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CdS nanostep-structured arrays were grown on F-doped tin oxide-coated glasses

using a two-step hydrothermal method. The CdS arrays consisted of a straight rod

acting as backbone and a nanostep-structured morphology on the surface. The

morphology of the samples can be tuned by varying the reaction parameters. The

phase purity, morphology, and structure of the CdS nanostep-structured arrays were

characterized by X-ray diffraction and field emission scanning electron microscopy.

The light and photoelectrochemical properties of the samples were estimated by a

UV-Vis absorption spectrum and photoelectrochemical cells. The experimental results

confirmed that the special nanostep structure is crucial for the remarkable enhancement

of the photoelectrochemical performance. Compared with CdS rod arrays, the CdS

nanostep-structured arrays showed increased absorption ability and dramatically

improved photocurrent and energy conversion efficiency. This work may provide a new

approach for improving the properties of photoelectrodes in the future.

Keywords: nanostep, morphology control, photoelectrode, film, water splitting

1. INTRODUCTION

There is a high demand for a sustainable energy source as fossil fuel consumption continues to
cause environmental harm. Among the various substitutes for fossil fuel, solar energy is considered
to be an ideal candidate because it is inexhaustible, clean, and widely distributed globally (Hisatomi
et al., 2014; Ning et al., 2017; Zhang et al., 2020). However, the widespread application of solar
energy continues to be a challenge due to its discontinuity (Low et al., 2017; Zhang et al., 2018). To
address this issue, great efforts have been made to achieve solar energy conversion and storage. For
instance, photoelectrochemical (PEC) water splitting using solar energy aims at converting solar
energy into hydrogen and oxygen to create a renewable energy system (Courtin et al., 2014; Ahmed
and Dincer, 2019). This technology builds a bridge between solar energy and hydrogen, which is
considered green energy, prompting great interest among researchers (Fang et al., 2017; Qi et al.,
2018; Hirscher et al., 2020). The key factor in PEC water splitting is the development of highly
efficient photoelectrodes based on semiconductors (Jiang C. et al., 2017; Chen et al., 2018).

Many kinds of photoelectrodes, such as Fe2O3, BiVO4, WO3, and CdS (Ji et al., 2016; Sun
et al., 2018; Fu et al., 2019; Wang et al., 2019), have been developed since the Fujisha and Hoda
reported that TiO2 could be used as a photoelectrode for solar energy conversion (Fujishima
and Honda, 1972). There is particular interest in CdS due to its suitable band gap and high
absorption coefficient, which results in relatively efficient PEC and photocatalytic performance
(Cheng et al., 2018). CdS is a well-known narrow band gap semiconductor that is widely used in
lasers, light-emitting diodes, and solar cells (Zhang et al., 2016; Zapf et al., 2017; Bosio et al., 2018).
Many researchers have focused on the application of CdS in the field of PEC/photocatalytic water
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splitting for hydrogen production. For example, Li’s group
reported an exceptionally high quantum efficiency (93%) of
photocatalytic hydrogen production on Pt–PdS/CdS (Yang et al.,
2012). Liu et al. (2013) obtained 62% quantum efficiency
of solar hydrogen evolution over Cd0.5Zn0.5S without noble
metal loading. After further experimentation, they achieved
an internal quantum efficiency approaching 100% at 425 nm
based on Cd0.5Zn0.5S with NiSx as co-catalyst (Liu et al.,
2016). All these studies demonstrated that CdS is a promising
semiconductor for high solar energy conversion. Nevertheless,
pure CdS still possesses inherent drawbacks, such as rapid charge
recombination and poor stability in solution, which limits its
practical application (Yan et al., 2009; Xie et al., 2014).

Various strategies have been explored to address the
disadvantages of CdS to promote charge carrier separation and
to enhance the efficiency of solar energy conversion (Zhang
and Lou, 2019; Zheng et al., 2019). Heterojunction design is
a common method that has been widely used to improve the
separation of photogenerated electron-hole pairs (Li et al., 2018;
Wu et al., 2019). Doping CdS with metal or non-metal elements
is another measure used to tune the energy band structure and
enhance the properties of CdS (Lee et al., 2016). In addition to
the above methods, morphology control can be used to improve
the PEC performance of CdS (Vaquero et al., 2017). For example,
Jing synthesized CdS particles with screw-thread-like nanostep
structures and demonstrated that this structure is crucial for
enhancing photocatalytic hydrogen production (Jing and Guo,
2006). Chen prepared CdS nanorod arrays without a template
and demonstrated their potential applications in optoelectronics
(Chen et al., 2011). Liu et al. fabricated porous flower-like, belt-
like, and net-like CdS photocatalysts using a mixed-solvothermal
strategy. The flower-like CdS exhibited the highest photocatalytic
activity for H2 evolution under visible light without any co-
catalyst (Liu et al., 2018). Each of the above studies demonstrated
a promising approach to improve solar energy conversion based
on the morphology control of CdS.

Herein, we report a two-step hydrothermal method to
synthesize nanostep arrays as photoelectrodes for improved
PEC performance. The CdS arrays consist of a straight rod
as the backbone and a nanostep-structured morphology on
the surface. The morphology and PEC performance of the
samples can be tuned by varying the reaction parameters.
Experimental results show that, compared to the sample without
the nanostep structure, the CdS nanostep arrays exhibited better
PEC performance. This work may provide a new approach for
improving the properties of photoelectrodes in the future.

2. EXPERIMENTAL SECTION

2.1. Raw Materials
All chemical agents were of analytical grade and were used
without further treatment. F-doped tin oxide (FTO)-coated glass
as substrates (15�/square) were purchased from Nippon Sheet
Glass Co., Ltd. Acetone (C3H6O), absolute ethanol (C2H6O),
hydrochloric acid (HCl), cadmium nitrate (Cd(NO3)2·4H2O),
thiourea (CS(NH2)2), and glutathione (GSH) were purchased
from Sinopharm Chemical Reagent Limited Corporation.

Deionized water was used in all experiments. For synthesis of
CdS films on FTO substrates, the FTO substrates were first
ultrasonically cleaned in deionized water, acetone, and absolute
ethanol alternatively 15 min per step.

2.2. Synthesis of CdS Nanorod Arrays
CdS nanorod arrays were deposited on the cleaned FTO substrate
using a hydrothermal method. In a typical experiment, cadmium
nitrate (1 mmol), thiourea (3 mmol), and GSH (0.6 mmol) were
dissolved in 80 mL deionized water. This solution was poured
into Teflon lined stainless steel autoclave containing an FTO
glass substrate placed at an angle and partially immersed into
the solution. Then, the autoclave was transferred to electricity
heat drum wind drying oven and maintained 200◦C for 2, 4, and
6 h to determine the optimal reaction time. Finally, the sample
was removed from the autoclave and rinsed with deionized water
after the autoclave cooled naturally. The obtained samples were
denoted as CdS-2h, CdS-4h, and CdS-6h, respectively.

2.3. Synthesis of CdS Nanostep-Structured
Arrays
As the sample prepared for 4 h showed the best PEC
performance, this sample was used thereafter. CdS nanostep
arrays were synthesized by a second hydrothermal approach that
was completed by keeping the sample CdS-4h in the autoclave at
200◦C for 1, 2, 3, and 4 h with same precursor solution. Finally,
the obtained samples were rinsed with deionized water. The
samples were denoted as CdS-T-1h, CdS-T-2h, CdS-T-3h, and
CdS-T-4h, respectively. To further improve the PEC performance
of CdS nanostep arrays, CdS-4h was first treated in 3.7 wt%
HCl solution for 30 s before second hydrothermal process.
Subsequently, the second hydrothermal process was completed
by keeping treated CdS-4h in the autoclave at 200◦C for 3 h
with same precursor solution. The obtained sample was denoted
as CdS-HT-3h.

2.4. Characterization
The sample morphology was observed using a JEOL JSM-
7800 scanning electron microscopy (SEM). X-ray diffraction
(XRD) patterns were obtained on a PANalyticalX’pert MPD
Pro X-ray diffractometer using Ni-filtrated Cu Kα irradiation
(wavelength 1.5406◦A). The optical spectra of the samples
were determined with a Hitachi U-4100 UV-vis-near-IR
spectrophotometer using BaSO4 as the reference. Linear sweep
voltammetry (LSV) under chopped light illumination was
conducted using an electrochemical workstation (CHI 760D) in
a three-electrode system.

2.5. PEC Measurements
PEC measurements were carried out in a convenient three
electrodes cell. Work electrodes were made up of the sample
films. The work electrodes were mounted onto a special designed
electrode holder and surface areas exposed to electrolyte were
fixed at 0.785 cm2. A saturated calomel electrode (SCE) was used
as a reference electrode, and a large area platinum plate was used
as a counter electrode. An aqueous solution of 0.5 M Na2SO3

was prepared as the electrolyte. An electrochemical workstation
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(CHI 760D) from CH Instruments was used for photocurrent
measurements under 100 mW/cm2 chopped light illumination.
The scanning rate was 10 mV/s, and the scanning direction
was from low to high potential. The absolute intensity of the
incident light was recorded with an avaspec-2048 fiber optical
spectrometer from Avnantes.

3. RESULTS AND DISCUSSION

Figure 1 shows the SEM images of samples prepared through
a one-step hydrothermal approach maintained at 200◦C for
2, 4, and 6 h. As shown in Figure 1A, a few irregular rods
made up of massive nanoparticles were formed. When the
hydrothermal time was increased to 4 h, the morphology of
the sample changed considerably. The apparent nanorod arrays
without nanoparticles are shown in Figure 1B. Through careful
observation of the insert picture in Figure 1B, a frustum-like
structure can be found at the top of the nanorod arrays, which
may relate to the acidity of the precursor. This will be discussed
in the following sections. The diameter of the nanorods decreased
gradually as the reaction time increased from∼200 nm for 4 h to
∼100 nm for 6 h. The thickness (∼1 µm) of film fabricated for 4
h is shown in the SEM image of crossing section (Figure 1D). The
image also shows that nanorod arrays uniformly disperse on the
FTO surface. The (002) peak is higher in intensity compared with
other peaks in the XRD patterns (Supplementary Figure 1). This

further confirms the synthesis of CdS nanorod arrays through a
one-step hydrothermal method at 200◦C for 4 and 6 h.

Generally, the light absorption and PEC performance of
the samples are the primary concerns for energy conversion.
Figure 1E shows the absorbance of the three samples that possess
the specific absorption property of CdS (Ai et al., 2018). For the
sample prepared for 2 h, the absorption edge is approximately
520 nm, corresponding to 2.38 eV in the band gap as calculated
by the equation Eg = 1,240/λ (Humayun et al., 2018). When
the hydrothermal time was increased, the absorption edge of the
sample shifted to 560 nm (4 h) and then moved back to 540 nm
(6 h), corresponding to 2.21 and 2.30 eV in the band gap. The
changes in the band gap of the samples may be influenced by
the crystal size, i.e., quantum confinement effect (Chen et al.,
2019). In Figure 1A, it is clear that the sample prepared for 2
h is composed of many particles that are the smallest in size of
the three samples. Therefore, it exhibits the largest band gap. The
sample prepared for 4 h has the smallest band gap because of its
large crystal size, which is beneficial for PEC performance. This
is because a semiconductor with a smaller band gap can absorb
light energy in a wider range of the solar spectrum (Samsudin and
Abd Hamid, 2017). Upon further observation of the absorption
curve, it is notable that the absorption of sample CdS-4h is
dramatically stronger than that of other two samples, particularly
in wavelengths between 500 and 800 nm. The enhancement of the
absorption capacity is ascribed to the multi-scattering and light-
trapping effect created by the nanorod arrays. (Cho et al., 2011).

FIGURE 1 | Scanning electron microscopy (SEM) images of (A) sample CdS-2h; (B) sample CdS-4h; (C) sample CdS-6h; (D) crossing-section view of sample

CdS-4h; insert pictures are high-magnification SEM image of CdS-2h, CdS-4h, and CdS-6h; (E) Uv-Vis absorbance of CdS-2h, CdS-4h, and CdS-6h; (F) linear

sweep voltammetry (LSV) curves of CdS-2h, CdS-4h, and CdS-6h under chopped light illumination.
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Based on the above analysis, it is expected that the sample CdS-4h
would have better PEC performance, and this was confirmed by
the PEC results shown in Figure 1F. The photocurrent density of
the sample CdS-4h is higher than that of the other two samples in
the entire applied bias region, reaching a value of 1.08 mA/cm2 at
0 V, 10 times that of the sample prepared for 2 h. The significant
improvement in PEC performance may be due to better light
absorption capability and facile transportation of chargers arising
from straight CdS nanorods (Wang W. et al., 2018).

As the sample prepared for 4 h showed the best PEC
performance (Figure 1F), this sample was used as the base to
synthesize CdS nanostep arrays. Figure 2 shows the SEM images
of samples that were prepared by second step hydrothermal
approach at 200◦C for 1, 2, 3, and 4 h. As shown in Figure 2A and
in the inset picture, bulky pyramid-like rods are composed of tiny
particles with ∼10 nm in diameter, and no nanostep CdS arrays
were found. When the second hydrothermal time was increased

to 2 h, polycrystalline CdS rods transformed into pyramidal
and frustum-like rods (Figure 2B). This transformation was also
found by Li’s group when the reaction time was increased above
1 h (Yang et al., 2013). Upon further increasing the reaction
time to 3 h, an obvious nanostep structure was formed on the
surface of the CdS rods. The nanostep structure may be beneficial
for enhancing the light absorption due to the multi-scattering
and reflection effect of light (Bera et al., 2018). However, the
nanostep structure disappeared as the time was extended to 4
h. In this case, the CdS rod was transformed into a thinner and
irregular rod (Figure 2D), only∼100 nm in diameter, in contrast
with the nanostep structural rod with a ∼600 nm in diameter.
The evolution of the rod diameter with time is also observed in
Figures 1A–C. This change in rod diameter andmorphologymay
be caused by the synergistic effect of GSH used as a capping agent
and the acidity of the precursor solution. Li’s and Chen’s group
reported that thiol and dicarboxylic groups in GSH played a vital

FIGURE 2 | Scanning electron microscopy (SEM) images of (A) sample CdS-T-1h; (B) sample CdS-T-2h; (C) sample CdS-T-3h; (D) sample CdS-T-4h; insert picture is

high-magnification SEM image of CdS-T-1h.
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role in forming CdS crystal particles and nanorod arrays. The
thiol and dicarboxylic groups may selectively absorb on the low-
index faces of CdS, leading to slow growth along that side and
then forming CdS nanorods (Chen et al., 2008; Yang et al., 2013).
The CdS rod may be etched during the hydrothermal approach
due to the acidity of the hydrothermal solution containing GSH
as an acidic polypeptide (Tummanapelli and Vasudevan, 2015).
Under these conditions, the high-energy face of the CdS rod
could be etched first to shape the nanostep structure on the rod
surface. The etching process will be continued with hydrothermal
time, eventually resulting in a reduction in the diameter of the
rods. Thus, there is a specific amount of time needed to obtain a
CdS rod with a nanostep structure.

The XRD patterns of the as-prepared samples are shown in
Figure 3A. It is evident that all diffraction peaks correspond
to the hexagonal wurtzite CdS phase (JCPDS No. 77-2306)
(Shengyuan et al., 2012). There are no other peaks to be found,
demonstrating the purity of all CdS samples synthesized by
a two-step hydrothermal process. Furthermore, the differences

between the samples can be confirmed by comparing the peak
intensity of the (002) facet. The peak intensity of the (002) facet
has an overwhelming advantage over other peaks for the CdS-T-
2h, CdS-T-3h, and CdS-T-4h, but not for CdS-T-1h, indicating
preferential growth along the [002] direction for the CdS-T-2h,
CdS-T-3h, and CdS-T-4h (Jiang J. et al., 2017). Considering the
SEM images in Figure 2, it can be concluded that CdS particles
are formed first after a short reaction time, and the polycrystalline
CdS will gradually transform into CdS rods when the reaction
time increases.

Figure 3B presents the light diffuse reflectance spectra of
samples with different morphologies. To better distinguish these
curves, we only show the spectrum between 450 and 600 nm
in wavelength (the spectrum between 300 and 800 nm in
wavelength is also presented in the Supporting Information,
Supplementary Figure 2). As with other’s reports (Bu et al., 2013;
Wei et al., 2017), all curves show good visible light absorption
of CdS, and the absorption edge is approximately 550 nm,
corresponding to 2.25 eV in the band gap. Nevertheless, there is a

FIGURE 3 | (A) X-ray diffraction (XRD) patterns of samples CdS-T-1h, CdS-T-2h, CdS-T-3h, and CdS-T-4h; (B) Uv-Vis absorbance of samples CdS-T-1h, CdS-T-2h,

CdS-T-3h, and CdS-T-4h; (C) linear sweep voltammetry (LSV) curves of samples CdS-T-1h, CdS-T-2h, CdS-T-3h, and CdS-T-4h under chopped light illumination; (D)

applied bias photon-to-current efficiency (ABPE) curves of samples CdS-T-1h, CdS-T-2h, CdS-T-3h, and CdS-T-4h under chopped light illumination.
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slight difference between all spectrums. It was found that sample
CdS-T-3h exhibits better absorption properties than the other
samples, which may be ascribed to the rod arrays with a nanostep
structure, as discussed in the previous section. Under these
conditions, it is expected that sample CdS-T-3h may have better
PEC performance than the other samples. The PEC performance
of the samples is displayed in Figure 3C. The photocurrent
density of all samples increased steadily with increasing applied
bias, and gradually reached saturation, indicating the efficient
separation of photogenerated chargers in the film (Wang F.
et al., 2018). As expected, the photocurrent density of sample
CdS-T-3h is highest in all samples at whole applied bias range
and is approximately two times that of sample CdS-T-4h at 0
V (vs. SCE). Furthermore, the applied bias photon-to-current
efficiency (ABPE), defined in Equation (1), is developed to
characterize the energy conversion efficiency under an applied
bias (Chen et al., 2010):

ABPE(%) =
jph(mA/cm2)× [1.23− |Vb|] (V)

Ptotal(mW/cm2)
× 100 (1)

where jph is the photocurrent density obtained under an applied
bias Vb. Ptotal is incident illumination power density. As the
ABPE curves shown in Figure 3D demonstrate, the ABPE value
of all samples increased with increasing applied bias, indicating
that the separation of chargers is generated by radiation. The
ABPE value reaches a maximum at 0.1 V (vs. SCE), 4.09%
for CdS-T-3h, and 1.77% for CdS-T-4h, confirming again that
CdS-T-3h has the best PEC performance among the samples.
The improvement in the PEC performance of the sample
CdS-T-3h may be attributed to its unique rod arrays with a
nanostep structure. The rod arrays provide a direct path for
the transportation of chargers (Tak et al., 2009). The nanostep
structure not only enlarges the contact area between the film
and the electrolyte (Iwase et al., 2004), but also enhances the
separation of chargers, which promotes surface reaction and
improves the PEC performance of the samples (Shi et al., 2014;
Cai et al., 2017).

In order to further improve the PEC performance of the
sample, CdS-4h was immersed in 3.7 wt% HCl solution for
30 s before second hydrothermal process in order to remove
the organic group that may absorb to the film surface during
the first hydrothermal process. Then, CdS-4h treated with
hydrochloric acid was placed in an autoclave containing the same
precursor at 200◦C for 3 h. The obtained sample is denoted as
CdS-HT-3h, and the SEM image of the CdS-HT-3T is shown
in Figure 4A. A noticeable nanostep structural morphology
is observed in the SEM image, similar to sample CdS-T-3h.
In addition, large branches were distributed around the CdS
backbone, forming a three-dimensional CdS structure, which
could further enhance the light absorption of the sample (Dinh
et al., 2014). Figure 4B provides evidence that CdS nanostep
arrays with branches show slightly better light absorption in the
spectral range of 300–800 nm, except for 510–540 nm, compared
to CdS-T-3h. Exceptions at 510–540 nm may originate from
the difference in crystal size between CdS-HT-3h and CdS-T-3h.
With hydrochloric acid treatment, the sample CdS-HT-3h has a

relatively smaller rod diameter than that of CdS-T-3h (compare
Figure 2C with Figure 4A), which leads to a blue shift of the
absorption edge discussed in the previous section. Subsequently,
the LSV performance under chopped light was compared for
the following structures: CdS rod arrays, CdS rod arrays with
nanostep, and CdS rod arrays with nanostep and branches, as
shown in Figure 4C. It is evident that CdS-HT-3h and CdS-T-
3h both show significantly improved PEC performance when
compared to the sample CdS-4h. The photocurrent density
reaches 3.34 mA/cm2 at 0 V (vs. SCE) for CdS-HT-3h and
3.24 mA/cm2 for CdS-HT-3h, 3.3 and 3.2 times that of CdS-4h
without nanostep structure. We also examined the ABPE curves
of the three samples to further study energy conversion, and we
found that they again confirm the advantage of the sample with
the nanostep structure.

It is well-known that the PEC performance of a sample
is highly dependent on three factors: the efficiency of charge
generation, the efficiency of charger collection (transfer) at
the electrode/electrolyte interface, and the efficiency of charge
transport within the film (Ren et al., 2016). The efficiency of
charge generation is closely related to the light absorption ability.
The efficiency of charger collection and the efficiency of charge
transport are related to the structure and electrical properties of
the semiconductor. In the present experiment, the CdS rod arrays
with a nanostep structure enhanced the light absorption arising
from multiple reflection effects (Sun et al., 2014). Compared
to the sample CdS-4h without the nanostep structure, both
CdS-HT-3h and CdS-T-3h with a nanostep structure have large
surface-to-volume ratios that provide sufficient reaction sites.
Additionally, the photogenerated electrons and holes can readily
migrate to the edge and groove sites of the nanostep structure
on the surface of the CdS arrays due to the different charge
densities between the edge and groove sites (Ding et al., 2018).
These two factors increase the efficiency of charge separation
and collection at the electrode/electrolyte interface. In terms of
the efficiency of charge transport, the CdS rod arrays supply a
direct pathway for photoinduced carrier transportation (Zhao
et al., 2015; Qiu et al., 2019; Xu et al., 2020). All the above factors
improve the PEC performance and enhance the light energy
conversion of the sample. It is worth noting that sample CdS-HT-
3h with branches on the surface only slightly improved its PEC
performance compared to sample CdS-T-3h, which may not be
consistent with our previous expectations. However, this is not
the aim of this article. The goal of this work is to provide a new
approach for synthesizing rod arrays with a nanostep structure on
the surface. Based on this unique structure, the PEC performance
of the photoelectrode can be continuously improved.

4. CONCLUSION

CdS rod arrays with a nanostep structural surface were grown on
FTO-coated glasses through a two-step hydrothermal method.
The morphology of the samples can be tuned by varying the
reaction parameters, such as hydrothermal time and surface
treatment. Compared to CdS rod arrays without a nanostep
structure, the CdS nanostep structural arrays showed enhanced

Frontiers in Chemistry | www.frontiersin.org 6 December 2020 | Volume 8 | Article 577582

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Jiang et al. Nanostep CdS for Photoelectrochemical Performance

FIGURE 4 | (A) Scanning electron microscopy (SEM) image of sample CdS-HT-3h; (B) Uv-Vis absorbance of samples CdS-4h, CdS-T-3h, and CdS-HT-3h; (C) LSV

curves of samples CdS-4h, CdS-T-3h, and CdS-HT-3h under chopped light illumination; (D) applied bias photon-to-current efficiency (ABPE) curves of samples

CdS-4h, CdS-T-3h, and CdS-HT-3h under chopped light illumination.

absorption ability and dramatically improved photocurrent and
energy conversion efficiency, both of which contributed to the
multiple reflection effect of light in the arrays and the enhanced
charge transportation and collection.
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