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Early diagnosis is important to reduce the incidence and mortality rate of diabetes. The

feasibility of early diagnosis of diabetes was studied via near-infrared spectra (NIRS)

combined with a support vector machine (SVM) and aquaphotomics. Firstly, the NIRS of

entire blood samples from the population of healthy, pre-diabetic, and diabetic patients

were obtained. The spectral data of the entire spectra in the visible and near-infrared

region (400–2,500 nm) were used as the research object of the qualitative analysis.

Secondly, several preprocessing steps including multiple scattering correction, variable

standardization, and first derivative and second derivative steps were performed and

the best pretreatment method was selected. Finally, for the early diagnosis of diabetes,

models were established using SVM. The first overtone of water (1,300–1,600 nm) was

used as the research object for an aquaphotomics model, and the aquagram of the

healthy group, pre-diabetes, and diabetes groups were drawn using 12 water absorption

patterns for the early diagnosis of diabetes. The results of SVM showed that the

highest accuracy was 97.22% and the specificity and sensitivity were 95.65 and 100%,

respectively when the pretreatment method of the first derivative was used, and the best

model parameters were c = 18.76 and g = 0.008583.The results of the aquaphotomics

model showed clear differences in the 1,400–1,500 nm region, and the number of

hydrogen bonds in water species (1,408, 1,416, 1,462, and 1,522 nm) was evidently

correlated with the occurrence and development of diabetes. The number of hydrogen

bonds was the smallest in the healthy group and the largest in the diabetes group.

The suggested reason is that the water matrix of blood changes with the worsening

of blood glucose metabolic dysfunction. The number of hydrogen bonds could be used

as biomarkers for the early diagnosis of diabetes. The result show that it is effective and

feasible to establish an accurate and rapid early diagnosis model of diabetes via NIRS

combined with SVM and aquaphotomics.
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INTRODUCTION

Pre-diabetes refers to abnormal fasting glucose or impaired
glucose tolerance that has not yet reached the diagnostic criteria
for diabetes. It is the only reversible stage in the course of type
2 diabetes (Yu et al., 2013). One study has indicated that there
will be 472 million people in the world with diabetes by the year
2025 (Xiaomin et al., 2016). Patients have no specific symptoms
in the early stages of type 2 diabetes. Once diagnosed, themajority
of cases have serious complications associated with them that
will affect the patients’ physical and mental health (Fukuda and
Mizobe, 2017). Therefore, it is important to develop methods
for the early diagnosis of type 2 diabetes so that appropriate
diet and lifestyle interventions can be provided at an early stage
to reduce the incidence of diabetes and control the condition
of pre-diabetes.

At present, the screening test for pre-diabetes involves fasting
plasma glucose (FPG), urine glucose, hemoglobin A1C (HbA1C),
and gene testing. The detection of FPG and urine glucose is
not easy to operate, is time-consuming, and has a low cost,
but the missed diagnosis rate is high. The HbA1c detection
method has little variability, and the result is not affected by
eating time and short-term lifestyle factors. However, there
is no unified diagnostic standard associated with the HbA1c
detection method, which does not represent the current blood
glucose level and easily results in misdiagnosis (Vajravelu and
Lee, 2018). Genetic testing methods are varied and are selected
according to particular requirements, but there are still legal and
social ethics issues (Etchegary et al., 2010; Prior et al., 2012).
Glucose tolerance test (OGTT) methods have the advantages of
objectivity and accuracy, which is the “gold standard” for the
diagnosis of pre-diabetes. However, the testing is complicated
and time-consuming, causes great discomfort and increases the
unnecessary psychological burden on patients, and is not suitable
for large-scale population screening. Therefore, the development
of fast, simple, and accurate methods is urgently required.

Patients with symptoms can undergo diagnostic methods,
such as FPG, glucose tolerance tests, and glycated hemoglobin
tests. However, these cannot be applied to large-scale screening
(American Diabetes Association, 2012; Rosella et al., 2015;
Mainous et al., 2016; Nakagami et al., 2017). Additionally,
biomarkers have been investigated and applied to the early
diagnosis of diabetes in a study by Lina et al. in 2013 that
focused on the examination of whether there is a potential
biomarker of T2DM in urine. The research showed that the
expression of three types of polypeptides decreased in diabetes
patients. It was further determined that these three polypeptides
were fragments of histidine trimer nucleotide-binding protein
1 (HINT1), bifunctional aminoacyl tRNA synthetase (EPRS),
and agrin precursor protein (CLU) and that they could be
used as potential biomarkers for type 2 diabetes (Lina et al.,
2013). In 2017, Hsiao-Feng et al. used laser doppler blood
flow measurements and spectroscopic analysis to study different
microcirculation effects and applied them to the early diagnosis
of diabetes. Relative energy contribution and Doppler frequency
shifts were found to decrease sequentially from the healthy group
to the pre-diabetes group to the diabetes group. This shows that

the relative energy contribution andDoppler frequency shift have
a certain correlation with the progression of diabetes (Hsiao-
Feng et al., 2017). In 2020, Yuanjie et al. used a wearable active
acetone biosensor for the non-invasive diagnosis of pre-diabetes.
Breath acetone on the order of ppmwasmeasured, which showed
that the sensor had a good response (Yuanjie et al., 2020). In
new biomarker detection, laser doppler and acetone biosensors
have been used in the early diagnosis of diabetes, and have made
some progress, but these research results are very preliminary
(Yuanjie et al., 2020).

Near-infrared spectroscopy (NIRS), as a non-destructive,
rapid, and green analytical technique, has been widely used in
the biomedical field (Workman, 1993; Beć et al., 2020). Metabolic
or compositional changes occur during disease progression in
most cases, beginning with abnormal changes in the molecular
structure of tissue cells or humoral metabolism, and no obvious
clinical symptoms are observed until the middle or late stages
of disease onset. Consequently, analyzing the concentration and
structural changes of proteins, fats, and water in human tissues,
cells, and body fluids using NIRS, which is a more objective,
reliable, and accurate tool has been proposed for the early
diagnosis of diseases (Sakudo, 2016). The main component of
blood is water, and other components include protein, lipid,
sugar, and additional organic compounds. These substances have
strong infrared activity, but the information of other components
can be easily obscured owing to the strong absorption of
water. Due to the influence of water absorption, NIRS has
strong overlapping characteristics, and it is difficult to find the
fingerprint features related to disease development. Besides, due
to individual differences and instrument noise, it is difficult to
detect subtle differences in the peak position of NIRS. To reduce
the influence of these factors and extract useful information, it
is necessary to combine spectral information with a machine
learning method to establish a diagnostic model for the accurate
diagnosis of pre-diabetes, which can reduce the influence of these
factors and extract effective information (Huazhou et al., 2020).

In recent years, a novel approach called aquaphotomics has
been proposed by Tsenkova (2005, 2009). This approach provides
a new view of NIRS analysis. It allows analysis of NIR absorption
changes of water and other substances as interference factors,
and the changes in water absorption patterns associated with the
occurrence and development of diseases can be determined by
an extended water mirror approach (EWMA). Tsenkova et al.
analyzed the number of body cells in the milk produced by cows
with mastitis and healthy cows, and collected a large amount
of milk component data and observed the changes in water
absorption patterns in NIRS for the fast and accurate diagnosis
of mastitis (Atanassova et al., 2009). Kinoshita et al. predicted
whether a panda was in estrus by observing the changes in 12
water matrix coordinates—WAMACS in the urine of female
pandas using the aquaphotomics method (Tsenkova, 2009;
Kinoshita et al., 2012). For exploring the potential diagnostic
information from serum samples, temperature-dependent near-
infrared (NIR) spectroscopy was developed to obtain the spectral
change of water reflecting the interactions in serum solution,
and chemometric methods were employed to discriminate
the patients of diabetes and heart disease. However, there

Frontiers in Chemistry | www.frontiersin.org 2 December 2020 | Volume 8 | Article 580489

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Li et al. Early Diagnosis of Type 2 Diabetes

TABLE 1 | Blood glucose information includes 2 h post-load blood glucose (2

hPG) and fasting plasma glucose (FPG).

Blood sugar target Max Min Average Standard deviation

2 hPG(mmol/L) 11.8 5.40 9.10 1.14

FPG(mmol/L) 7.60 3.7 5.09 0.674

have been no reports concerning the diagnosis of pre-diabetes
using aquaphotomics.

The present work aims to develop a rapid and accurate
diagnosis of pre-diabetes. A model for the diagnosis of pre-
diabetes was established, which combined NIRS and a support
vector machine (SVM). The changes in water absorption patterns
in the blood of normal, pre-diabetic, and diabetic patients were
extracted using the aquaphotomics method, which not only
provides immediate insight for the occurrence and development
of diabetes but also provides a novel method for the diagnosis of
pre-diabetes that can hopefully be used for early diagnosis.

MATERIALS AND METHODS

Materials and Sample Preparation
A total of 147 blood samples comprehensively diagnosed as
healthy, pre-diabetic, or type 2 diabetic by 2-h post-load blood
glucose (2hPG) of OGTT and FPG were collected from the
Department of Endocrinology, First Affiliated Hospital of Jinan
University. Peripheral blood samples were preserved (about
1mL), kept in an anticoagulant tube (test tube treated with
an anticoagulant to prevent blood from clotting), and stored
in a −20◦C refrigerator. All the peripheral blood samples are
collected on the same day and spectral acquisition was performed
immediately. Blood samples were collected from 53 healthy (24
males and 29 females, with an average age of 44 ± 12 years), 46
pre-diabetic (18males and 28 females, with an average age of 47±
10 years), and 48 type 2 diabetic (25males and 23 females, with an
average age of 49 ± 12 years) patients. All specimens were from
the same ethnic group with the same socioeconomic background,
and all specimens were collected in accordance with relevant laws
and regulations.

In the early morning of the second day, venous blood was
collected from the patients and the FPG test was performed. Also,
the OGTT test was performed on all subjects, and venous blood
was collected after 2 h of glucose loading, and the venous blood
glucose level was measured. During the OGTT test, subjects
would sit and rest, and drinking coffee, tea, and other substances
was prohibited. The detailed results of the blood glucose analyses
are provided in Table 1.

In this study, the diagnostic criteria for type 2 diabetes and
pre-diabetes used the standards formulated in the “Guidelines for
Prevention and Treatment of Type 2 Diabetes (2013 Edition)”
as the reference basis (Diabetes Branch of Chinese Medical
Association, 2014): (1) normal blood glucose: FPG< 7.0mmo1/L
and (or) 2hPG < 7.8 mmol/L; (2) diabetes: FPG > 7.0 mmol/L
and (or) 2hPG > 11.1 mmol/L (patients with a diagnosis of

TABLE 2 | Division of blood samples into the training set and prediction set.

Sample Total

samples

Healthy

group

Pre-diabetes

group

Diabetes

group

Total samples 147 53 46 48

Training set 111 40 35 36

Validation set 36 13 11 12

diabetes); (3) pre-diabetes mellitus (PDM): FPG range: 6.1≤ FPG
< 7.0 mmo1/L and (or) 7.8 mmol/L < 2hPG ≤ 11.1 mmol/L.

In this study, the sample set was divided into a training
set and a prediction set at a ratio of 3:1 by using a random
selection method and repeating sampling 10 times. The random
division ensures that the sample sets generated every time by
setting random seeds were different and can be compared with
the results of multiple runs because the method remarkably
influences the model robustness, and an optimal sample set was
obtained. The division of the blood samples into the training set
and the prediction set is presented in Table 2.

Collection of Near-Infrared Spectra
NIRS were acquired using a grating NIR spectrometer (XDS
Rapid Content Analyzer, Foss, Denmark) with transmission
accessories. The spectra acquisition range was 400–2,500 nm,
and the detectors were Si (400–1,100 nm) and PbS (1,100–
2,500 nm). When acquiring NIRS of the blood samples from
a group of healthy, pre-diabetic, and diabetic patients, 1-mL
sample portions were placed in a quartz cuvette (optical path
of 1mm), and spectra were recorded at a wavelength increment
of 2 nm in the range of 400–2,500 nm. The spectral data of each
sample were measured in triplicate and averaged. The laboratory
temperature was 24± 1◦C and the relative humidity was 41%.

Data preprocessing is an important factor to improve
prediction accuracy (Byrne et al., 2016). Random noise is often a
component of the original data, resulting in differences between
the true and the measured value. To eliminate errors as much
as possible, it is necessary to weaken and even eliminate various
disturbance factors through various data processing methods,
which lay the foundation for next data processing. Therefore, it
is very necessary to preprocess the original spectra. In this study,
spectral data were preprocessed by a first derivative, a second
derivative, amultiple scattering correction (MSC), and a standard
normal variable transform (SNV) which can be used to reduce or
even remove the influence of various interference factors.

Support Vector Machine (SVM)
SVM is a machine learning method that was developed based
on dimensional theory and the statistical learning theory of
Vapnik (1995). SVM is used to investigate pattern recognition
and regression prediction problems with small sample sizes and
can solve many practical problems, such as small sample size,
nonlinearity, and high-dimensional problems. The problems of
poor generalization ability and the difficult convergence of neural
networks were solved by SVM. In recent years, good progress
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TABLE 3 | Water absorption pattern in NIR range.

WAMSCs Range (nm) Characteristic wavelengths (nm) Assignment References

C1 1,336–1,348 1,344 υ3 Kondepati et al., 2008

C2 1,360–1,366 Water shell Robertson et al., 2003

C3 1,370–1,376 1,374 υ1 + υ3 Roggo et al., 2007

C4 1,380–1,390 1,382 Water shell Ludwig, 2001

C5 1,398–1,418 1,408, 1,416 S0 Donis-Gonzalez et al., 2016

C6 1,420–1,428 Water hydration Cao et al., 2006

C7 1,434–1,444 S1 Cattaneo et al., 2009

C8 1,448–1,454 1,448 υ1 + υ3 Kalinin et al., 2013

C9 1,460–1,468 1,462 S2 Jaenicke and Lilie, 2000

C10 1,472–1,482 1,470 S3 Diller, 1992

C11 1,482–1,495 S4 Gowen et al., 2009

C12 1,506–1,516 Strongly bonded water or υ2 Xantheas, 1995a,b

WAMACS, water matrix coordinates.

ν1, symmetric stretching of first overtone of water.

ν2, bending of first overtone of water.

ν3, asymmetric stretching of first overtone of water.

S0−4, (H2O)1−5.

has been made in studies on disease diagnosis by using NIRS
combined with SVM (Sylvain and Cecile, 2018; Afara et al., 2020).

In the SVM method, different kernel functions can generate
different SVM algorithms. A radial basis function (RBF) kernel
function is used to realize the modeling classification of SVM
because it can process nonlinear problems. RBF is a scalar
function that is symmetric along the radial direction. It is
usually defined as a monotonic function of the Euclidean
distance between any point x in the space and a certain
center xc, which can be recorded as k(||x-xc||), and its effect
is often local, that is, when x is far away from xc, the
value of the function is very small (Sánchez, 2003). Moreover,
several optimization algorithms have been adopted to optimize
the internal parameters of the model, obtain better results,
and increase model robustness. Kernel function optimization
is mainly solved by using penalty parameter C and kernel
function parameter g. Parameter optimization is implemented
based on the principle of minimum mean square error. The
two parameters, namely, the selected kernel function type and
support vector type, determine the optimization performance
of the model. No universally agreed method has been reported
for the optimization of SVM parameters worldwide. At present,
the common methods include test method, grid search (GS),
genetic algorithm (GA), and particle swarm optimization (PSO)
(Sánchez, 2003; Peng-Wei et al., 2004).

Principal component analysis was used for dimension
reduction to decrease model complexity (Abdi and Williams,
2010). The data after dimension reduction determined the data
of principal components with a cumulative contribution rate
higher than 99%, which are used as the input of the SVM model.
Moreover, the kernel function was used for SVM modeling
because RBF can accurately process nonlinear problems. The
penalty parameter c and kernel function parameter g were used
as two important parameters of RBF. These two parameters have
important control impacts on model complexity, approximation

error, and measurement accuracy of the model (Schlkopf and
Smola, 2001; Aljarah et al., 2018; Li et al., 2019; Yalsavar et al.,
2019). The penalty parameter c in the SVMmodel represents the
degree of the penalty of an incorrect classification under linearly
inseparable situations. This parameter adjusts the preferred
weights of two indexes (interval and classification accuracies)
in the optimization direction. This problem is equal to the
prohibition of incorrectly classified samples (overfitting) when c
tends to be infinitely large. The accurate classification of samples
is ignored, and the maximum interval is pursued when c tends to
be 0. Relevant solutions are then not obtained, and the algorithm
does not converge (underfitting). The kernel function parameter
g is the first r (γ ) in Equation (2), and the default value is 1/k
where k is the number of categories. The value of γ is used to set
the “spread” of the function when RBF is utilized as the kernel.
This condition applies the data mapping distribution to the new
characteristic space. The value of γ is negatively correlated with
the number of support vectors which influences the training and
prediction speeds.

K(x, y) = exp{−γ
∥

∥x− y
∥

∥

2
} (1)

Aquaphotomics
Water, as a natural biological matrix, is composed of small
molecules with a great capacity for hydrogen bonding. Water
alters the absorption pattern according to the physical and
chemical properties of biological systems (Tsenkova, 2008). The
basis component of blood is water, and the water absorption
pattern will change due to the changes in material metabolism
in the human body with disease. Consequently, changes in water
absorption patterns of the blood can be used to diagnose the
disease. The 12 water absorption bands - WAMACS in the NIR
range are presented in Table 3 (Tsenkova, 2009; Tsenkova et al.,
2015, 2018; Bázár et al., 2016).
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As water is susceptible to disturbance factors, analyzing the
spectral changes of water and living systems subjected to these
factors can be used to study the water matrix and other molecules
in the water. The spectral ranges of water absorbance bands
called water matrix coordinates (WAMACS), where specific
water absorbance bands related to specific water molecular
conformations (water species, water molecular structures) are
found with the highest probability (Tsenkova, 2009). For the
first overtone of water (1,300–1,600 nm), 12 WAMACs (labeled
Ci, i = 1, 12) have been experimentally discovered (each of
6–20 nm in width) and they have been confirmed by overtone
calculations of already reported water bands in the infrared
range (Tsenkova, 2009). The combination of the activated water
bands, at which the light absorbance gets influenced by the
perturbations, depicts a characteristic spectral pattern called a
water spectral pattern (WASP), which reflects the condition of
the whole water molecular system. It contains a huge amount of
physical and chemical information for the solution because the
water hydrogen bonding network is easily influenced by any kind
of even subtle perturbations (Kinoshita et al., 2012) including
the solutes. At the moment, even without the assignment and
understanding of water absorbance bands, WASPs can be used
as holistic (bio)markers for system functionality.

The trajectory of the water absorption pattern obtained under
a specific disturbance can be used as a spectral pattern in the
multidimensional space of the water matrix coordinates, that
is, as a spectral biological indicator to distinguish substances
and explain the difference in function and the structural
characteristics of the two. The application of water absorption
patterns in disease diagnosis can be used as a biological indicator
to help us better understand the role of water in life systems, and
for disease diagnosis (Mengli et al., 2015; Xiaoyu et al., 2019).

Graphically, WASP is presented as an aquagram, which is
a radial graphic of the normalized absorbance of characteristic
water bands. The values for the aquagram on the coordinate
axis can be obtained according to Equation (1) (Tsenkova et al.,
2015).Here, Aλ is the absorbance after multiplicative scatter
correction (MSC) applied on the first derivative overtone region,
µλ is the mean value of all spectra, and σλ is the standard
deviation of all spectra at wavelength λ.

Aqλ =
Aλ − µλ

σλ

(2)

Evaluation of Model Parameters
Accuracy, specificity, and sensitivity are used as important
evaluation indexes for the SVM models. The calculation
equations of different parameters are expressed as follows:

Accuracy =
ncorrect

ntotal
(3)

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + TN

In Equation (4), TPR is the sensitivity, and FPR is the specificity.
TP represents the number of positive samples in the verification
set that are accurately classified by the model, and FN represents
the number of positive samples in the verification set that are
incorrectly classified by the model. FP is the number of negative
samples in the verification set that are incorrectly classified by the
model. TN is the number of negative samples in the verification
set that are accurately classified by the model.

RESULT AND DISCUSSION

Spectral Analysis
NIRS of the blood and water samples are shown in Figure 1 and
the raw spectra of the blood samples are shown in Figure 1A.
In the figure, there are two main absorption peaks at 1,452
and 1,951 nm in the NIR region, which are in accordance with
the fingerprint region of water as reported in the literature.
The absorption peak at 1,452 nm is the first overtone of the
O-H stretching vibration in water, and that at 1,951 nm is the
combination of O-H stretching and bending vibrations in water
(Sakudo, 2016; Bishop and Neary, 2018; Pasquini, 2018).

In addition to water as the main component of blood,
cholesterol, triglycerides, glucose, proteins, and other organic
compounds are found in blood, but the absorption region of these
substances are masked by the absorption of water molecules.
The shape and trend of the NIRS of the healthy group, pre-
diabetes group, and diabetes group are very similar, but the
absorption intensity is dissimilar (shown in Figure 1B). It can
be observed that the absorption intensity is healthy group >

diabetes group> pre-diabetes group in the 400–1,200 nm region,
and at 1,452 nm it changes to healthy group > pre-diabetes
group > diabetes group, which is probably due to the changes
in water and other organic compounds caused by changed blood
glucose concentration.

Result of SVM Model
The results of the SVM model based on different preprocessing
methods are shown in Table 4. It was concluded that the first
derivative had the best preprocessing effect, so the first derivative
was chosen as the preprocessing method for this data. GS, GA,
and PSO were used to optimize c and g in this study. The
optimum c and g values were selected based on the principle
of highest accuracy, which is gained by cross-verification of the
leave-one-out method. It follows from Table 5 that the model
has the best effect under the condition of GA (c = 11.62, g =

0.009346) optimization. The accuracy, specificity, and sensitivity
are: 97.22%, 95.65% (22/23), 100% (13/13), respectively with the
prediction set.

The optimal results of the healthy, pre-diabetic, and type
2 diabetic patient samples are shown in Figure 2. The 3D
diagram of the optimization results for c and g using the GS
methods is shown in Figure 2A. The contour map in Figure 2A

projected onto a 2D plane is shown in Figure 2B. The contour
map shows that c and accuracy rate gradually increase, and
the gradient gradually converges from left to right. The highest
accuracy rate of interactive verification is 90.99% when the
penalty parameter c = 16 and the kernel function parameter
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FIGURE 1 | NIR spectra of the blood samples: (A) raw and (B) average spectra.

TABLE 4 | Results of SVM model based on different preprocessing methods.

Pre-treatment C g CV accuracy (%) Accuracy (%) Sensitivity Specificity

Untreated 147.0 0.0068 77.04 91.66 95.65 (22/23) 84.62 (11/13)

First derivative 16.00 0.006801 90.99 97.22 95.65 (22/23) 100.0 (13/13)

Second derivative 48.50 0.003963 90.99 94.44 95.65 (22/23) 92.00 (12/13)

Msc 48.50 0.003906 80.18 94.44 95.65 (22/23) 92.00 (12/13)

Snv 27.85 0.006801 79.27 94.44 95.65 (22/23) 92.00(12/13)

The bold font represents the best results.

g= 0.006801. The optimization results using GA are shown in
Figure 2C. The accuracy rate continuously increases when the
population evolution algebra increases from 0 to 30, and the
population reaches its saturation point at 30. Therefore, c =

11.62 and g = 0.009346 are the optimal results with the highest
accuracy rate of the interactive verification of 92.80% when the
population evolution algebra is 30. The optimization results for
PSO are shown in Figure 2D. Results show that the accuracy rate
is saturated at all times when the population evolution algebra
is between 0 and 100. Therefore, c = 1.5 and g = 1.7 are the
optimal results with the highest accuracy rate of the interactive
verification of 89.58% when the population evolution algebra is
between 0 and 100.

Graphs for the estimated class values (y axis) vs. the number
of samples (x axis) are shown in Figure 3. The best fit between
the true and predicted values of the training set is shown in
Figure 3A. The fitting effect of the true value and predicted value
of the prediction set is shown in Figure 3B, and only one outlier
sample is found.

Result of Aquaphotomics
The average and corresponding different spectra of healthy,
pre-diabetic, type 2 diabetic, and pure water in 1,300–
1,600 nm are shown in Figure 4. It shows that the spectra of
healthy, pre-diabetic, and type 2 diabetic almost overlapped,

except at 1,450 nm where large differences were observed. The
resulting spectra obtained by subtracting the healthy spectra
from the pre-diabetic and type 2 diabetic spectra showed a
maximum negative peak at 1,412 and 1,476 nm, which are
attributable to the stretching vibration peak of water molecules
without hydrogen bonds (1,412 nm) and water molecules with
three hydrogen bonds (1,476 nm) (Tsenkova, 2009; Tsenkova
et al., 2018; Xueguang et al., 2018). Error bars represent
the fluctuation range of absorbance of different individuals.
Due to the influence of noise and individual variation, it
was difficult to diagnose diabetes in the early stages when
the differences from the raw spectra were barely visible, but
in the range of individual differences, the difference between
pre-diabetes and type 2 diabetes can be observed from the
differential spectra.

Figure 6A shows the results of the second derivative of
the raw spectra and the corresponding different spectra of
the healthy, pre-diabetic, and type 2 diabetic samples. The
second derivative spectra can effectively expand the resolution
of the spectra and find the differences among the spectra
of healthy, pre-diabetic, and type 2 diabetic. More distinctive
peaks appeared after the second derivative transformation,
including a maximum positive peak centered at 1,382 nm and
a maximum negative peak centered at 1,416 nm. The peak
at 1,382 nm was ascribed to the solvent layer of water and
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TABLE 5 | Results of SVM model based on different optimization algorithms.

Optimization algorithms C g CV accuracy (%) Accuracy (%) Sensitivity Specificity

GS 16.00 0.006801 90.99 97.22 95.56 (22/23) 100.0 (13/13)

GA 11.62 0.009346 92.80 97.22 95.65 (22/23) 100.0 (13/13)

PSO 1.500 1.700 9.580 91.66 91.31 (21/23) 92.00(12/13)

The bold font represents the best results.

FIGURE 2 | Optimization result map for healthy, pre-diabetic, and type 2 diabetic samples: (A,B) optimization result map for GS; (C) optimization result map for GA;

and (D) optimization result map for PSO.

1,416 nm was ascribed to water molecules without hydrogen
bonds (Tsenkova, 2009; Tsenkova et al., 2018; Xueguang et al.,
2018). The resulting spectra obtained by subtracting the healthy
spectra from the pre-diabetic and type 2 diabetic spectra showed
the differences at 1,408 nm (water molecules that do not contain
hydrogen bonds), 1,416 nm (water molecules without hydrogen
bonds), 1,448 nm (the solvated layer of water), 1,462 nm (water
species containing two hydrogen bonds), 1,470 nm (unknown)

(Tsenkova, 2009; Tsenkova et al., 2018; Xueguang et al., 2018).
Error bars represent the fluctuation range of absorbance of
different individuals. In the range of individual differences,
the difference between pre-diabetes and type 2 diabetes can
be observed from the corresponding different spectra of the
second derivatives.

In general, NIRS are highly correlated and cause data
redundancy to a certain extent. Principal component analysis
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FIGURE 3 | Graphs for the estimated class values (y axis) vs. the number of samples (x axis). (A) Training set. (B) Prediction set.

FIGURE 4 | Average spectra of the blood samples in the 1,300–1,600 nm region: (A) raw spectra; (B) difference spectra of pre-diabetes and type 2 diabetes.

(PCA) was applied to the NIRS of all samples from 1,300 to
1,600 nm because of its ability for data reduction. Figure 5A
presents the three-dimensional score plots, which show the
projection of raw data onto the 3D plane of the first three
principal components of PCA. The cumulative explained
variance of the first three principal components was 99.98%,
indicating that the first three principal components were able
to reflect most of the essential characteristics of the raw data.
As shown in Figure 5A, from healthy, pre-diabetes, and type
2 diabetes, there was a trend along the PC2-coordinate from
negative to positive values, suggesting that as diabetes progresses
the original water structures of the whole blood were gradually
disrupted. The water structures of the pre-diabetes gradually
approached the water structures of the type 2 diabetes as diabetes
progressed. Figure 5B is the loading plot of the first three
principal components of PCA. PC3 showed higher loading values
at 1,416 nm, whereas the loading values of PC1 and PC2 mainly
were highest at 1,374, 1,382, 1,392, 1,448, 1,470, and 1,522 nm.
In addition to the aforementioned distinctive peaks, the peak at
1,416 nm represented water molecules without hydrogen bonds
and 1,522 nm was strongly bound water, water species with four

hydrogen bonds absorbed in 1,482–1,495 nm (Esquerre et al.,
2009; Gowen et al., 2009; Tsenkova, 2009).

Several studies have shown that there are 12 characteristic
bands in the first overtone region of water (1,300–1,600 nm). As
shown in Table 3, there were eight peaks, including 1,344, 1,374,
1,382, 1,408, 1,406, 1,448, 1,462, and 1,470 nm, in the NIRS of
healthy, pre-diabetes, and type 2 diabetes samples found within
these 12 characteristic bands. Each band corresponded to a peak,
except for the two peaks in the C5 region. The 12 characteristic
wavelengths were selected (1,344, 1,374, 1,382, 1,392, 1,408,
1,416, 1,448, 1,462, 1,470, 1,522, 1,556, 1,578 nm) according to
the results of spectral variance analysis. PCA analysis to construct
aquagrams for the evaluation of water structural changes in
whole blood shows how diabetes progresses. The selected 12
characteristic wavelengths were the WAMACs of the entire
complex system of the whole blood in healthy, pre-diabetes,
and type 2 diabetes patients, and the changes in absorbance of
these 12 characteristic wavelengths corresponded to the WASP
of the samples.

The radar chart called an “aquagram” was drawn according
to Equation (2) above as shown in Figure 6B. Error bars

Frontiers in Chemistry | www.frontiersin.org 8 December 2020 | Volume 8 | Article 580489

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Li et al. Early Diagnosis of Type 2 Diabetes

FIGURE 5 | PCA results of NIR spectra (1,300–1,600 nm) collected from all samples. (A) PCA 3D score plot. (B) PCA loading plot.

FIGURE 6 | Second derivative spectra and aquagram: (A) average and difference spectra in the 1,300–1,600 nm region; (B) aquagram of healthy, pre-diabetes, and

type 2 diabetes samples in 12 fingerprint regions of water.

represent the fluctuation range of absorbance of different
individuals. Within the error fluctuation range as shown in
Figure 6B, water absorption patterns for the early diagnosis
of diabetes are feasible and the differences were observed in
aquagrams. The aquagrams of the healthy, pre-diabetes, and
diabetes groups are clearly biased differently. The healthy group
has the strongest absorbance at six WAMACS of 1,344 nm
(anti-symmetric stretching fundamental frequency vibration),
1,374 nm (symmetrical and anti-symmetrically stretching
fundamental frequency vibration), 1,382 nm (solvent layer of
water), 1,392 nm (trapped water), 1,408 nm (water molecules
that do not contain hydrogen bonds), and 1,416 nm (water
molecules without hydrogen bonds).The absorbance of blood
in the diabetes group was evidently closer to the center of the
aquagram, and that in the pre-diabetes group was far away
from the center of the aquagram in the 1,448 nm region (the
solvated layer of water). In addition, the average intensity of

absorbance of the pre-diabetic group at 1,462 nm (water species
containing two hydrogen bonds) and 1,470 nm (unknown)
was stronger than the diabetes group, while the absorbance
of blood in the diabetes group at 1,522 nm (water species
containing four hydrogen bonds), 1,556 nm (unknown) and
1,578 nm region (unknown) was stronger than that in the
pre-diabetes group.

The 1,462 and 1,470 nm bands are found in sugar-water
systems, and are also similar to the bands we found in the
region above 1,500 nm (Esquerre et al., 2009; Gowen et al.,
2009; Tsenkova, 2009). Also, the result shows that there is a
trend in the increased concentration in the aquagrams of water-
sugar solutions which is consistent with the findings of Bázár
et al. (2015). The error bars on the aquagram show a large
overlap between different classes, but there is no overlap in
the 1,416 nm band. Therefore, judging the progress of diabetes
by the number of hydrogen bonds is affected by individual
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FIGURE 7 | Hydrogen bond interaction: (A) schematic diagram of hydrogen bonding between water molecules; (B) replacement effect of glucose on water in blood

glucose.

differences to a certain extent, except at 1,416 nm (water
molecules without hydrogen bonds) where large differences were
observed without overlap.

It can be observed that the symmetric and antisymmetric
stretching fundamental frequency vibrations of the water
molecules are much stronger in the healthy group. Water
molecules without hydrogen bonds indicated that the Van der
Waals force played a significant role in the water molecules
of blood, which showed that healthy people had normal blood
glucose metabolism. In this case, the H in the hydrogen bonds
of glucose that participates in the formation of hydrogen
bonds is almost negligible, and only a small amount of
H in hydrogen bonds of water molecule participates in
hydrogen bonding. Therefore, the absorbance of blood in the
healthy group at 1,408 nm (water molecules without hydrogen
bonds) and 1,416 nm (water molecules without hydrogen
bonds) was higher than that in the pre-diabetes group and
diabetes group.

The number of hydrogen bonds contained in the water species
are in the order of diabetes group> pre-diabetes group> healthy
group, indicating that as the blood glucose metabolic dysfunction
becomes more serious, the H in blood glucose replaces the H
in water to participate in the formation of hydrogen bonds
(shown in Figure 7). This indicates that the hydrogen of -OH
in glucose competes with the hydrogen of -OH in water. The
water environment in human blood has been changed by the
aggravation of abnormal blood glucose metabolism. The H of -
OH in glucose replaces the H of -OH in water to participate in
hydrogen bonding and forms many glycosylation products such
as glycated hemoglobin and glycated albumin (Yun, 2009). The
interaction between high concentrations of blood sugar and other
blood components in the long-term leads to serious effects on the
health of the human body owing to the further aggravation of the
disorder of glucose metabolism. Therefore, the number of non-
bonded water molecules can be used as a biomarker for the early
diagnosis of diabetes.

DISCUSSION

According to the results of the SVM model, the accuracy of
the early diagnosis of diabetes can reach 97%. However, the
model is not interpretable and cannot explain the process of
diabetes occurrence and development, nor can confirm whether
blood composition has changed, resulting in the corresponding
changes of spectral characteristics. However, the difference in
water absorption patterns of blood among the healthy group,
pre-diabetes group, and diabetes group can be visually observed
using the aquaphotomics method. With the intensification of
blood glucose metabolism disorders, the water environment in
the blood changes significantly. The H of -OH in glucose slowly
replaces the H of -OH in water to participate in hydrogen
bonding. The progress of diabetes can be observed in water
absorption patterns at 1,408, 1,416, 1,462, and 1,522 nm which
are assigned to water molecules with a different number of
hydrogen bonds. The displacement effect of glucose on water has
been discovered and experimentally verified in aqueous glucose
solution (Brady and Schmidt, 1993; Yun, 2009; Cong et al.,
2012; Xiaoyu et al., 2017; Sae et al., 2018; Arai and Shikata,
2019; Beganović et al., 2020). Therefore, it is speculated that this
phenomenon is also applicable to complex solution systems such
as blood, and this experiment has observed the displacement
effect of glucose on the water in blood, and is applied to the early
diagnosis of diabetes.

Pre-diabetes is a condition defined as having blood glucose
levels above normal but below the defined threshold of diabetes.
It is considered to be an at-risk state, with a high chance of
developing diabetes (Tabák et al., 2012). While pre-diabetes is
commonly an asymptomatic condition, it is always present before
the onset of diabetes. The elevation of blood sugar is a continuum
and hence pre-diabetes cannot be considered an entirely benign
condition. Therefore, pre-diabetes is a necessary stage for diabetic
patients. The early diagnosis of diabetes is an important way
to reduce morbidity, complications, and mortality, and has
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important significance for the clinical evaluation and prevention
of diabetes (Cefalu et al., 2014; Yi et al., 2014; Huang et al., 2016;
Khokhar et al., 2017).

This study, different to those conducted previously, has used
near-infrared spectroscopy combined with machine learning and
aquaphotomics for the early diagnosis of diabetes. The diagnosis
accuracy has reached 97%. Differences in water absorption
patterns were analyzed, and the specific features of the water
spectra that can be used as a biomarker for the early diagnosis
of diabetes were found. Besides, the occurrence and development
of diabetes were explained at the molecular level. Specifically, as
the disorder of blood glucose metabolism intensifies, the water
environment of blood changes significantly. The H of -OH in
glucose replaces the H of -OH in water to participate in hydrogen
bonding, and the severity of diabetes can be reflected via the
number of hydrogen bonds contained in the water species.

CONCLUSION

In this study, the near-infrared spectra of blood samples
from healthy, pre-diabetes, and diabetes groups were collected
and it was found that the raw near-infrared spectra were
not significantly different. However, after the second-order
derivative was used to improve the spectral resolution, significant
differences were found in the 1,400–1,500 nm region, which
shows that water absorption patterns could be used for the early
diagnosis of diabetes. Therefore, NIRS combined with machine
learning and aquaphotomics were used for the early diagnosis
of diabetes in this paper. The results show that the optimization
of different preprocessing methods and optimization algorithms
(GS, GA, PSO) can greatly improve the accuracy rate of the
SVM model, and a high accuracy rate of 97% was obtained by
the SVM model for recognizing the healthy, pre-diabetes, and
diabetes groups. Difference of water absorption patterns in blood
was analyzed by aquaphotomics method, and results show that
the number of hydrogen bonds contained in the water species
decreased in the order of diabetes group > pre-diabetes group >

healthy group, which indicated a significant change in the water

environment between the groups. Owing to the dysfunction of
the blood glucose metabolism, the H of -OH in glucose replaces
the H of -OH in water to participate in hydrogen bonding, and
the severity of the diabetes can be reflected via the number of
hydrogen bonds.
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