
ORIGINAL RESEARCH
published: 10 December 2020

doi: 10.3389/fchem.2020.581058

Frontiers in Chemistry | www.frontiersin.org 1 December 2020 | Volume 8 | Article 581058

Edited by:

Mohan Chen,

Peking University, China

Reviewed by:

Phanish Suryanarayana,

Georgia Institute of Technology,

United States

Yu Shen,

University of Science and Technology

of China, China

Michele Pavanello,

Rutgers University, Newark,

United States

*Correspondence:

David B. Williams-Young

dbwy@lbl.gov

Specialty section:

This article was submitted to

Theoretical and Computational

Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 07 July 2020

Accepted: 14 September 2020

Published: 10 December 2020

Citation:

Williams-Young DB, de Jong WA, van

Dam HJJ and Yang C (2020) On the

Efficient Evaluation of the Exchange

Correlation Potential on Graphics

Processing Unit Clusters.

Front. Chem. 8:581058.

doi: 10.3389/fchem.2020.581058

On the Efficient Evaluation of the
Exchange Correlation Potential on
Graphics Processing Unit Clusters

David B. Williams-Young 1*, Wibe A. de Jong 1, Hubertus J. J. van Dam 2 and Chao Yang 1

1 Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA, United States, 2Brookhaven

National Laboratory, Computational Science Initiative, Upton, NY, United States

The predominance of Kohn–Sham density functional theory (KS-DFT) for the theoretical

treatment of large experimentally relevant systems in molecular chemistry and materials

science relies primarily on the existence of efficient software implementations which

are capable of leveraging the latest advances in modern high-performance computing

(HPC). With recent trends in HPC leading toward increasing reliance on heterogeneous

accelerator-based architectures such as graphics processing units (GPU), existing

code bases must embrace these architectural advances to maintain the high levels

of performance that have come to be expected for these methods. In this work, we

purpose a three-level parallelism scheme for the distributed numerical integration of

the exchange-correlation (XC) potential in the Gaussian basis set discretization of the

Kohn–Sham equations on large computing clusters consisting of multiple GPUs per

compute node. In addition, we purpose and demonstrate the efficacy of the use of

batched kernels, including batched level-3 BLAS operations, in achieving high levels

of performance on the GPU. We demonstrate the performance and scalability of the

implementation of the purposed method in the NWChemEx software package by

comparing to the existing scalable CPU XC integration in NWChem.

Keywords: density functional theory, graphics processing unit, high-performance computing, parallel computing,

quantum chemistry

1. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT) (Hohenberg and Kohn, 1964; Kohn and Sham,
1965) is unequivocally the computational workhorse of theoretical chemistry and materials
science. With the excellent balance of its computational cost to its ability to accurately predict
physical phenomena, KS-DFT is nearly without equal in the routine theoretical treatment of
large, experimentally relevant systems (Ratcliff et al., 2017; Wu et al., 2019). A primary factor
contributing to the popularity of KS-DFTmethods is the existence of highly optimized and scalable
software implementations capable of leveraging the latest advances in modern high-performance
computing (HPC). The existence of such software enables the treatment of increasingly larger
and more complicated systems as computing resources become large enough to accommodate
them. Historically, these optimizations have amounted to considering the underlying details of
homogeneous computing platforms such as shared and distributed memory multi-core central
processing unit (CPU) architectures to exploit memory hierarchies, distributed node topology
and interconnection, and computing features such as single-instruction multiple data (SIMD)

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.581058
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.581058&domain=pdf&date_stamp=2020-12-10
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dbwy@lbl.gov
https://doi.org/10.3389/fchem.2020.581058
https://www.frontiersin.org/articles/10.3389/fchem.2020.581058/full

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

instructions, fused multiply-add (FMA), etc. (Belling et al., 1999;
Brown et al., 2008; Lasinski et al., 2008; de Jong et al., 2010;
Bylaska et al., 2017; Jacquelin et al., 2017; Nguyen et al., 2017;
Petrone et al., 2018) However, as we approach the exascale
computing era, the emergence of more heterogeneous computing
architectures renders non-trivial the direct application of existing
algorithms and code bases to target these complex architectures.
As such, for KS-DFT to remain relevant in the age of exascale and
post-exascale computing, methods developers must be prepared
to embrace these emerging architectures to maintain the high
standard of computational performance which has come to
be expected.

In recent years, the trajectory of HPC has lead to an increasing
reliance on the use accelerators, such as graphics processing
units (GPU), to perform the majority of the floating point
operations (FLOPs) on new and emerging computing resources
(Kindratenko et al., 2009; Parnell et al., 2019). For a detailed
treatise on the details and challenges presented by these and
other emerging architectures and their use in conjunction
with electronic structure calculations, we refer to the work of
Gordon et al. (2020). In this work, we limit our discussion
to the optimization of KS-DFT methods on NVIDIA GPUs
(in particular the NVIDIA Tesla V100) using the Compute
Unified Device Architecture (CUDA) programming platform
(Cook, 2012).

Recently, there has been significant research effort afforded
to porting electronic structure software to the GPU (Gordon
et al., 2020). In the case of large-scale calculations, much
work has gone into the development of massively parallel GPU
implementations of methods based on plane wave (Maintz et al.,
2011; Wang et al., 2011; Jia et al., 2019), real space (Andrade
and Aspuru-Guzik, 2013; Hakala et al., 2013), finite element
(Das et al., 2019; Motamarri et al., 2020), and various other
discretizations (Genovese et al., 2009; van Schoot and Visscher,
2016; Yoshikawa et al., 2019; Huhn et al., 2020) of the Kohn–
Sham equations. In this work, we consider the Gaussian basis set
discretization of the Kohn–Sham equations (Pople et al., 1992),
which poses a number of challenges for GPU implementations.
The majority of these challenges revolve around the computation
of molecular integrals over Gaussian basis functions. Of the
required integrals, the electron repulsion integrals (ERIs) and the
exchange-correlation (XC) potential are among the most costly
and the most challenging to port to GPU architectures. Over
the years, there has been a considerable amount of research
devoted to porting implementations of Gaussian basis set KS-
DFT to the GPU (Yasuda, 2008; Brown et al., 2010; Titov
et al., 2013; Luehr et al., 2016; Kussmann and Ochsenfeld,
2017; Manathunga et al., 2020; Peters et al., 2020); however,
the vast majority of this work has been centered around the
evaluation and digestion of the ERIs in the construction of the
Fock matrix (Ufimtsev and Martinez, 2008, 2009a,b; Asadchev
et al., 2010; Miao and Merz, 2013; Kalinowski et al., 2017;
Kussmann and Ochsenfeld, 2017; Laqua et al., 2020). On the
other hand, the XC potential has received much less treatment
in the literature in this regard (Yasuda, 2008; Luehr et al., 2016;
Manathunga et al., 2020). This disparity is understandable due
to the fact that for large systems, the ERI-related contributions

to the Fock matrix are computationally dominant and the
most challenging to parallelize. However, with recent advances
in semi-numerical techniques for exact exchange, which have
shown great promise in early GPU implementations (Laqua
et al., 2020), ERI-dominated calculations are quickly becoming
computationally competitive with the evaluation of the XC
potential by current methods. Further, current accounts of GPU
implementations of the XC integration have been limited to the
devices which are accessible within a particular compute node.
To the best of the authors’ knowledge, there does not exist a GPU
accelerated distributed memory evaluation of the XC potential
using Gaussian basis sets as of this report. Thus, in this work,
we propose a three-level parallelism scheme for the scalable
distributed evaluation of the Gaussian basis XC potential on large
clusters of GPUs.

In general, there are a number of important features of GPU
architectures one must consider in the development of high-
performance software:

• GPU architectures exhibit orders of magnitude more
computational threads than CPU architectures, allowing
for the expression of massive concurrency within a single
GPU device.
• The memory space which is directly accessible to GPU devices

is much lower in capacity in comparison with their CPU
counterparts (O(16–32 GB) on the GPU in comparison to
upwards of O(1 TB) on the CPU).
• Memory access within device memory exhibits a much higher

bandwidth than CPU memory (O(900 GB/s) on the GPU in
comparison to O(20–50 GB/s) on the CPU).
• Data transfers between host and device memory spaces are

low bandwidth [O(80 GB/s) with advanced technologies such
as NVLink, O(35 GB/s) over PCIe], thus data transfers often
pose a non-trivial overhead in GPU applications which require
movement of large volumes of data.

A consequence of these features is that, despite the large number
of threads that are available to the GPU to perform computation,
data locality must be carefully tuned to exploit the low capacity
device memory as to allow for the expression of concurrency
but also to avoid high cost and inherently serial data transfers
between host and device. As such, those algorithms which are
able to express massive concurrency on local data without being
interrupted by synchronization points such as data transfers
and memory allocations are typically the best suited for GPU
application. A key aspect of the method proposed in this report is
the optimization of data movement within the XC integration as
to express massive concurrency using data that resides in device
memory without transfers between host and device.

Scientific applications often rely on the existence of highly
tuned linear algebra libraries (such as vendor implementations
of BLAS and LAPACK) to achieve high levels of performance
on contemporary and emerging architectures (Dongarra et al.,
1998). Over the years, many areas of matrix computation have
achieved significant performance improvements through the use
of GPU accelerators (Fatahalian et al., 2004; Kurzak et al., 2012;
Herault et al., 2019). However, unless the matrix computations
needed by a particular application are large enough as to fully

Frontiers in Chemistry | www.frontiersin.org 2 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

exploit the resources of the device, it is unlikely that single
matrix operation such as matrix–matrix multiplication will be
able to achieve high computational occupancy on the device.
An important achievement in high-performance numerical
linear algebra has been the advent of highly tuned batched
implementations of commonly encountered matrix operations,
such as matrix–matrix multiplication, triangular factorization,
etc. (Haidar et al., 2015; Abdelfattah et al., 2016a). Such batched
implementations are provided in both vendor tuned (such as
cuBLAS and cuSOLVER provided by NVIDIA) and open source
(such as MAGMA, Nath et al., 2010; Tomov et al., 2010;
Abdelfattah et al., 2016b) GPU accelerated linear algebra libraries.
In these batched implementations, efficiency is achieved by
dramatically increasing the throughput of the matrix operations
via concurrent execution within a single device. Thus, if an
application requires the manipulation of many small matrices
in a manner that allows for concurrent execution (such as KS-
DFT), large performance improvements can be made by utilizing
these batched implementations (see e.g., Das et al., 2019). GPU-
accelerated BLAS has previously been used in the context of XC
computations (Yasuda, 2008). In this work, we examine the use of
batched BLAS to further accelerate these operations to improve
overall time-to-solution.

This work will be organized as follows. Sections 2.1 and 2.2
will briefly review the pertinent theory and high-level algorithmic
constructs related to the XC integration. Section 2.3 will then
describe the proposed method for the scalable, three-level
parallelism scheme for the distributed XC integration on clusters
of GPUs. Section 3 will demonstrate the performance and
scalability of the purposed method in comparison to an existing
high-performance CPU implementation using a wide range of
molecules, basis sets, and quadrature sizes. Finally, section 4
will conclude this work and offer insight into the impact of the
purposed method and briefly discuss future research directions.

2. METHODS

2.1. Kohn–Sham Density Functional Theory
In KS-DFT, the total electronic energy within a particular
density functional approximation (DFA) takes the form
(Parr and Yang, 1994)

E
tot = Ts + Vne + J − cxK+ E

xc, (1)

where Ts and Vne are the (non-interacting) kinetic and electron-
nuclear attraction energies, and J and K are the classical
Coulomb and exact exchange energies, respectively. cx ∈ R is
a parameter that scales the contribution of exact-exchange to the
electronic energy. cx = 0 is used for “pure” DFAs, whereas DFAs
that use cx 6= 0 are referred to as “hybrid” DFAs (Becke, 1993).
Without loss of generality in the following, we will take cx = 0,
though we note that the algorithms presented in the following
sections may also be extended to hybrid methods without
modification. Exc is the exchange-correlation (XC) energy which
is taken to be a functional of the electron density ρ :R

3 → R.
In this work, we restrict our discussion to spin-restricted DFAs
within the generalized gradient approximation (GGA) (Perdew,

1986; Perdew and Yue, 1986), i.e. Exc is approximated to only
depend on ρ and its gradient ∇ρ :R

3 → R
3. We note for

completeness that the information presented in this and the
following sections may be extended to both spin-unrestricted
and spin-generalized KS-DFT methods as well as more advanced
DFAs (such as the meta-GGA) with the addition of only a few
intermediates (Egidi et al., 2017; Petrone et al., 2018). As ∇ρ

is a vector valued quantity, and thus dependent on reference
frame quantities such as molecular orientation, it is canonical to
express Exc as

E
xc =

∫

R3
ε({U(r)})ρ(r)d3r, (2)

where ε is an energy density that depends on a set of so-called
“U” -variables, {U(r)}, which are independent of reference frame.
Within the GGA, the canonical choice for these variables are
{U(r)} = {ρ(r), γ (r)} with γ (r) = ‖∇ρ(r)‖.

By expanding the density in a finite set of basis

functions, S = {φµ(r)}
Nb
µ=1,

ρ(r) =
∑

µν

Pµνφµ(r)φν(r), (3)

where P is the density matrix, the Kohn–Sham Fock matrix takes
the form (Parr and Yang, 1994)

F = h+ J+ Vxc. (4)

h is the basis representation of the density-independent core
Hamiltonian (e.g., the sum of kinetic energy and external
potential operators), and J is the basis representation of the
classical Coulomb operator. Note that we have dropped the exact
exchange term in Equation (1) as we have taken cx = 0.Vxc is the
XC potential that may be expressed as (Yasuda, 2008; Burow and
Sierka, 2011; Petrone et al., 2018)

Vxc
µν =

∫

R3
φµ(r)Zν(r)+ Zµ(r)φν(r)d

3r, (5)

where

Zµ(r) =
1

2

∂ε({U(r)})

∂ρ
φµ(r)+ 2

∂ε({U(r)})

∂γ
∇ρ(r) · ∇φµ(r). (6)

Note that the partial derivatives of ε are to be evaluated with the
U-variables calculated at argument of Zµ.

Equations (4) to (6) are general to any (real-valued) basis
set expansion. In this work, we consider atomically centered
contracted Gaussian basis functions of the form

φµ(r) = (x−Rx)
l(y−Ry)

m(z−Rz)
n

n
µ
ξ
∑

ξ=1

d
µ
ξ exp

(

−α
µ
ξ (r− Rµ)

2
)

,

(7)
where Rµ = {Rx,Ry,Rz}, n

µ
ξ is the contraction depth, dµ

ξ is a
contraction coefficient, and L = l + m + n is the total angular
momentum. Each term in the sum is referred to as a primitive

Frontiers in Chemistry | www.frontiersin.org 3 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

Gaussian function. Contracted basis functions with the same L,
{d

µ
ξ }, {α

µ
ξ }, and Rµ will be referred to as a basis shell. Functions

of the form Equation (7) are referred to as Cartesian Gaussian
functions, and each Cartesian shell with angular momentum L
consists of L(L + 1) functions. For L > 1, there is often a
linear dependency among the functions within each Cartesian
shell, which may be addressed by transforming these shells
to a set of spherical Gaussian functions (Schlegel and Frisch,
1995). Each spherical Gaussian shell consists of 2L + 1 linearly
independent functions. Not all Gaussian basis sets that consist of
functions with L > 1 require this transformation to be linearly
independent, and we will note when such a transformation has
taken place.

2.2. Numerical Integration of Molecular
Integrands
Even for the simplest forms of ε, neither Equation (2) nor
Equation (5) admits analytic expressions, thus these integrations
must be performed numerically. For molecular integrands, i.e.,
integrands with non-trivial behavior in the vicinity of atomic
nuclei in polyatomic systems, a particularly attractive approach
is to perform the numerical integration as a sum over weighted
atomic integrands (Becke, 1988). For a molecular integrand
f :R3 → R, we may decompose its integral over R3 as

∫

R3
f (r) d3r =

NA
∑

A=1

IA[f], IA[f] =

∫

R3
pA(r)f (r) db

3r, (8)

where NA is the number of atoms, and pA :R
3 → R is an

atomic partition function that obeys
∑

A pA(r) = 1, ∀r ∈ R
3.

Each atomic integrand IA[f] may then be approximated by a
quadrature rule

IA[f] ≈
∑

i∈QA

wA
i f (r

A
i), wA

i = pA(rAi)w
q
i (9)

where QA = {(wA
i , r

A
i)}

NA
g

i=1 is a set of quadrature points indexed
by i centered around the A-th nucleus with atomically scaled
quadrature weights wA

i . {w
q
i } is the set of unmodified weights

associated with the base quadrature around a particular nucleus.
For convenience in the following, we define the total quadrature

Q =
⋃

A

QA = {(wi, ri)}
Ng

i=1,

where Ng =
∑

A NA
g is the total number of grid points needed to

perform the numerical integration over the molecular integrand.
Note that wi is assumed to have the proper atomic scaling
per Equation (9).

There are many possible choices for both the atomic
partitioning scheme (Becke, 1988; Stratmann et al., 1996; Laqua
et al., 2018; Aprà et al., 2020) and base quadratures around each
atomic center (Becke, 1988; Murray et al., 1993; Treutler and
Ahlrichs, 1995; Mura and Knowles, 1996; Gill and Chien, 2003;
Aprà et al., 2020). In this work, we will use the following:

• For the atomic partition function, we will use the scheme
proposed by of Stratmann, Scuseria, and Frisch (SSF)
(Stratmann et al., 1996).
• For the base atomic quadrature, we will use a spherical product

grid consisting of the Mura-Knowles (MK) quadrature (Mura
andKnowles, 1996) for the radial integration and the Lebedev–
Laikov quadrature (Lebedev, 1976) for the angular integration.

These schemes are chosen in part for the simplicity and
robustness, as well as their standard use in industry KS-DFT
software. Further, while it is standard practice to perform angular
grid pruning to reduce the number of grid points in these
product quadratures (Gill et al., 1993; Chien andGill, 2006; Laqua
et al., 2018), we perform no such procedure here. We note that
the methodological details presented in this work are largely
independent of such choices.

It is well-known that a naive application of Equations (8)
and (9) to evaluate Vxc and Exc is very inefficient (Stratmann
et al., 1996). This is due to the fact that while Gaussian functions
of the form Equation (7) do not admit compact support, their
exponential character yields numerically negligible contributions
when evaluated far from their center. As such, Gaussians of this
form may be approximated to have compact support on a sphere
centered at their Rµ with cutoff radius (Burow and Sierka, 2011)

rcutµ = max
ξ

√

√

√

√

1

α
µ
ξ

(

lnα
µ
ξ

2
− ln η

)

, (10)

where η is a tolerance for which |φµ| < η for all points
outside of the sphere. In this work, we have chosen η = 10−10.
Remark that the cutoff radius only depends on the exponential
coefficients, and thus may be calculated at the level of basis shell
rather than individual functions for L > 0. Given this cutoff
criteria, one may form a list of basis shells that are non-negligible
for each quadrature point. Rather than check each individual
quadrature points against rcut for each basis shell’s cutoff radius,
it is canonical to group quadrature points that are spatially close
into batches and perform the coarse-grained screening for non-
negligible basis shells at the batch level rather than the quadrature
points themselves. This procedure is known as micro-batching
(Stratmann et al., 1996) and is one of the primary mechanisms
by which linear scaling (with respect to system size) is achieved
in the evaluation of the XC potential. Given quadrature micro-
batches with a sufficiently small spatial extent, basis screening
via Equation (10) produces an approximately constant number
of basis functions per quadrature batch, thus leading to an
overall scaling that depends only on the number of quadrature
points. There are several ways to obtain the quadrature batches
(Stratmann et al., 1996; Burow and Sierka, 2011; Manathunga
et al., 2020). In this work, we recursively subdivide the domain
spanned by the quadrature points into cuboids until the number
of quadrature points within each cuboid is below a certain
threshold. In this work, we have chosen this threshold to be 512
quadrature points. In practice, this partitioning scheme produces
batches similar to the octree method of Manathunga et al. (2020).
However, rather than bisecting every domain into octants,
cuboids that contain an atomic center are partitioned into 27

Frontiers in Chemistry | www.frontiersin.org 4 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

FIGURE 1 | 2-D cross-section of the grid batching scheme used in this work.

The large black dot represents an atomic center and the small red dots

represent quadrature points for spherical integration. Thick solid lines

represent the initial cuboid partition, and dashed lines represent the next

partition level. Atomic centered cuboids are partitioned into 27 cubical

domains while off-center cuboids are partitioned into octants.

cuboids as shown in Figure 1. Our experiments show that this
procedure produces fewer batches with the same non-negligible
shell list, which in turn improves the performance of the load
balancing scheme discussed later in this section. However, much
like the choice of atomic quadrature and partition functions, the
choice of batching scheme does not affect the methodological
details presented in this work just as long as the batches produced
are able to produce sufficiently short lists of non-negligible basis
shells. For a total quadrature Q, we denote the set of quadrature
batches produced by this procedure as B = {Bj} such that

Q =
⋃

Bj∈B

Bj, s.t. Bj ∩ Bk = ∅, for j 6= k. (11)

In the case where the batches are defined by non-overlapping
cuboids surrounding an atomic center, basis shell screening may
be accomplished by calculating the point of closest approach
between the cuboid defining the batch and the spheres defined
by center Rµ and radius rcutµ (Arvo, 2013). A description of this
procedure is given in Algorithm 1. For Bj ∈ B, we define the
list of non-negligible basis functions for Bj as Sj, the number of

non-negligible basis functions as N
j

b
= |Sj|, and the number of

quadrature points in the batch as N
j
g = |Bj|.

Another advantage of quadrature batching is the ability to
cast the evaluation of Vxc and Exc in terms of efficient level-1
BLAS operations such as dot products (DOT) and level-3 BLAS
operations such as matrix–matrix multiplication (GEMM) and
symmetric rank-2K updates (SYR2K). For a particular batch Bj,
we may define a batch collocation matrix (8j) and a local density
matrix (Pj) as

8
j
µi =

{

φµ(ri), for i ∈ Bj and µ ∈ Sj

0, otherwise.
(12a)

Algorithm 1: Basis shell screening via cuboid–sphere
intersection.

Input : Sphere center Rµ = {Rx,Ry,Rz}, sphere radius
rcutµ , minimum (maximum) vertex defining the
cuboid V = {Vx,Vy,Vz} (W = {Wx,Wy,Wz}).

Output: True if the cuboid and sphere spatially intersect,
False otherwise.

d←
(

rcutµ

)2

for p ∈ {x, y, z} do
if Rp < Vp then d← d − (Rp − Vp)2

else if Rp > Wp then d← d − (Rp −Wo)2

end

return (d < 0)

P
j
µν =

{

Pµν , for µ, ν ∈ Sj

0, otherwise.
(12b)

In the following, we will refer to the extent to which 8j and Pj

are numerically zero due to basis function screening as their local
sparsity. This yields the following expressions for the density and
its gradient evaluated on the quadrature points within Bj,

ρ
j
i =

∑

µ∈Sj

8
j
µiX

j
µi, (DOT) (13)

∇ρ
j
i = 2

∑

µ∈Sj

∇8
j
µiX

j
µi, (DOT) (14)

Xj = Pj8j. (GEMM) (15)

It should be understood from the context that the free
index i is restricted to quadrature points in Bj. Given these
expressions, we may now express the XC-related quantities as
(Petrone et al., 2018)

E
xc =

∑

Bj∈B

∑

i∈Bj

ε
j
iρ

j
i , (DOT) (16)

Vxc
µν =

∑

Bj∈B

V
j
µν , (17)

Vj = Zj8j,T +8jZj,T , (SYR2K) (18)

with

ε
j
i = wiε({U(ri)}),

∂ε
j
i

∂ρ
= wi

∂ε({U(ri)})

∂ρ

∂ε
j
i

∂γ
= wi

∂ε({U(ri)})

∂γ
, (19)

Z
j
µi =

1

2

∂ε
j
i

∂ρ
8

j
µi + 2

∂ε
j
i

∂γ

(

∇ρ
j
i · ∇8

j
µi

)

. (20)

For brevity in the following, we define for i ∈ Bj

ρj =
{

ρ
j
i

}

, ∇ρj =
{

∇ρ
j
i

}

, εj =
{

ε
j
i

}

,

Frontiers in Chemistry | www.frontiersin.org 5 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

FIGURE 2 | Batch matrix compression scheme for operator basis

representations relative to non-negligible function indices. Colored tiles

represent matrix elements that are to be included in the compressed matrix,

and white tiles represent matrix elements that are to be neglected. Note that

these do not necessarily correspond to zeros/non-zeros in the original matrix.

ε
j
ρ =

{

∂ε
j
i

∂ρ

}

, ε
j
γ =

{

∂ε
j
i

∂γ

}

. (21)

As written, the GEMM and SYR2K given in Equations (15)
and (18) are block sparse level-3 BLAS operations, i.e. BLAS
operations involving matrices which contain many blocks which
are numerically zero. To avoid performing unnecessary FLOPs
in the evaluation of these intermediates, it is possible to store
the batch local matrices in Equations (12b), (15), and (18) in
a compressed format which stores the blocks corresponding to
non-negligible basis shells contiguously and explicitly removes
the zeros from related computation (Stratmann et al., 1996).
A pictorial representation of this matrix compression for the
density matrix is given in Figure 2. We note for completeness
that the forms of Equations (15) and (18) do not change under
this compression, but the sizes of the free indices (as well as
the contracted index in the case of Equation 15) are reduced.
To avoid a full decompression of the batched Vj intermediates,
Equation (17) may be implemented by simply incrementing
the blocks of the full dimensional Vxc by the corresponding
blocks of Vj for each j. Note that compression of 8j, Xj, and
Zj need not be explicit in that they may be evaluated directly in
compressed form.

2.3. Distributed Parallel Implementation on
Clusters of GPU Accelerators
In this section, we propose a three-level parallelism scheme
for the distributed evaluation of Vxc and Exc. A schematic
representation of this procedure is given in Algorithm 2. For
simplicity in the following discussion, we will assume MPI
message passing for distributed computation. Parallelism will be
expressed at the following levels:

1. Concurrent evaluation of the quadrature batches between
independent computing ranks;

2. Concurrent evaluation of the quadrature batches assigned to a
particular computing rank;

3. Concurrency within the evaluation of a particular quadrature
batch to evaluate terms such as the atomically scaled

quadrature weights, batch collocation and local density
matrices, the level-3 BLAS operations of Equations (15)
and (18), etc.

In the context of the batching scheme discussed in
section 2.2, ensuring proper local sparsity in the batch
local Pj and 8j typically generates a large number of
relatively small batches that must be evaluated. As the
work required to evaluate a single Bj is typically small,
distributing its evaluation would be inefficient. Given
that P and Vxc can be replicated in the memory spaces
accessible to each the compute rank, the evaluation of each
quadrature batch requires no communication. Thus, the
fully distributed numerical integration of the XC quantities
may be performed with only a single distributed reduction
(MPI_Reduce or MPI_Allreduce) following completely
independent local computation. We note for posterity
that this replication need not constitute a unique copy
of these matrices for each compute rank, only that these
matrices are accessible from each rank, e.g. in the case of
partitioned global address space (PGAS) distributed memory
models such as the one provided by the GlobalArrays
library, it would be sufficient to keep a single copy of
these matrices within the memory accessible to a single compute
node. However, in this work, we do not explore the use of PGAS
memory models, thus the replication will be performed at the
rank level.

2.3.1. Distributed Load Balance in the XC Integration
Despite this embarrassingly parallel integration procedure, care
must be taken to ensure load balance among the independent
ranks as the variance in the computational work required
between different batches is often quite large due to differences
in local sparsity and batch sizes. The simplest choice to
distribute this work would be to distribute the batches at the
atomic quadrature level, i.e. each rank receives the quadrature
batches generated from a particular atomic quadrature. However,
this scheme can lead to load imbalance as the local sparsity
of the atoms far from the center of mass can often be
much larger than those that are surrounded by other atoms.
In this work, we choose to distribute the work at the
individual batch level by approximating the FLOPs incurred by
each batch,

Wj = N
j
g

(

N2
A + 9N

j

b
+ 2(N

j

b
)2 + 3

)

+ (N
j

b
)2. (22)

Each term in Equation (22) accounts for a rough estimate of
the number of operations (FLOPs or otherwise) required for
specific algorithmic kernels in the digestion of Bj for the XC
integration. The first four terms accounts for (1) the atomic
weight partitioning, (2) Equations 13, 14, and 20 and the
collocation matrix (and its gradient), (3) the level-3 BLAS
operations in Equations 15 and 18, and (4) Equations 16 and
19. The final term in Equation (22) accounts for the packing
of Equation (12b) and the increment of Equation (17). Note
that Wj does not represent the true number of FLOPs required
to evaluate intermediates associated with Bj, e.g., we do not

Frontiers in Chemistry | www.frontiersin.org 6 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

Algorithm 2: Parallelism scheme for the evaluation of the XC potential and XC energy.

Input : Density matrix P, basis functions S and atomic centersA = {RA}.

Output: XC potential Vxc, XC energy Exc.

2.1 Blocal ← Form balanced local batches according to Algorithm 3. (host)

2.2 Perform device allocation. (host/device)

2.3 Send constant data (e.g., P, S , andA) to the device. (host/device)

2.4 Vlocal ← 0; Elocal ← 0. (device)

do

2.5 Bdevice ← Determine subset of Blocal to
saturate device memory (host)

2.6 Blocal ← Blocal \ Bdevice (host)

2.7 Pack Bdevice contiguously on host and send to device. (host/device)

2.8 Update Vlocal and Elocal by Bdevice according to Algorithm 4. (device)

while Blocal 6= ∅;

2.9 Retrieve Vlocal and Elocal from device (host/device)

2.10 (All) reduce Exc ← Elocal (host)

2.11 (All) reduce Vxc ← Vlocal (host)

return (Vxc, Exc)

consider FLOP estimates for evaluation of the exponential in
Equation (7), nor screening in the evaluation of the atomic weight
scaling, etc. However, Wj has empirically sufficed to produce
balanced distributed computation for all problems considered. A
schematic for the load balance scheme used in this work is given
in Algorithm 3. There are two important remarks that should
be understood from Algorithm 3. The first is that it requires no
communication between independent ranks, i.e., the load balance
is replicated on each processor. The second is that once the set
of local batches Blocal has been determined for each processor,
batches with the same Sj are merged into a single batch (Line
3.11). The rationale behind this step is to avoid polluting the
device memory with redundant copies of Pj and Vj.

While Algorithm 3 could be implemented on the GPU,
as has been discussed in the context of batch generation
in related work (Manathunga et al., 2020), we do not
explore such implementations in this work. To improve
the performance of the CPU implementation of Algorithm 3,
the loop around the atomic quadrature batches may be
parallelized using shared memory parallelism schemes
such as OpenMP. Further, as has been suggested by others
(Yasuda, 2008), the cost of grid generation may be amortized
in calculations involving many Fock matrix formations
with the same nuclear geometry by forming it once for
the formation of the first Fock matrix and reusing it
for subsequent formations. As will be demonstrated in
section 3, Algorithm 3 only becomes a computational
bottleneck in the strong scaling limit for medium-to-large
molecular systems.

2.3.2. Local XC Integration on the GPU
Up to this point, the discussed work distribution scheme has been
largely independent of whether or not the evaluation of local
quadrature batches is to be performed on the host or the device.
In this work, we only consider the case where a single MPI rank
is driving a single device (one-to-one), i.e. we do not consider
device affinities of multiple MPI ranks driving a single device
(many-to-one) nor a single MPI rank driving multiple devices
(one-to-many). The method proposed could be extended to one-
to-many device affinities through an additional invocation of
Algorithm 3 to produce balanced quadrature batches which are to
be executed on a particular device. However, in the strong scaling
limit, it would be unlikely that this affinity would be resource
efficient due to a decrease in work assigned to any particular
compute rank.

2.3.2.1. Architecture of NVIDIA Tesla V100
The GPU targeted in this work is the NVIDIA Tesla V100-
SXM2 using the CUDA programming environment. However,
the methodological developments described in this work may
be extended to any GPU device given a software stack which
provides batched BLAS functionality. The V100 is equipped
with 16 GB high-bandwidth global memory and 80 streaming
multiprocessors (SM). Within the CUDA model, independent
tasks are launched in the form of kernels and concurrency on the
device is expressed in a four-level parallelism scheme:

• At the lowest level is the GPU thread that executes instructions
issued by the SM.

Frontiers in Chemistry | www.frontiersin.org 7 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

Algorithm 3: Quadrature batch load balance for distributed
XC integration.

Input : Basis functions S and atomic centersA = {RA}.

Output: Local quadrature batches Blocal.

3.1 myRank← Current MPI rank.

3.2 Compute {rcutµ } via Equation (10) for φµ ∈ S .

3.3 W ← Allocate an array of size of the number MPI ranks.

3.4 W ← 0; Blocal ← ∅

for RA ∈ A do

3.5 QA ← Form spherical quadrature around RA.

3.6 BA ← Generate batches fromQA.

for Bj ∈ BA do

3.7 Sj ← Select from S the non-negligible basis functions
via Algorithm 1 with the cuboid enclosing Bj and the
spheres defined by {Rµ} and {rcutµ }.

3.8 Wj ← Compute work estimate for Bj via
Equation (22).

3.9 I← Find rank with minimum workload fromW .

3.10 WI ←WI +Wj.

if I = myRank then Blocal ← Blocal ∪ {Bj}.
end

end

3.11 Blocal ←Merge Bj ∈ Blocal with the same Sj.

return Blocal

• In contrast to CPU architectures, where all threads may
execute more or less independently, the overhead of
instruction issuance is mitigated on GPU devices in part by
issuing a single instruction to multiple threads which execute
in lock step. This is known as single-instruction multiple
thread (SIMT) concurrency, and the collection of threads
which execute in this manner is known as awarp in the CUDA
vernacular. On the V100, a warp consists of 32 threads.
• Warps are then collected into groups called thread blocks,

which may share data and be mutually synchronized. Thread
blocks are typically comprised of 256–1024 threads which
execute independently at the warp level.
• Thread blocks are further grouped into process grids which are

specified at the time that the kernel is launched. A kernel has
completed once all the thread blocks in its specified process
grid have finished executing.

For a kernel launched with a particular process grid, thread
blocks are scheduled and executed concurrently among the
different SMs. Ordering of kernel execution on CUDA devices
is achieved by a software construct known as a stream: kernels
launched on the same stream are guaranteed to be executed in

the order with which they were specified. For kernels which
are designed not to achieve full occupancy within the SM,
it is possible to overlap independent kernel invocations on
separate streams. In this work, however, the kernels developed
are designed to achieve high occupancy within each SM, thus the
potential for overlap of independent kernels is minimal. Another
consideration one must account for within the SIMT execution
model is the concept of warp divergence, i.e. kernels that execute
different instructions within a particular warp. Due to the SIMT
execution model, instructions must be executed at the warp level,
thus if branch logic causes the warp to diverge into N unique
instructions, the execution time of this kernel will be roughly
the sum of the execution times for the individual instructions,
thus reducing the parallel efficiency of the particular kernel. Such
divergence can lead to significant performance degradation. As
such, one must carefully design GPU kernels such that unique
instructions that are desired to execute concurrently are executed
along (or near) warp boundaries to avoid such degradation.

2.3.2.2. Data Locality
The algorithm presented in this work aims to maximize
the potential for concurrency in the evaluation of the local
quadrature batches by minimizing synchronization points, such
as data transfers and memory allocations, which hinder the
ability to express concurrency. As the computational work
required to evaluate any particular quadrature batch is small,
concurrency is achieved by batching the evaluation of the
quadrature batches on the GPU. This approach has been inspired
by GPU accelerated batched BLAS operations, which achieve
high throughput by batching the evaluation of small matrix
operations into a single kernel launch (Haidar et al., 2015;
Abdelfattah et al., 2016a). Given that the data associated with
a particular Bj must reside in device memory for it to be
processed (quadrature points and weights, Sj, 8j, Pj, Zj, etc.),
the approach taken in this work is to saturate the device memory
with as many quadrature batches as possible as to allow for their
concurrent evaluation. Note that this approach does not change
the amount of data that must be transferred between host and
device throughout the XC integration, but it does reduce the
frequency and improve the performance of these data transfers
by saturating the bandwidth between host and device while
allowing for the expression of more concurrency on the device
between data transfers. In the case when all of the quadrature
batches are unable to simultaneously occupy the device memory,
subsets of the local quadrature batches which saturate device
memory are chosen to be executed concurrently until all batches
have been processed. A depiction of this procedure is given
in Lines 2.5 to 2.8. The performance of these data transfers
may be further improved in Line 2.7 by packing the batch
data contiguously into page-locked memory (as is produced
by cudaMallocHost in the CUDA SDK) on the host. In
addition, rather than perform numerous memory allocations
and deallocations between processing subsets of local quadrature
batches, the cost of device memory allocation may be amortized
by preallocating a large fraction of available device memory at
the beginning of the XC integration and manually managing
memory allocation throughout the calculation (Line 2.2). Note

Frontiers in Chemistry | www.frontiersin.org 8 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

that a vast majority of the data associated with a particular Bj

need not be referenced on the host nor transferred between host
and device. In essence, the only batch-specific data that need be
transferred between host and device for a particular Bj are its
quadrature points and weights, the information pertaining to the
atomic center which generated that batch (for the evaluation of
the atomic partition function), and the information describing
Sj. All other data may be allocated and manipulated directly on
the device.

In addition to batch-specific data that must reside in device
memory, there are a number of other quantities that are unrelated
to a particular batch that are useful to store in device memory
to avoid host-device transfers and to exploit the high-bandwidth
memory, which is common on contemporary devices. These
quantities include P, S , and things such as the atomic positions,
inter-nuclear distances, etc. For example, in cases where P can
reside in memory, the packing of batch local Pj may be made
very efficient by limiting data transfers to be internal to the
device memory (i.e. device memory copies). In addition, it is also
advantageous to store local contributions to Vxc and Exc on the
device as to avoid communication of intermediate data between
the evaluation of batch subsets on the device. We note that even
for the largest problem considered in this work [1,231 atoms,
Nb = O(10,000)], both Vxc and P may reside simultaneously
in device memory while leaving enough additional memory
for batch-specific data as to allow for enough concurrency to
be resource efficient on the device. For hypothetical problems
for which this is not possible, the packing of Pj and the
increment of Vj can be performed on the host at the cost of
significant performance degradation. We do not explore such
implementations here.

2.3.2.3. Batch Execution of Quadrature Batches on the GPU
Given a set of quadrature batches that saturate device memory,
Algorithm 4 depicts a general outline of the concurrency
pattern for their simultaneous evaluation on a single device.
Algorithm 4 exhibits a number of important features that
warrant brief discussion. The first is the utilization of batched
level-3 BLAS primitives for the concurrent evaluation of
Equations (15) and (18) for all batches that reside in device
memory (Algorithm 4). An important remark related to this
batched BLAS invocation is that the batch local matrices are
often not of uniform dimension for all batches in device memory.
As such, they may not be implemented by uniform batched
BLAS implementations, such as those provided by cuBLAS.
In this work, we have used the variable-dimension batched
(or “vbatched”) GEMM (VB-GEMM) and SYR2K (VB-SYR2K)
implementations from the MAGMA (Nath et al., 2010; Tomov
et al., 2010; Abdelfattah et al., 2016b) library to perform these
batched evaluations. Another important feature of Algorithm 4 is
that, while the order of operations within the various parallel for
loops are indicative of the order with which the various tasks are
executed at a high level, each of these tasks represent individual
kernels for which concurrency between the separate Bj’s occurs at
the thread block level. That is to say that each kernel invocation
performs the parallel for loop as a batched invocation for each
task individually. As has been discussed in similar work (Laqua

Algorithm 4: Concurrent evaluation of quadrature batches
on a GPU device.

Input : Quadrature batches B, density matrix P, XC
potential Vxc, and XC energy Exc all in device
memory.

Output: Vxc and Exc updated by quadrature contributions
from B

parallel for Bj ∈ B do

4.1 Update quadrature weights by atomic partition function.

4.2 Pj ← Compress batch local density matrix from P.

4.3 (8j,∇8j)← Evaluate compressed batch local
collocation matrix and its gradient given Sj.

end

4.4 {Xj} ← Concurrent evaluation of Equation (15) for all 8j

and Pj via VB-GEMM.

parallel for Bj ∈ B do

4.5 (ρj,∇ρj)← Evaluate ρ and ∇ρ via Equations (13)
and (14).

4.6 (εj, ε
j
ρ , ε

j
γ)← Evaluate XC functional and its derivatives

according to Equation (19).

4.7 Update Exc according to Equation (16).

4.8 Zj ← Equation (20).

end

4.9 {Vj} ← Concurrent evaluation of Equation (18) for all 8j

and Zj via VB-SYR2K.

parallel for Bj ∈ B do

4.10 Update Vxc by Vj via Equation (17).

end

et al., 2020), these operations could also be scheduled on different
streams to achieve concurrency in batch execution. We do not
explore such implementations in this work. Finally, much like
the batched BLAS invocations, which are designed to express
concurrency both within a matrix operation and between matrix
operations themselves, each kernel invocation for the XC-specific
tasks in Algorithm 4 is designed to express concurrency within
each task as well. Each batch-local task is designed to occupy a
subset of the process grid while evaluation of each batch local
task is performed independently on separate subsets within the
same kernel launch. In practice, this may implemented using
multi-dimensional kernel launches within the CUDA framework.

While GPU-accelerated BLAS functionality may be provided
by optimized third-party libraries, as of this work there does
not exist standard GPU implementations of the remainder of
the operations required for the XC integration. As such, they

Frontiers in Chemistry | www.frontiersin.org 9 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

must be implemented and optimized by hand. The details of
such implementations are outside the scope of this work as they
are largely dependent on the data structures used in a particular
software. However, there are a few important details related
to the algorithmic choices used in this work, which warrant
brief discussion. In the context of the evaluation of 8j on the
device, we adopt a simple strategy that assigns the evaluation of
a single contracted basis shell at a particular point to a single
thread, i.e., we do no express concurrency in the evaluation of
the exponential factors of the primitive Gaussians. Care is taken
in the implementation presented in this work to minimize the
chance of warp divergence by assigning evaluations of the same
basis shell at various quadrature points to the same warp (i.e., to
minimize the frequency of divergence in the sum of Equation 7
with functions of differing nµ

ξ). We will demonstrate the efficacy
of this simple strategy in section 3.

A major difference in the work presented here relative
to existing methods for GPU XC integration (Yasuda, 2008;
Manathunga et al., 2020) is the strategy for the evaluation of ǫj

and its functional derivatives on the device. On the CPU, there
are several standard libraries, such as Libxc (Lehtola et al.,
2018) and XCFun (Ekström, 2020), which implement a vast
number of XC functionals that are commonly used in KS-DFT
calculations. Some work (Manathunga et al., 2020) has been
dedicated to porting all or portions of these libraries to the GPU,
including an initial implementation of porting Libxc to CUDA
in the development version of the library itself. However, there
does not exist a mature, high-performance GPU interface for
these libraries at this time. To ensure the highest performance
possible, the approach taken in this work has been to develop an
open-source library, ExchCXX (Williams-Young, 2020), which
provides the necessary functionality. ExchCXX is a modern
C++ library that implements a commonly used subset of XC
functionals for evaluation on the host or device though a simple,
common API. We note that the numerical expressions for the
XC functionals implemented in ExchCXX have been taken
directly from Libxc and have been demonstrated to produce
numerically indistinguishable results.

We note for posterity that, in previous work (Yasuda, 2008),
the use of single precision and mixed precision arithmetic
has been shown to further improve the performance of
GPU-accelerated XC integration. However, as the performance
gap between single and double precision arithmetic on GPU
hardware has been closing in recent years (Cook, 2012),
all calculations performed in this work use strictly double-
precision arithmetic.

3. RESULTS

In essence, the method proposed and implemented in this
work (Algorithm 2) is composed of three computationally
dominant phases:

1. A load balancing phase which is replicated on all MPI
ranks (Algorithm 3);

2. A local integration phase which is executed on the
device (Algorithm 4);

TABLE 1 | Molecule sizes and basis dimensions.

Molecule NA Nb/6-31G(d) Nb/cc-pVDZ

Taxol 110 1,013 1,099

Valinomycin 168 1,350 1,542

Olestra 453 3,181 3,840

Ubiquitin 1,231 10,292 11,577

TABLE 2 | Atomic quadrature sizes.

Grid Nang Nrad NA
g

FG 302 75 22,650

UFG 590 99 58,410

SFG 974 175 170,450

3. A reduction phase that combines the locally computed
XC quantities in distributed memory to produce the final
integration results.

In this section, we examine various performance characteristics
of these phases as implemented in the open-source NWChemEx
software package (Kowalski et al., 2020). In addition, we compare
the performance and scaling of this implementation to that of
an analogous scalable CPU implementation in the open-source
NWChem software package (Aprà et al., 2020). We have chosen
to examine the performance of the purposed method as applied
to 4 molecules: Taxol, Valinomycin, Olestra, and Ubiquitin; and
2 basis sets: 6-31G(d) (Ditchfield et al., 1971; Hehre et al., 1972;
Hariharan and Pople, 1973; Francl et al., 1982; Gordon et al.,
1982) and cc-pVDZ (Dunning, 1989;Woon and Dunning, 1993),
to provide a performance characterization for systems with a
wide range of size, spacial extent, and basis dimension. The
geometries and references for this structures are included in
the Supplementary Material. All calculations were performed
using the PBE GGA XC functional (Perdew et al., 1996).
Calculations involving the 6-31G(d) basis set were performed
using Cartesian Gaussian functions, while those involving cc-
pVDZ were performed using spherical Gaussian functions. A
list of data relevant to the performance of calculations involving
these systems can be found in Table 1. In addition, we have
examined the use of 3 commonly encountered atomic quadrature
sizes: the fine (FG), ultra-fine (UFG), and super-fine (SFG) grids,
as described in Table 2.

All calculations have been performed on the Summit
supercomputer at the Oak Ridge Leadership Computing Facility
(OLCF). Each Summit node consists of 2 IBM POWER9 CPUs
(2x21 @ 3.8 GHz) and 6 NVIDIA Tesla V100 GPUs. Further,
the Summit supercomputer leverages an NVLINK host-device
interconnect that drastically improves the bandwidth of data
transfers in this work. To enable a fair comparison between
NWChem and NWChemEx, each Summit node has been
subdivided into 6 equally sized “resource sets” consisting of 7
CPU cores and 1 GPU. For calculations involving NWChemEx,
concurrency in the CPU execution will be performed in shared

Frontiers in Chemistry | www.frontiersin.org 10 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

memory to adhere to the one-to-one CPU-to-GPU affinity
previously discussed, i.e., 1 MPI rank with 7 shared memory
threads driving a single GPU. Note that CPU parallelism
is only utilized in the generation of the local quadrature
batches as discussed in section 2.3.1, and the launching of
kernels to execute Algorithm 4 on the GPU is performed
in serial.

Calculations involving NWChem were performed using a
locally modified copy of release version 7.0.0. Code modifications
were limited to ensuring that the radial scaling factors of the
MK radial quadrature produced identical atomic quadratures
to those in NWChemEx. Further, NWChem DFT calculations
were performed with grid pruning disabled and using the SSF
atomic partitioning scheme. Note that while the quadratures are
identical between the two codes, NWChem exhibits a number of
algorithmic differences with those presented in this work. These
include additional density and weight screening techniques
within each quadrature batch. However, these steps only improve
the observed performance in NWChem, thus they do not
detract from the performance comparisons made in this work.
To ensure that we are comparing with consistent, replicatable
performance in NWChem, all calculations have been performed
using converged density matrices. Each resource set will consist
of 7 MPI ranks for calculations involving NWChem as, with the
exception of the atomic weight scaling, its implementation of
the XC integration does not exploit shared memory parallelism.
Further, we note that the use of the GlobalArrays library
(Nieplocha et al., 2006; Krishnan et al., 2012) in NWChem
yields that one MPI rank per physical node will be used as a
progress rank for remote memory access rather than performing
computation related to the XC integration.

Both NWChem and NWChemEx were compiled using the
GNU 8.1.0 compiler suite (gcc, g++, gfortran) to compile
host code using high levels of compiler optimization (-O3
-mcpu=native -mtune=native -ffast-math). The
device code in NWChemEx was compiled using the NVIDIA
CUDA compiler (nvcc) as provided in the CUDA SDK
(version 10.1.105). Analogous optimization flags (-O3
--use-fast-math) as well as architecture specific flags
to generate optimized binaries for CUDA compute capability
7.0 (-gencode sm_70,compute_70) were used in the
compilation of device code. NWChem was linked to the serial
version of the IBM Engineering Scientific Software Library (ESSL
version 6.1.0) for POWER9 optimized BLAS functionality. GPU
accelerated batched BLAS was provided by the MAGMA library
(version 2.5.1) while non-batched BLAS for operations such
as dot products was provided by the cuBLAS library from the
NVIDIA CUDA SDK.

3.1. Integration Performance on GPU
Devices
First, we examine the performance characteristics of Algorithm 2
on a single Summit node. This treatment allows us to examine
the effects of molecule size, basis dimension, and quadrature
size on overall GPU performance separately from scaling in
a distributed setting. Strong scaling of the purposed method

as well as its comparison to NWChem will be presented in
the following subsection. An overall component analysis of the
timings on a single Summit node is given in Table 3. The wall
times presented in Table 3 are aggregated over the entire XC
integration, i.e. for the local integration, the times presented are
representative of the sum of all invocations that saturate device
memory (Nsat). Further, we note that these times also include
the contiguous host packing and host-device transfer of batch
data (i.e., all operations contained in the loop over quadrature
batches in Algorithm 2). In addition, the times presented for
load balancing include all operations in Algorithm 3, i.e. batch
generation and the course-grained screening of basis shells at the
batch level. As these calculations were performed within a single
Summit node, the reduction phase is not explicitly considered in
Table 3, but its contributions are included in the times labeled
“Other.” As expected, although Algorithm 3 is executed on the
host in this work, the dominant computational phase for these
calculations was the local integration. Further, we note that the
overall cost of Algorithm 3 for a particular molecule/grid pair is
largely independent of basis size but scales linearly with respect
to grid size for a particular molecule/basis pair. The result of
this is that the relative cost of load balancing is reduced as basis
size increases. However, while this cost is not dominant at low
processor counts, it will be demonstrated to be dominant in the
strong scaling limit in the following subsection.

In this work, we focused on two algorithmic motifs that are
important for the XC integration on the GPU:

1. Optimizing data locality to minimize the overhead of
low-bandwidth data transfers between host and device
and to maximize the potential to express concurrency
without synchronization, and

2. Batching together the evaluation of small tasks on the device
through the use of kernels that express concurrency both
within a quadrature batch and between batches to improve
throughput on the device.

To demonstrate the efficacy of these motifs, we examine the
relative costs of the various compute and memory intensive
operations incurred by the various kernels during the local
integration on the device. Due to the fact that GPU computation
is generally asynchronous with respect to host computation, care
must be taken in accruing accurate performance data relating to
individual kernels as to not impede computational progress on
the device. For this purpose, we have utilized theNVIDIA profiler
nvprof to obtain kernel level performance metrics. A summary
of the overall time spent on various operations involving the GPU
for the UFG basis and 6-31G(d) basis set is provided in Figure 3.

There are a number of important features exemplified in the
results presented in Figure 3. The first is that saturating the
device memory to ensure data locality all but removes the cost of
host-to-device (H2D) and device-to-host (D2H) data transfers,
yielding < 1% of the overall computational cost combined for
all problems considered. For the smaller test cases (Taxol and
Valinomycin), the GPU implementation is dominated by the
evaluation of ρ / ∇ρ and device-to-device (D2D) memory
transfers. For the larger test cases (Olestra and Ubiquitin), the
integration is dominated by the evaluation of the SSF atomic

Frontiers in Chemistry | www.frontiersin.org 11 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

TABLE 3 | Aggregate wall times for computationally intensive operations of XC integration for the various problems considered.

Molecule Basis Grid Nsat Load balance (%) Local integration (%) Other (%) Total

Taxol 6-31G(d) FG 1 0.073 (17.49) 0.310 (73.99) 0.036 (8.52) 0.419

UFG 2 0.145 (15.50) 0.746 (79.59) 0.046 (4.91) 0.937

SFG 3 0.252 (15.76) 1.30 (80.84) 0.055 (3.41) 1.60

cc-pVDZ FG 1 0.075 (14.62) 0.399 (77.59) 0.040 (7.79) 0.514

UFG 2 0.153 (13.70) 0.918 (82.12) 0.047 (4.18) 1.12

SFG 3 0.268 (13.26) 1.68 (83.24) 0.071 (3.50) 2.02

Valinomycin 6-31G(d) FG 1 0.128 (14.74) 0.685 (79.14) 0.053 (6.12) 0.865

UFG 3 0.259 (15.79) 1.33 (80.95) 0.054 (3.26) 1.64

SFG 5 0.446 (14.98) 2.45 (82.21) 0.084 (2.81) 2.98

cc-pVDZ FG 2 0.136 (12.17) 0.916 (82.27) 0.062 (5.55) 1.11

UFG 3 0.274 (11.99) 1.96 (85.74) 0.052 (2.27) 2.29

SFG 6 0.474 (11.09) 3.70 (86.61) 0.098 (2.30) 4.27

Olestra 6-31G(d) FG 2 0.433 (23.60) 1.20 (65.45) 0.201 (10.95) 1.84

UFG 5 0.872 (23.48) 2.65 (71.39) 0.191 (5.13) 3.72

SFG 9 1.49 (21.79) 5.14 (75.13) 0.211 (3.08) 6.84

cc-pVDZ FG 3 0.481 (19.87) 1.68 (69.48) 0.258 (10.66) 2.42

UFG 6 0.953 (19.59) 3.63 (74.57) 0.284 (5.83) 4.87

SFG 11 1.63 (18.54) 6.92 (78.53) 0.259 (2.94) 8.82

Ubiquitin 6-31G(d) FG 22 3.12 (10.94) 22.5 (78.90) 2.89 (10.15) 28.5

UFG 45 6.01 (10.84) 47.5 (85.70) 1.92 (3.46) 55.4

SFG 84 10.2 (9.94) 90.2 (87.82) 2.30 (2.24) 103

cc-pVDZ FG 30 3.44 (7.83) 38.2 (86.96) 2.29 (5.21) 43.9

UFG 61 6.64 (7.50) 79.6 (89.80) 2.40 (2.71) 88.6

SFG 111 11.2 (7.04) 145 (90.90) 3.30 (2.07) 160

All times are given in seconds and Nsat is the number of times the device memory was saturated in Algorithm 2 to complete the integration.

FIGURE 3 | Wall time percentages for various operations in the XC integration involving the graphics processing units (GPU), which includes host-to-device (H2D),

device-to-host (D2H), and device-to-device (D2D) transfers.

Frontiers in Chemistry | www.frontiersin.org 12 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

partition weights and D2Dmemory transfers. We note for clarity
that the D2D transfers are intra-GPU device memory copies, not
inter-GPU communication. The times for the evaluation of the
XC functional on the device are not explicitly shown in Figure 3

as they are negligibly small. They are however included in the
“Other” timing accumulations.

A somewhat unexpected result is the dominant cost posed
by intra-GPU D2D transfers for all problems considered.

FIGURE 4 | Achieved memory throughput for dominant device-to-device

(D2D) data transfers in the XC integration compared to the peak DDR4

bandwidth in host memory.

FIGURE 5 | Achieved SM efficiency for batched kernels in the XC integration.

The D2D timings including the packing of Equation (12b),
the incrementing of Equation (17), and various other small
D2D transfers such as those involving storage of the basis
functions. This result is unexpected due to the high-bandwidth
of memory transfers within device memory. To further examine
the details of this unexpected dominant cost, Figure 4 shows
the achieved memory read and write throughputs for the intra-
GPU data transfers incurred by the batch kernels that implement
Equations (12b) and (17). These achieved throughputs are
compared to the peak bandwidth of DDR4 (CPU) memory:
50 GB/s. For these kernels, we are able to achieve a memory
throughput of O(100 GB/s) for data writes and between 50
and 70 GB/s for data reads, with the throughput for data
reads decreasing with increasing system size. This decrease in
data read throughout with system size is likely due to memory
bank conflicts arising from multiple GPU threads accessing the
same memory address simultaneously. Although these kernels
are not able to achieve memory throughput reflective of peak
device memory bandwidth (900 GB/s) due to their access of
non-coalesced, non-contiguous memory, they far exceed the
throughput that would be achievable in CPU memory. Further,
as the memory footprint of these packed matrices are among the
largest in the purposed method, exploiting intra-GPU memory
transfers avoids additional H2D and D2H transfers which would
pose non-trivial costs due to their low bandwidth.

To demonstrate the efficacy of the batched kernels proposed
in this work, Figures 5, 6 illustrate the capability of these kernels
to efficiently exploit the resources of the device. These figures
present the efficiency of the batched kernels in two regimes. The
SM efficiency (Figure 5) illustrates the efficiency of the kernels at
the SM level by calculating the percentage of time each SM has at
least one active warp executing instructions. The warp execution
efficiency (Figure 6) illustrates their efficiency at the warp level by
calculating the percentage of active threads within each warp in
the issuance of any particular instruction in the kernel execution.
Deviations from 100% in the SM efficiency indicate that the SM is
sitting idle due to some sort of contention, e.g. warp divergence,
while deviations in the warp execution efficiency indicate that
some warps have diverged such that the SM is only able to execute
instructions to some subset of the threads within these diverged
warps, reducing overall parallel efficiency. These performance
measurements were obtained by the nvprof profiler metrics
sm_efficiency and warp_execution_efficiency,
respectively. As we can see, both the MAGMA provided batched
BLAS and the hand optimized XC integration kernels developed
for this work are able to achieve high SM efficiency, i.e. the
SM is occupied and issuing instructions a high percentage of
the time. With the exception of the SSF weights kernel, each
of the batched kernels also exhibits an excellent warp execution
efficiency (>90%), whichmeans that there are not typically a large
number of warp divergences in the execution of these kernels.
The relatively low (60–70%) warp execution efficiency of the
SSF kernels is due to the screening of weight partitions by the
SSF scheme, i.e. adjacent quadrature points often follow different
branch logic in the screening procedure. Note that the high SM
and warp execution efficiencies for the kernel responsible for the
batched evaluation of 8j by the simple method proposed in this

Frontiers in Chemistry | www.frontiersin.org 13 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

FIGURE 6 | Achieved warp execution efficiency for batched kernels in the XC

integration.

work, combined with its relatively low cost percentage (>20%) for
all problems considered, indicate that further optimization of this
kernel bymore advanced techniques would likely not yield a large
impact on overall wall time.

3.2. Strong Scaling
The primary goal of this work has been to provide a scalable
implementation of the XC integration. As such, we examine the
strong scaling the proposed method in comparison with the
CPU implementation in NWChem. Strong scaling results for the
CPU and GPU XC integrations using the 6-31G(d) basis and
UFG quadrature are given in Figure 7. The wall times presented
in Figure 7 only include those operations that are required to
perform the XC integration; wall times for the allocation of device
memory in the NWChemEx results have been removed. For the
smallest problems (Taxol and Valinomycin), both NWChem and
NWChemEx exhibit near linear strong scaling out to 4 Summit
nodes (168 MPI ranks in the case of NWChem, and 24 GPUs
in the case of NWChemEx). For largest problems (Olestra and
Ubiquitin), linear strong scaling is exhibited up to 8 Summit
notes (48 GPUs) in the case of NWChemEx and 16 nodes (336
MPI ranks) in the case of NWChem. The relative speedups of
NWChemEx over NWChem for the considered systems in the
6-31G(d) basis set are given in Figure 8. For all but the largest
problem (Ubiquitin), speedups over 10x are observed over the
CPU implementation at all resource set counts. For the smallest
problems with the smallest grid size (FG), speedups of ∼100x
are observed when run on a small number of resource sets.
The degradation in speedup as a function in quadrature size
is due to the aforementioned differences in weight and density
screening techniques between NWChem and NWChemEx. The
magnitude of these speedups decrease as the amount of resources

increase. This is especially the case for ubiquitin, where a speedup
of ∼10x is observed at a single Summit node, but this speed
up falls to nearly 2.5x in the strong scaling limit. To better
understand the stagnation of strong scaling in this case, it is
necessary to examine the scaling of the individual components
of the XC integration.

Figure 9 shows the timings for various components of
the GPU XC integration for considered systems. Rather than
examine the scaling for each of the considered systems, we choose
to profile the largest of the small sized problems (Valinomycin),
and the largest problem (Ubiquitin) as representative test cases.
As can be seen in Figure 9, the local integration scales linearly for
all processor counts considered. As the local integration scales
linearly, stagnation is not due to a lack of sufficient work to
occupy the GPU, but rather due to the increasing cost of the MPI
reduction and the constant cost of replicating Algorithm 3 on all
resource sets. This scaling behavior could be further improved
by porting Algorithm 3 to the GPU, however, in the case of
large processor counts, the reduction becomes competitive with
Algorithm 3, thus it would be unlikely to demonstrate any
qualitatively different scaling behavior in this regime.

4. CONCLUSION

In this work, we have proposed and implemented a three-level,
GPU-based parallelism scheme for the distributed numerical
integration of the XC potential and energy required for the
evaluation of the Fock matrix in the Gaussian basis discretization
of KS-DFT. In addition to the development of a simple load
balancing scheme, the method proposed in this work for the
evaluation of local integration quantities emphasizes the use of
batched kernel invocations to achieve high throughput in the
evaluation of localized quadrature batches on the GPU. This
approach was motivated by the recent advent of GPU-accelerated
batched BLAS kernels, which have seen wide adoption in many
GPU applications. We have demonstrated that the proposed
load balancing scheme produces linear strong scaling in the
local integration of XC quantities for the problems considered.
Further we have validated the efficacy of the use of batched
kernels, including the use of batched GEMM and SYR2K, by
demonstrating the ability of these kernels to achieve excellent
efficiency on the NVIDIA Tesla V100 for a wide range of
molecular systems, basis sets, and quadrature sizes.

The largest deficiency in the current work is the restricted
implementation of the GPU-related techniques toNVIDIAGPUs
and the CUDA SDK. As of this work, emerging architectures
are increasingly relying upon other GPU vendors (AMD,
Intel, etc.), which would render direct application of the
current implementation impossible. However, the principles of
batched kernel evaluation may be extended to many if not all
GPU devices. Thus, as has been explored in the context of
related implementations of seminumerical exchange calculations
(Laqua et al., 2020), future work will focus on the portable
implementation of the scalable GPU method presented in
this work.

Frontiers in Chemistry | www.frontiersin.org 14 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

FIGURE 7 | Strong scaling comparisons for the CPU (NWChem) and GPU (NWChemEx) implementations of the XC integration. Timings for both NWChem and

NWChemEx include all steps in the XC integration (batch generation, weight scaling, local integration, and reduction).

FIGURE 8 | Achieved speedups of the GPU (NWChemEx) implementation over the CPU (NWChem) implementation of the XC integration for the 6-31G(d) basis set.

FIGURE 9 | Strong scaling of individual components of the XC integration for valinomycin (A) and ubiquitin (B) in comparison to total execution time. Error bars

represent min/max times and solid markers represent average wall time over all resource sets.

Frontiers in Chemistry | www.frontiersin.org 15 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

We have implemented the proposed method in the open-
source NWChemEx software package and have demonstrated
speedups between 10x and 100x over the analogous CPU
implementation in NWChem. However, in the strong scaling
limit, the proposed replicated load balance scheme and
distributed reduction of XC integrands become computationally
dominant, which causes early stagnation relative to the linearly
scaling local integration on the GPU. As has been demonstrated
in related work (Manathunga et al., 2020), porting the batch
generation and screening procedure to the GPU would help
mitigate the strong scaling stagnation, though the asymptotic
bottleneck of the distributed reduction would still remain. With
the one-to-one CPU-to-GPU affinity discussed in this work,
the computational cost of the MPI reduction could be reduced
through the use of remote memory access (RMA) to exploit
shared memory spaces and void explicit data communication. As
the local integration scales linearly out to very large processor and
GPU counts, further improvements in these non-GPU aspects of
the XC integration would drastically improve the strong scaling
of the proposed methods. Such improvements will be explored in
future work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

The software implementation of the purposed XC integration
method is due to DW-Y. The algorithmic development of
the load balance and distributed parallelism schemes is due
to DW-Y, WJ, and CY. The development of software for the
evaluation of the XC functional on the device as well as
selection of the molecular test systems is due to DW-Y and

HD. All authors contributed to the article and approved the
submitted version.

FUNDING

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear
Security Administration.

ACKNOWLEDGMENTS

The authors would also like to thank Eduardo Aprà and Ajay
Panyala of the Pacific Northwest National Laboratory (PNNL)
for insightful discussions regarding DFT calculations and code
modifications related to the NWChem software package to
enable meaningful comparisons with the methods presented
in this work. Part of this research was carried out at the
Brookhaven GPU Hackathon 2019. Brookhaven Hackathon is
a collaboration between and used resources of Brookhaven
National Laboratory, University of Delaware, and the Oak
Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory. We thank Piotr Luszczek for serving as our mentor
at the hackathon. This research was supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science, and the National
Nuclear Security Administration. This research used resources
of the Oak Ridge Leadership Computing Facility, which is a
DOE Office of Science User Facility supported under Contract
DE-AC05-00OR22725.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2020.581058/full#supplementary-material

REFERENCES

Abdelfattah, A., Baboulin, M., Dobrev, V., Dongarra, J., Earl, C., Falcou, J., et al.
(2016b). High-Performance Tensor Contractions for GPUs. Technical Report
UT-EECS-16-738.

Abdelfattah, A., Haidar, A., Tomov, S., and Dongarra, J. (2016a). “Performance,
design, and autotuning of batched GEMM for GPUs,” in High

Performance Computing, eds J. M. Kunkel, P. Balaji, and J. Dongarra
(Springer International Publishing), 21–38. doi: 10.1007/978-3-319-41
321-1_2

Andrade, X., and Aspuru-Guzik, A. (2013). Real-space density functional theory
on graphical processing units: Computational approach and comparison
to Gaussian basis set methods. J. Chem. Theory Comput. 9, 4360–4373.
doi: 10.1021/ct400520e

Aprà, E., Bylaska, E. J., de Jong, W. A., Govind, N., Kowalski, K., Straatsma, T. P.,
et al. (2020). NWChem: past, present, and future. J. Chem. Phys. 152:184102.
doi: 10.1063/5.0004997

Arvo, J. (2013). Graphics Gems II. Amsterdam: Elsevier.
Asadchev, A., Allada, V., Felder, J., Bode, B. M., Gordon, M. S., and Windus,

T. L. (2010). Uncontracted RYS quadrature implementation of up to G

functions on graphical processing units. J. Chem. Theory Comput. 6, 696–704.
doi: 10.1021/ct9005079

Becke, A. D. (1988). A multicenter numerical integration scheme for polyatomic
molecules. J. Chem. Phys. 88, 2547–2553. doi: 10.1063/1.454033

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact
exchange. J. Chem. Phys. 98, 5648–5652. doi: 10.1063/1.464913

Belling, T., Grauschopf, T., Krüger, S., Mayer, M., Nörtemann, F., Staufer, M., et al.
(1999). “Quantum chemistry on parallel computers: Concepts and results of
a density functional method,” in High Performance Scientific and Engineering

Computing, eds H. J. Bungartz, F. Durst, and C. Zenger (Berlin, Heidelberg:
Springer), 441–455. doi: 10.1007/978-3-642-60155-2_37

Brown, P., Woods, C., McIntosh-Smith, S., and Manby, F. R. (2008). Massively
multicore parallelization of Kohn-Sham theory. J. Chem. Theory Comput. 4,
1620–1626. doi: 10.1021/ct800261j

Brown, P., Woods, C. J., McIntosh-Smith, S., and Manby, F. R. (2010). A massively
multicore parallelization of the Kohn-Sham energy gradients. J. Comput. Chem.
31, 2008–2013. doi: 10.1002/jcc.21485

Burow, A.M., and Sierka,M. (2011). Linear scaling hierarchical integration scheme
for the exchange-correlation term in molecular and periodic systems. J. Chem.

Theory Comput. 7, 3097–3104. doi: 10.1021/ct200412r

Frontiers in Chemistry | www.frontiersin.org 16 December 2020 | Volume 8 | Article 581058

https://www.frontiersin.org/articles/10.3389/fchem.2020.581058/full#supplementary-material
https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.1021/ct400520e
https://doi.org/10.1063/5.0004997
https://doi.org/10.1021/ct9005079
https://doi.org/10.1063/1.454033
https://doi.org/10.1063/1.464913
https://doi.org/10.1007/978-3-642-60155-2_37
https://doi.org/10.1021/ct800261j
https://doi.org/10.1002/jcc.21485
https://doi.org/10.1021/ct200412r
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

Bylaska, E. J., Jacquelin, M., de Jong, W. A., Hammond, J. R., and
Klemm, M. (2017). Performance evaluation of nwchem ab-initio molecular
dynamics (AIMD) simulations on the Intelr Xeon phiTM processor,”
in High Performance Computing, eds J. M. Kunkel, R. Yokota, M.
Taufer, and J. Shalf (Cham: Springer International Publishing), 404–418.
doi: 10.1007/978-3-319-67630-2_30

Chien, S.-H., and Gill, P. M. W. (2006). SG-0: a small standard grid
for DFT quadrature on large systems. J. Comput. Chem. 27, 730–739.
doi: 10.1002/jcc.20383

Cook, S. (2012). CUDA Programming: A Developer’s Guide to Parallel Computing

with GPUs, 1st Edn. San Francisco, CA: Morgan Kaufmann Publishers Inc.
Das, S., Motamarri, P., Gavini, V., Turcksin, B., Li, Y. W., and Leback, B.

(2019). “Fast, scalable and accurate finite-element based ab initio calculations
using mixed precision computing: 46 PFLOPS simulation of a metallic
dislocation system,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’19 (New
York, NY: Association for Computing Machinery). doi: 10.1145/3295500.
3357157

de Jong, W. A., Bylaska, E., Govind, N., Janssen, C. L., Kowalski, K., Müller,
T., et al. (2010). Utilizing high performance computing for chemistry:
parallel computational chemistry. Phys. Chem. Chem. Phys. 12, 6896–6920.
doi: 10.1039/c002859b

Ditchfield, R., Hehre, W. J., and Pople, J. A. (1971). Self-consistent molecular-
orbital methods. IX. An extended Gaussian-type basis for molecular-orbital
studies of organic molecules. J. Chem. Phys. 54. doi: 10.1063/1.1674902

Dongarra, J. J., Duff, I. S., Sorensen, D. C., and van der Vorst, H. A. (1998).
Numerical Linear Algebra for High-Performance Computers. Philadelphia, PA:
Society for Industrial and Applied Mathematics. doi: 10.1137/1.9780898719611

Dunning, T. H. (1989). Gaussian basis sets for use in correlated molecular
calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys.
90:1007. doi: 10.1063/1.456153

Egidi, F., Sun, S., Goings, J. J., Scalmani, G., Frisch, M. J., and Li, X. (2017).
Two-component noncollinear time-dependent spin density functional theory
for excited state calculations. J. Chem. Theory Comput. 13, 2591–2603.
doi: 10.1021/acs.jctc.7b00104

Ekström, U. (2020). XCFun: A Library of Exchange-Correlation

Functionals With Arbitrary-Order Derivatives (Version v2.0.1). Zenodo.
doi: 10.5281/zenodo.3796573

Fatahalian, K., Sugerman, J., and Hanrahan, P. (2004). “Understanding the
efficiency of GPU algorithms for matrix-matrix multiplication,” in Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,
133–137. doi: 10.1145/1058129.1058148

Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S.,
DeFrees, D. J., et al. (1982). Self-consistent molecular orbital methods. XXIII.
A polarization-type basis set for second-row elements. J. Chem. Phys. 77:3654.
doi: 10.1063/1.444267

Genovese, L., Ospici, M., Deutsch, T., Mehaut, J.-F., Neelov, A., and Goedecker,
S. (2009). Density functional theory calculation on many-cores hybrid
central processing unit-graphic processing unit architectures. J. Chem. Phys.
131:034103. doi: 10.1063/1.3166140

Gill, P. M., Johnson, B. G., and Pople, J. A. (1993). A standard grid
for density functional calculations. Chem. Phys. Lett. 209, 506–512.
doi: 10.1016/0009-2614(93)80125-9

Gill, P. M. W., and Chien, S.-H. (2003). Radial quadrature for multiexponential
integrands. J. Comput. Chem. 24, 732–740. doi: 10.1002/jcc.10211

Gordon, M. S., Barca, G., Leang, S. S., Poole, D., Rendell, A. P., Galvez Vallejo, J.
L., et al. (2020). Novel computer architectures and quantum chemistry. J. Phys.
Chem. A 124, 4557–4582. doi: 10.1021/acs.jpca.0c02249

Gordon, M. S., Binkley, J. S., Pople, J. A., Pietro, W. J., and Hehre, W.
J. (1982). Self-consistent molecular-orbital methods. 22. Small split-valence
basis sets for second-row elements. J. Am. Chem. Soc. 104, 2797–2803.
doi: 10.1021/ja00374a017

Haidar, A., Dong, T., Luszczek, P., Tomov, S., and Dongarra, J. (2015). Batched
matrix computations on hardware accelerators based on GPUs. Int. J. High
Perform. Comput. Appl. 29, 193–208. doi: 10.1177/1094342014567546

Hakala, S., Havu, V., Enkovaara, J., and Nieminen, R. (2013). “Parallel electronic
structure calculations using multiple graphics processing units (GPUs),” in

Applied Parallel and Scientific Computing, eds P. Manninen and P. Öster
(Berlin; Heidelberg: Springer), 63-76. doi: 10.1007/978-3-642-36803-5_4

Hariharan, P. C., and Pople, J. A. (1973). The influence of polarization
functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28.
doi: 10.1007/BF00533485

Hehre, W. J., Ditchfield, R., and Pople, J. A. (1972). Self-consistent molecular
orbital methods. XII. Further extensions of Gaussian-type basis sets for use
in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 213–222.
doi: 10.1063/1.1677527

Herault, T., Robert, Y., Bosilca, G., and Dongarra, J. (2019). “Generic matrix
multiplication for multi-GPU accelerated distributed-memory platforms
over parsec,” in 2019 IEEE/ACM 10th Workshop on Latest Advances

in Scalable Algorithms for Large-Scale Systems (ScalA) (IEEE), 33–41.
doi: 10.1109/ScalA49573.2019.00010

Hohenberg, P., and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. 136,
B864–B871. doi: 10.1103/PhysRev.136.B864

Huhn, W. P., Lange, B., zhe Yu, V. W., Yoon, M., and Blum, V. (2020).
GPU acceleration of all-electron electronic structure theory using localized
numeric atom-centered basis functions. Comput. Phys. Commun. 254:107314.
doi: 10.1016/j.cpc.2020.107314

Jacquelin, M., de Jong, W., and Bylaska, E. (2017). “Towards highly scalable ab

initio molecular dynamics (AIMD) simulations on the Intel knights landing
manycore processor,” in 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 234–243. doi: 10.1109/IPDPS.2017.26
Jia, W., Wang, L.-W., and Lin, L. (2019). “Parallel transport time-dependent

density functional theory calculations with hybrid functional on summit,” in
Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’19 (New York, NY: Association for
Computing Machinery). doi: 10.1145/3295500.3356144

Kalinowski, J., Wennmohs, F., and Neese, F. (2017). Arbitrary angular momentum
electron repulsion integrals with graphical processing units: application to
the resolution of identity Hartree-Fock method. J. Chem. Theory Comput. 13,
3160–3170. doi: 10.1021/acs.jctc.7b00030

Kindratenko, V. V., Enos, J. J., Shi, G., Showerman, M. T., Arnold, G. W., Stone,
J. E., et al. (2009). “GPU clusters for high-performance computing,” in 2009

IEEE International Conference on Cluster Computing and Workshops (IEEE),
1–8. doi: 10.1109/CLUSTR.2009.5289128

Kohn, W., and Sham, L. J. (1965). Self-consistent equations including
exchange and correlation effects. Phys. Rev. 140, A1133–A1138.
doi: 10.1103/PhysRev.140.A1133

Kowalski, K., Apra, E., Bair, R., Bertoni, C., et al. (2020). NWChemEx –
computational chemistry for the exascale era. Chem. Rev. (Submitted).

Krishnan, M., Palmer, B., Vishnu, A., Krishnamoorthy, S., Daily, J., and Chavarria,
D. (2012). The Global Arrays User Manual. Pacific Northwest National
Laboratory, Richland, WA.

Kurzak, J., Luszczek, P., Faverge, M., and Dongarra, J. (2012). Lu Factorization

With Partial Pivoting for a Multi-CPU, Multi-GPU Shared Memory System.
Technical Report 266, LAPACKWorking Note. doi: 10.2172/1173291

Kussmann, J., and Ochsenfeld, C. (2017). Employing opencl to accelerate ab

initio calculations on graphics processing units. J. Chem. Theory Comput. 13,
2712–2716. doi: 10.1021/acs.jctc.7b00515

Laqua, H., Kussmann, J., and Ochsenfeld, C. (2018). An improved molecular
partitioning scheme for numerical quadratures in density functional theory. J.
Chem. Phys. 149:204111. doi: 10.1063/1.5049435

Laqua, H., Thompson, T. H., Kussmann, J., and Ochsenfeld, C. (2020).
Highly efficient, linear-scaling seminumerical exact-exchange method
for graphic processing units. J. Chem. Theory Comput. 16, 1456–1468.
doi: 10.1021/acs.jctc.9b00860

Lasinski, M. E., Romero, N. A., Yau, A. D., Kedziora, G., Blaudeau, J., and Brown, S.
T. (2008). “Optimization and parallelization of DFT and TDDFT in GAMESS
on DoD HPC machines,” in 2008 DoD HPCMP Users Group Conference,
437–441. doi: 10.1109/DoD.HPCMP.UGC.2008.7

Lebedev, V. (1976). Quadratures on a sphere.USSR Comput. Math. Math. Phys. 16,
10–24. doi: 10.1016/0041-5553(76)90100-2

Lehtola, S., Steigemann, C., Oliveira, M. J., and Marques, M. A. (2018). Recent
developments in libxc—A comprehensive library of functionals for density
functional theory. SoftwareX 7, 1–5. doi: 10.1016/j.softx.2017.11.002

Frontiers in Chemistry | www.frontiersin.org 17 December 2020 | Volume 8 | Article 581058

https://doi.org/10.1007/978-3-319-67630-2_30
https://doi.org/10.1002/jcc.20383
https://doi.org/10.1145/3295500.3357157
https://doi.org/10.1039/c002859b
https://doi.org/10.1063/1.1674902
https://doi.org/10.1137/1.9780898719611
https://doi.org/10.1063/1.456153
https://doi.org/10.1021/acs.jctc.7b00104
https://doi.org/10.5281/zenodo.3796573
https://doi.org/10.1145/1058129.1058148
https://doi.org/10.1063/1.444267
https://doi.org/10.1063/1.3166140
https://doi.org/10.1016/0009-2614(93)80125-9
https://doi.org/10.1002/jcc.10211
https://doi.org/10.1021/acs.jpca.0c02249
https://doi.org/10.1021/ja00374a017
https://doi.org/10.1177/1094342014567546
https://doi.org/10.1007/978-3-642-36803-5_4
https://doi.org/10.1007/BF00533485
https://doi.org/10.1063/1.1677527
https://doi.org/10.1109/ScalA49573.2019.00010
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1016/j.cpc.2020.107314
https://doi.org/10.1109/IPDPS.2017.26
https://doi.org/10.1145/3295500.3356144
https://doi.org/10.1021/acs.jctc.7b00030
https://doi.org/10.1109/CLUSTR.2009.5289128
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.2172/1173291
https://doi.org/10.1021/acs.jctc.7b00515
https://doi.org/10.1063/1.5049435
https://doi.org/10.1021/acs.jctc.9b00860
https://doi.org/10.1109/DoD.HPCMP.UGC.2008.7
https://doi.org/10.1016/0041-5553(76)90100-2
https://doi.org/10.1016/j.softx.2017.11.002
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

Williams-Young et al. Evaluation of the XC Potential on GPU Clusters

Luehr, N., Sisto, A., and Martinez, T. J. (2016). “Gaussian basis set Hartree-
Fock, density functional theory, and beyond on GPUs,” in Electronic Structure

Calculations on Graphics Processing Units: From Quantum Chemistry to

Condensed Matter Physics, eds R. C. Walker and A. W. Gotz (Hoboken, NJ:
John Wiley and Sons, Ltd.), 67–100. doi: 10.1002/9781118670712.ch4

Maintz, S., Eck, B., and Dronskowski, R. (2011). Speeding up plane-wave
electronic-structure calculations using graphics-processing units. Comput.

Phys. Commun. 182, 1421–1427. doi: 10.1016/j.cpc.2011.03.010
Manathunga, M., Miao, Y., Mu, D., Götz, A. W., and Merz, K. M. (2020).

Parallel implementation of density functional theory methods in the quantum
interaction computational kernel program. J. Chem. Theory Comput. 16,
4315–4326. doi: 10.1021/acs.jctc.0c00290

Miao, Y., and Merz, K. M. (2013). Acceleration of electron repulsion integral
evaluation on graphics processing units via use of recurrence relations. J. Chem.

Theory Comput. 9, 965–976. doi: 10.1021/ct300754n
Motamarri, P., Das, S., Rudraraju, S., Ghosh, K., Davydov, D., and Gavini,

V. (2020). DFT-FE—A massively parallel adaptive finite-element code for
large-scale density functional theory calculations. Comput. Phys. Commun.
246:106853. doi: 10.1016/j.cpc.2019.07.016

Mura, M. E., and Knowles, P. J. (1996). Improved radial grids for quadrature
in molecular density-functional calculations. J. Chem. Phys. 104, 9848–9858.
doi: 10.1063/1.471749

Murray, C. W., Handy, N. C., and Laming, G. J. (1993). Quadrature
schemes for integrals of density functional theory. Mol. Phys. 78, 997–1014.
doi: 10.1080/00268979300100651

Nath, R., Tomov, S., and Dongarra, J. (2010). An improved MAGMA GEMM
for fermi graphics processing units. Int. J. High Perform. Comput. Appl. 24,
511–515. doi: 10.1177/1094342010385729

Nguyen, T., Cicotti, P., Bylaska, E., Quinlan, D., and Baden, S. (2017). Automatic
translation of MPI source into a latency-tolerant, data-driven form. J. Parallel
Distrib. Comput. 106, 1–13. doi: 10.1016/j.jpdc.2017.02.009

Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., and Aprà, E.
(2006). Advances, applications and performance of the global arrays shared
memory programming toolkit. Int. J. High Perform. Comput. Appl. 20, 203–231.
doi: 10.1177/1094342006064503

Parnell, L. A., Demetriou, D. W., Kamath, V., and Zhang, E. Y. (2019).
“Trends in high performance computing: exascale systems and facilities
beyond the first wave,” in 2019 18th IEEE Intersociety Conference on Thermal

and Thermomechanical Phenomena in Electronic Systems (ITherm), 167–176.
doi: 10.1109/ITHERM.2019.8757229

Parr, R. G., and Yang, W. (1994). Density Functional Theory of Atoms and

Molecules. New York, NY: Oxford University Press.
Perdew, J. P. (1986). Density-functional approximation for the correlation

energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824.
doi: 10.1103/PhysRevB.33.8822

Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). Generalized
gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.
doi: 10.1103/PhysRevLett.77.3865

Perdew, J. P., and Yue, W. (1986). Accurate and simple density functional for the
electronic exchange energy: generalized gradient approximation. Phys. Rev. B
33, 8800–8802. doi: 10.1103/PhysRevB.33.8800

Peters, L. D. M., Kussmann, J., and Ochsenfeld, C. (2020). Combining graphics
processing units, simplified time-dependent density functional theory, and
finite-difference couplings to accelerate nonadiabatic molecular dynamics. J.
Phys. Chem. Lett. 11, 3955–3961. doi: 10.1021/acs.jpclett.0c00320

Petrone, A., Williams-Young, D. B., Sun, S., Stetina, T. F., and Li, X.
(2018). An efficient implementation of two-component relativistic density
functional theory with torque-free auxiliary variables. Eur. Phys. J. B 91:169.
doi: 10.1140/epjb/e2018-90170-1

Pople, J. A., Gill, P. M., and Johnson, B. G. (1992). Kohn-Sham density-
functional theory within a finite basis set. Chem. Phys. Lett. 199, 557–560.
doi: 10.1016/0009-2614(92)85009-Y

Ratcliff, L. E., Mohr, S., Huhs, G., Deutsch, T., Masella,M., andGenovese, L. (2017).
Challenges in large scale quantum mechanical calculations. WIREs Comput.

Mol. Sci. 7:e1290. doi: 10.1002/wcms.1290

Schlegel, H. B., and Frisch, M. J. (1995). Transformation between Cartesian
and pure spherical harmonic Gaussians. Int. J. Quant. Chem. 54, 83–87.
doi: 10.1002/qua.560540202

Stratmann, R. E., Scuseria, G. E., and Frisch, M. J. (1996). Achieving
linear scaling in exchange-correlation density functional quadratures.
Chem. Phys. Lett. 257, 213–223. doi: 10.1016/0009-2614(96)
00600-8

Titov, A. V., Ufimtsev, I. S., Luehr, N., and Martinez, T. J.
(2013). Generating efficient quantum chemistry codes for novel
architectures. J. Chem. Theory Comput. 9, 213–221. doi: 10.1021/ct30
0321a

Tomov, S., Dongarra, J., and Baboulin, M. (2010). Towards dense linear algebra for
hybrid GPU accelerated manycore systems. Parallel Computing 36, 232–240.
doi: 10.1016/j.parco.2009.12.005

Treutler, O., and Ahlrichs, R. (1995). Efficient molecular numerical integration
schemes. J. Chem. Phys. 102, 346–354. doi: 10.1063/1.469408

Ufimtsev, I. S., and Martinez, T. J. (2008). Quantum chemistry on graphical
processing units. 1. Strategies for two-electron integral evaluation. J. Chem.

Theory Comput. 4, 222–231. doi: 10.1021/ct700268q
Ufimtsev, I. S., and Martinez, T. J. (2009a). Quantum chemistry on graphical

processing units. 2. Direct self-consistent-field implementation. J. Chem.

Theory Comput. 5, 1004–1015. doi: 10.1021/ct800526s
Ufimtsev, I. S., and Martinez, T. J. (2009b). Quantum chemistry on graphical

processing units. 3. Analytical energy gradients, geometry optimization, and
first principles molecular dynamics. J. Chem. Theory Comput. 5, 2619–2628.
doi: 10.1021/ct9003004

van Schoot, H., and Visscher, L. (2016). “GPU acceleration for density functional
theory with slater-type orbitals,” in Electronic Structure Calculations on Graphics
Processing Units: FromQuantum Chemistry to CondensedMatter Physics, eds R.
C. Walker and A. W. Gotz (Hoboken, NJ: JohnWiley and Sons, Ltd.), 101–114.
doi: 10.1002/9781118670712.ch5

Wang, L., Wu, Y., Jia, W., Gao, W., Chi, X., and Wang, L. (2011). “Large
scale plane wave pseudopotential density functional theory calculations on
GPU clusters,” in SC ’11: Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis, 1–10.
doi: 10.1145/2063384.2063479

Williams-Young, D. (2020). ExchCXX: A Modern C++ Library for the

Evaluation of XC Functionals (Version v0.1.0). Zenodo. doi: 10.5281/zenodo.
3929758

Woon, D. E., and Dunning, T. H. (1993). Gaussian basis sets for use in correlated
molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys.
98:1358. doi: 10.1063/1.464303

Wu, X., Kang, F., Duan, W., and Li, J. (2019). Density functional theory
calculations: a powerful tool to simulate and design high-performance energy
storage and conversion materials. Prog. Nat. Sci. Mater. Int. 29, 247–255.
doi: 10.1016/j.pnsc.2019.04.003

Yasuda, K. (2008). Accelerating density functional calculations with graphics
processing unit. J. Chem. Theory Comput. 4, 1230–1236. doi: 10.1021/ct80
01046

Yoshikawa, T., Komoto, N., Nishimura, Y., and Nakai, H. (2019). Gpu-accelerated
large-scale excited-state simulation based on divide-and-conquer time-
dependent density-functional tight-binding. J. Comput. Chem. 40, 2778–2786.
doi: 10.1002/jcc.26053

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Williams-Young, de Jong, van Dam and Yang. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Chemistry | www.frontiersin.org 18 December 2020 | Volume 8 | Article 581058

https://doi.org/10.1002/9781118670712.ch4
https://doi.org/10.1016/j.cpc.2011.03.010
https://doi.org/10.1021/acs.jctc.0c00290
https://doi.org/10.1021/ct300754n
https://doi.org/10.1016/j.cpc.2019.07.016
https://doi.org/10.1063/1.471749
https://doi.org/10.1080/00268979300100651
https://doi.org/10.1177/1094342010385729
https://doi.org/10.1016/j.jpdc.2017.02.009
https://doi.org/10.1177/1094342006064503
https://doi.org/10.1109/ITHERM.2019.8757229
https://doi.org/10.1103/PhysRevB.33.8822
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.33.8800
https://doi.org/10.1021/acs.jpclett.0c00320
https://doi.org/10.1140/epjb/e2018-90170-1
https://doi.org/10.1016/0009-2614(92)85009-Y
https://doi.org/10.1002/wcms.1290
https://doi.org/10.1002/qua.560540202
https://doi.org/10.1016/0009-2614(96)00600-8
https://doi.org/10.1021/ct300321a
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1063/1.469408
https://doi.org/10.1021/ct700268q
https://doi.org/10.1021/ct800526s
https://doi.org/10.1021/ct9003004
https://doi.org/10.1002/9781118670712.ch5
https://doi.org/10.1145/2063384.2063479
https://doi.org/10.5281/zenodo.3929758
https://doi.org/10.1063/1.464303
https://doi.org/10.1016/j.pnsc.2019.04.003
https://doi.org/10.1021/ct8001046
https://doi.org/10.1002/jcc.26053
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	On the Efficient Evaluation of the Exchange Correlation Potential on Graphics Processing Unit Clusters
	1. Introduction
	2. Methods
	2.1. Kohn–Sham Density Functional Theory
	2.2. Numerical Integration of Molecular Integrands
	2.3. Distributed Parallel Implementation on Clusters of GPU Accelerators
	2.3.1. Distributed Load Balance in the XC Integration
	2.3.2. Local XC Integration on the GPU
	2.3.2.1. Architecture of NVIDIA Tesla V100
	2.3.2.2. Data Locality
	2.3.2.3. Batch Execution of Quadrature Batches on the GPU

	3. Results
	3.1. Integration Performance on GPU Devices
	3.2. Strong Scaling

	4. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

