999).

The funnel structure we see for HA2 suggests a model of
fusion, consistent with that proposed from an analysis of FRET
data (Das et al., 2018), where there is an initial reversible
sampling of intermediate structures and atomic contacts are
frequently lost. This phase corresponds to the left-hand funnel-
structures I through VII in Figure 4. Once the high barrier is
overcome, postfusion-like intermediates are sampled from the
right-hand funnel, corresponding to structures IX through XII.
The pre-fusion structure is no longer easily accessible and the
structural changes are essentially irreversible. The more detailed
sub-funnel structure in Figure 4 reflects the different stages
required to achieve this complex transformation.

Free energies can be estimated for all the stationary points
using harmonic vibrational densities of states from normal
mode analysis (Wales, 2003). We can then plot free energy
disconnectivity graphs (Krivov and Karplus, 2002; Evans and
Wales, 2003), where states may be defined using regrouping
schemes that lump together free energy minima separated by
barriers below a given threshold (Carr and Wales, 2008b). For
the present system, we do not see any significant changes in
the landscape when the free energy disconnectivity graph is
considered. The key mechanistic features that we discuss above
are conserved, and the free energy disconnectivity graph is
therefore omitted for brevity.

The steps we have described above correspond to the
fastest sequential path identified from the database. Overall rate
constants can be computed from the infinite sum over discrete
paths using the graph transformation approach (Trygubenko
and Wales, 2006; Wales, 2009; Stevenson and Wales, 2014),
and the k distinct paths algorithm (Sharpe and Wales, 2019)
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FIGURE 4 | Disconnectivity graph for the HA2 system marking the locations of the same selected minima from the pathway shown in Figure 3.

can be employed to distinguish pathways with different rate-
determining steps. In this report we simply provide a qualitative
account of the essential components we have identified in the
fastest pathway. The most likely variations on this theme involve
revisits among the low-lying minima that we associate with
subfunnels in Figure 4. These structures are the most probable
candidates for intervening minima that might be identified
experimentally. Given the relatively high barrier that separates
the regions of the landscape containing structures I through
VII and IX to XII, the pathway ensemble is likely to contain

contributions with revisits within the first set followed by
revisits within the second set. Once the highest barrier has been
overcome pre-fusion structures will be relatively inaccessible.

Pathways involving the same essential steps, with additional
revisits and returns, constitute the same overall mechanism in
this picture, rather than parallel paths with different routes
between the low-lying minima. A transformation mediated by
a short discrete path also supports a pathway ensemble, with
revisits to minima along or adjacent to the fastest path, and a
common rate-determining step. In the present case the pathway
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ensemble would include revisits to the low-lying regions of
the landscape associated with subfunnels. A more quantitative
analysis of the kinetics will be conducted once this initial database
has been expanded to include additional features, such as the
fusion peptide.

The higher-energy regions of the landscape in Figure 4, which
are not visited in any of the steps on the fastest pathway, would
constitute off-pathway intermediates. However, the energies are
comparable with the highest-lying stationary points on the fastest
path, so we do not expect them to contribute significantly to
the observable kinetics. Of course, there could be off-pathway
structures and alternative mechanistic possibilities that have
simply not been sampled in this initial study. Comparison
with available experimental data provides some confidence that
important intermediates have not been overlooked, but it is
possible that further sampling will reveal additional features
of interest.

5. CONCLUSIONS

We have located an initial pathway between pre- and post-
fusion conformations of the HA2 component of influenza A
hemagglutinin, and refined it to identify kinetically relevant paths
using the discrete path sampling framework. This undertaking
in itself presented a significant challenge. However, now that we
have the HA2 kinetic transition network, it should be possible to
build upon it by adding additional components, or introducing
mutations and alternative protonation states. The present study
therefore lays the foundations for future work, where we plan to
extend the current HA2 system to include the fusion peptide and
the HA1 chain. It may also be possible to develop a model of the
trimeric structure. The structure of the landscape revealed in the
present study seems quite well defined, and we expect it will be
conserved by more accurate representations of the interatomic
potential and solvent. Modifications caused by intermolecular
interactions present in the trimer could be interesting, especially
if cooperative effects are important. These questions should also
be investigated in future work.

The identification of structural intermediates of HA within
the fusion process has generally proved difficult. On extracting
the fastest path from the kinetic transition network, we have
identified well-defined intermediates with large energy barriers
between them, even in the absence of HA1. The energy landscape
we see for this HA2 model is consistent with a molecular
switch. The initial reversible changes involve the detachment
and reorientation of helix A, followed by the partial extension
of helix B and a 90 degree rotation of helix E relative to the
HA2 stem. The largest energy barrier involves the rearrangement
of the beta-hairpin F and further rotation of helices E and
G to point in the opposite direction from their pre-fusion
structure. Once this barrier is overcome, the structural changes
are largely irreversible. The C-terminal peptide extends to form a

coiled-coil structure and the B helix straightens, resulting in the
post-fusion structure.

From this predicted path, we can test mutations that may
affect the energy barriers between the different phases of the
transformation. Several mutations have been shown to affect
the fusion pathway and their effects on the pathway will be
considered in additional calculations. In particular, the mutation
Thr59Met, situated in the B-helix, has previously been predicted
to increase the unfolding temperature (Lin et al., 2018). The
mutation R106H in helix D has also been show to stabilize the
prefusion structure at normal pH (Xu and Wilson, 2011).

Most previous work has focused on mutations that affect
the interactions between HA1 and HA2. We will extend the
pathway to include HA1 in future work and analyse the effect
on the pathway in the context of HA1/HA2 compared to the
HA2-only system.

We will also recalculate the path by reconverging the
stationary points for a range of pH, harvesting a new database.
Currently, the path corresponds to a low pH system, with doubly
protonated histidines, but not glutamate or aspartate. An analysis
at neutral pH, as well as even lower pH (protonating glutamate or
aspartate), will then be possible. Our hope is that this approach
will be more efficient than trying to tackle larger systems
from the outset, or performing separate investigations from
scratch for alternative mutants and conditions that correspond
to different pH.
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