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Predicting crystal structure has been a challenging problem in physics and materials
science for a long time. A reliable energy calculation engine combined with an efficient
global search algorithm, such as particle swarm optimization algorithm or genetic
algorithm, is needed to conduct crystal structure prediction. In recent years, machine
learning-based interatomic potential energy surface models have been proposed,
potentially allowing us to perform crystal structure prediction for systems with the
accuracy of density functional theory (DFT) and the speed of empirical force fields.
In this paper, we employ a previously developed Deep Potential model to predict the
intermetallic compound of the aluminum–magnesium system, and find six meta-stable
phases with negative or nearly zero formation energy. In particular, Mg12Al8 shows
excellent ductility and Mg5Al27 has a high Young’s modulus. Based on our benchmark
results, we propose a relatively robust structure screening criterion that selects potentially
stable structures from the Deep Potential-based convex hull and performs DFT
refinement. By using this criterion, the computational cost needed to construct the
convex hull with ab initio accuracy can be dramatically reduced.

Keywords: many-body potential energy, deep learning, crystal structure prediction, Al-Mg, alloy

INTRODUCTION

In recent years, crystal structure prediction has played an increasingly important role, not only
for understanding the ground-state structure of matter, but also for designing materials and
drug molecules with desired functionality (Oganov, 2018; He et al., 2019; Zhao et al., 2019; Xie
et al., 2020). Generally speaking, a ground-state crystal structure prediction method involves
three components: a model that generates the interatomic potential energy surface (PES) and
forces, a sampling technique for exploring different conformations in the configuration space,
and a relaxation procedure to find the local minima on the PES (Podryabinkin et al., 2019).
While the relaxation procedure is relatively standard, different sampling techniques have been
championed by different software packages. For instance, the genetic evolutionary algorithm,
the particle swarm algorithm, and the firefly algorithm have been widely used in the USPEX
software (Glass et al., 2006), the CALYPSO package (Wang et al., 2010), and the PyChemia
library (Avendaño-Franco and Romero, 2016), respectively. Due to the high accuracy required by
both sampling and relaxation, density functional theory (DFT) (Kohn and Sham, 1965) is typically
used for generating the PES. Despite its widespread success, DFT has a high computational cost that
typically scales cubically with the system size, which, to some extent, hinders routine applications
to large and complex systems.
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Many empirical PES models for popular solid-state systems
have been proposed (Mendelev et al., 2009; Jelinek et al., 2012;
Dickel et al., 2018) to address the efficiency issue of DFT. Due to
the relatively simple and analytical expressions adopted by these
empirical models, an acceleration of many orders of magnitude
in terms of computational cost can be gained, but presumably
at the price of accuracy and transferability. As such, trail-and-
error processes are typically required for developing suchmodels,
yet challenges have remained for systems involving multiple
elements, complex and exotic phases, or bond breaking and
formation events.

In recent years, a few machine learning (ML) techniques
have been proposed for representing the PES (Behler and
Parrinello, 2007; Bartók et al., 2010; Artrith and Urban, 2016;
Khorshidi and Peterson, 2016; Shapeev, 2016; Han et al., 2018;
Zhang et al., 2018a,b). Unlike typically empirical PES models,
representations coming from ML tasks, such as kernel functions
and neural networks (NNs), have shown great promise to fit high-
dimensional functions. When trained on a suitably generated
dataset of atomic configurations and corresponding potential
energies and forces, a good ML-based PES model can be used
with an accuracy of the reference DFT model, and an efficiency
comparable to that of empirical PES models. Not surprisingly,
ML-based PES models have been employed in recent work for
structure search tasks. For instance, boron has been studied by
several groups: Podryabinkin et al. (2019) adopted the moment
tensor potential (Shapeev, 2016) and the USPEX evolutionary
algorithm; Huang et al. (2018) used the Behler–Parrinello
potential (Behler and Parrinello, 2007) and the stochastic surface
walking global optimization method; Tong et al. (2018) used the
Gaussian Approximation Potential (Bartók et al., 2010) and the
CALYPSO approach.

In this work, we target at using ML-based PES models for
crystal structure prediction of alloys. We adopt the smooth
version of the Deep Potential (DP) model (Zhang et al.,
2018b), which employs NN architectures to parameterize
two networks, the embedding network that defines a list of
symmetry-preserving descriptors, and the fitting network that
maps these descriptors to local energy contributions. The
versatile architecture of DP makes it particularly suitable for
multicomponent systems and those involving bond breaking and
formation, for whichmost methodologies are hard to handle. The
aluminum–magnesium (Al–Mg) binary alloy system is selected
as an example based on the following reasons: First, Al–Mg
binary alloys are important in real-life applications. They are
widely used in automotive, aerospace, and electronic device
industries (Gupta and Ling, 2011) due to their lightweight
nature and excellent mechanical properties. However, only a
limited number of intermetallic compounds of the Al–Mg
binary system have been documented in well-known databases,
such as the American Society for Metals (ASM) Alloy Phase
Diagram Database1, the Inorganic Crystal Structure Database
(ICSD)2, the Open Quantum Materials Database (OQMD)3,

1ASM https://www.asminternational.org/phase-diagrams
2ICSD https://icsd.fiz-karlsruhe.de/search/basic.xhtml
3OQMD http://www.oqmd.org

and the Material Project database (MP)4. Second, our previous
study has established an Al–Mg DP model (Zhang et al.,
2019), which describes well the basic physicochemical properties
and has been carefully tested. As such, this DP model can
be readily used for crystal structure prediction and can be
download online5.

Combining the particle swarm optimization (PSO) method
and the DP model, potential intermetallic compounds of
the Al–Mg system are systematically explored. Compared
with a previous study (Zhuang et al., 2017), which only
explored the Mg-rich phases, our simulation covers a much
wider concentration range. Six new Al–Mg intermetallic
compounds (Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16,
and Mg5Al27) are found to be meta-stable. The mechanical
properties of these new compounds are further investigated.
To facilitate future investigations of more complicated tasks,
special attention is given to the whole simulation protocol
and the selection criterion for further DFT validations. Direct
comparisons with popular empirical PES models and DFT
show the advantage of DP in terms of both accuracy
and efficiency.

COMPUTATIONAL METHODS

We adopt the PSO method, as implemented in the CALYPSO
package (Wang et al., 2010), to search potentially stable and
meta-stable Mg–Al intermetallic structures. PSO is inspired
by the choreography of a bird flock and can be seen as a
distributed behavior algorithm that performs multidimensional
search. In the CALYPSO package, there are three steps for a
global structure prediction task. First, a group of structures called
population is generated randomly with symmetric constraints to
allow a diverse sampling of the PES. The number of structures
employed here is defined by a parameter called population size
(PopSize). Second, a local relaxation of the population is
performed based on a PES engine, which is typically a DFT
model, and here we replace it with a DP model. A procedure
that eliminates similar structures by using the so-called bond
characterization matrix is followed up to enhance the search
efficiency. Third, a certain number of new structures (the best
60% of the population size) are generated by PSO. Within the
PSO scheme, a velocity vector associated with each structure
is updated using the information of the previously proposed
and optimized structure, as well as the globally best structure,
that is, the structure with the lowest enthalpy, at the current
generation. The new structures are generated based on the
current structures and the velocity vectors. The last two steps
continue iteratively until the predefined largest number of
generations (GenNumb) is reached. The parameter GenNumb
is typically selected to be large enough so that the structure
with the lowest energy can sustain for several generations.
Generally speaking, the more atoms (Natom) in a structure,
the larger PopSize and GenNumb are required. We refer to
Yanchao Wang and Ma (2012) for more details of the CALYPSO

4MP https://www.materialsproject.org
5deepmd http://www.deepmd.org
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code. We set the CALYPSO parameters according to the
following criteria:











PopSize = 30, GenNumb = 60; if Natom ≤ 10,

PopSize = 40, GenNumb = 80; if 10 < Natom ≤ 20,

PopSize = 50, GenNumb = 100; if 20 < Natom ≤ 32.
(1)

The DP model (Zhang et al., 2018b) used here employs NN
functions to represent the PES. In short, the total energy of a
system is described as the sum of atomic energies,

E =

N
∑

n=1

ǫi, (2)

where ǫi is the ith atomic energy. The atomic energy is
represented as

ǫi = Nω(i)({Rij}j∈N (i)), (3)

where Nω(i) is called a sub-network that computes the atomic
contribution to the total energy, and ω(i), which depends on
the chemical species of atom i, denotes the weights used to
parameterize the sub-network. The neighbors of atom i within
the cut-off radius Rc are denoted by N (i). Rij is the position of
atom j relative to i used to describe the local environment of
atom i. To generate uniformly accurate DP models in a way that
minimizes both human intervention and the computational cost
for data generation and model training, a concurrent learning
strategy called the Deep Potential GENerator (DP-GEN) (Zhang
et al., 2019) has been proposed. In this strategy, an initial dataset
(random Al–Mg alloy structures) labeled by DFT calculations
is used to train an ensemble of DP models, and molecular
dynamics is driven by one of the DP models to sample the
configuration space. An error indicator serves to select a small
fraction out of the new samples as candidates, which are labeled
with ab initio energies and forces and added to the database. Such
iterations are repeated until the configuration space has been
explored sufficiently, and a decent DP model has been obtained
with high accuracy and transferability. The training is performed
using the DeePMD-kit package (Wang et al., 2018) and the
concurrent learning strategy is realized by the DP-GEN software
package (Zhang et al., 2020). In details, the DeepPot-SE model is
used with a cutoff radius of 8.0 Å. The size of the embedding and
fitting NNs are 25× 50× 100 and 240× 240× 240, respectively.
During the training, the learning rate decreases exponentially
with respect to the starting value of 0.0005. The decay rate and
decay step are set to 0.95 and 128,000, respectively. In addition,
the prefactors of loss functions are set to pstarte = 0.02, plimit

e =

2, pstart
f

= 1000, plimit
f

= 1, pstartv = 0.0, plimit
v = 0.0. Both

DeePMD-kit and DP-GEN are publicly available online6. For
more details, we refer the reader to Wang et al. (2018) and Zhang
et al. (2019, 2020).

All DFT calculations are carried out with the Vienna Ab-
Initio Simulation Package (VASP, version 5.4.4) (Kresse and

6See https://github.com/deepmodeling

Furthmüller, 1996). The generalized gradient approximation
within the Perdew–Burke–Ernzerhof (Perdew et al., 1996) (PBE)
functional is used to model the exchange-correlation energy.
The plane wave basis sets with kinetic energy cutoff of 600 eV
are used to expand the valence electron wave functions. For all
structural relaxations, the convergence criterion for the energy
in electronic SCF iterations and the Hellmann–Feynman forces
in ionic step iterations are set to 1.0 × 10−6 eV and 1.0 ×

10−2 eV/Å, respectively. The Brillouin zone is represented by
Monkhorst–Pack (Pack and Monkhorst, 1977) special k-point
mesh with a grid spacing of 0.08 Å−1. The phonon spectra are
obtained based on finite-difference method as implemented in
the Atomic Simulation Environment (ASE) (Bahn and Jacobsen,
2002; Larsen et al., 2017) software, where the forces are calculated
by the python interface of DeePMD-kit. To calculate the phonon
density of states, the q-point mesh is set to 20 × 20 × 20.
The local structure relaxation is carried out by the LAMMPS
package (Plimpton, 1995), and the DP model used here has been
reported and extensively tested in Zhang et al. (2019).

All structure data and convex hulls are analyzed by pymatgen
software (Ong et al., 2013).

RESULTS AND DISCUSSIONS

To demonstrate the validity of CALYPSO+DP scheme,
we perform some preliminary tests for several different
stoichiometric proportions. Here, we take Mg12Al8 as an
example to show the evolution of the energies of all the
structures (Figure 1A), as well as the lowest energy (Figure 1C),
during the CALYPSO structure search process. According to the
energy histogram in Figure 1B, it can be found that there are
about 458 structures, out of a total number of 3,200 structures,
within an energy range <20 meV/atom (compared with the
ground state structure). The evolution of the lowest energy for
all generations shows that the global optimization converged
quickly. It is remarkable to find that one potentially stable
structures can be readily obtained in the first few generations
(labeled by red star in Figure 1A). When refined by DFT,
it shows that this structure is the ground state structure of
the corresponding combination. In the tests of some other
stoichiometric proportions, that is, Mg3Al3, Mg2Al2, Mg1Al1,
and Mg3Al, the corresponding known structures in the materials
project database, that is, mp-1038779, mp-1094987, mp-
1038934, and the L12 phase (Mendelev et al., 2009), are found by
the CALYPSO+DP scheme, which further confirms the validity
of our approach.

Next, we use the DP+CALYPSO scheme to construct the
convex hull of the Al-Mg system systematically. We restrict the
number of atom in the supercell to <32 atoms. In other words,
we consider the systems MgxAly{x + y ≤ 32, x ≥ 1, y ≥ 1, x, y ∈

Z}, which represent 496 combinations, or 323 concentrations, in
total. According to these parameter settings, the total number of
local relaxations is up to 2 × 107. In the following, we consider
three prerequisites that should be satisfied for a stable crystal
structure: (i) thermodynamic stability, which is estimated by the
formation energy and convex hull; (ii) dynamic stability, which
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can be assessed by phonon dispersions; and (iii) mechanical
stability, which is evaluated via elastic constants (Xu et al., 2019).

According to the preliminary tests, we notice that although
the DP model can generate energies and forces that are very
close to the DFT reference model, small intrinsic error still
exists. Therefore, if our goal is to calculate properties with
the accuracy of the DFT-based PES landscape, an additional
refinement step has to be adopted based on structures selected
from a DP+CALYPSO process. Two concepts we pay particular
attention to are the formation energy (Efa) and the energy

FIGURE 1 | Schematic illustration of the DP+CALYPSO process for the
Mg12Al8 system. (A) Evolution of the energies of all structures during the
structure prediction process. The red star indicates the global minimal
structure. (B) Energy histogram. (C) Evolution of the lowest energy during the
structure prediction process.

above convex hull (Eabh). The formation energy (Haastrup et al.,
2018) of an alloy system is the energy required to produce the
system from the most stable crystal structures of the individual
components, which is defined as

Efa =
E(MgxAly)− xE(Mg)− yE(Al)

x+ y
(4)

where E(MgxAly) is the total energy of the material MgxAly, and
E(Mg) and E(Al) are the average energies of the elements Mg
and Al in their stable crystal at 0 K. Eabh measures the energy
for a material to decompose into the set of most stable materials
with the same chemical composition. A positive Eabh indicates
that this material is unstable with respect to such decomposition.
A zero Eabh indicates that this is the most stable material at its
composition. To accurately determine these properties, we use
two criteria for an additional DFT refinement: Efa being less than
20 meV/atom, and Eabh being <20 meV/atom. We use these
two criteria at the same time based on the following reasons.
Our goal is to find potential stable or meta-stable structures.
Due to the error of the DP model, some structures with positive
DP-predicted Efa may turn negative if we refine it by DFT and
vice versa. At the same time, the thermodynamic stability is
also controlled by Eabh. If Eabh is too high, this structure will
decompose into other phases even if this structure has a negative
formation energy. In the tested example, we will show that since
in general DP exhibits a ∼2 meV/atom average error. Compared
with DFT, the criteria used here are fairly robust. In contrast, for
a previously established empirical model, due to its large intrinsic
error, the procedure introduced above is no longer practical, since
the number of DFT refinements is so large that little efficiency can
be gained.

As shown in Figure 2A, we first use the formation energy Efa
to screen the candidate structures, from which the number of
structures is significantly reduced from 2 × 107 to 5,169. Based

FIGURE 2 | (A) The funnel used for screening candidate structures of aluminum–magnesium (Al–Mg), the intermetallic compound via Deep Potential (DP) model. Efa
stands for formation energy and Eabh labels energy above the convex hull. (B) Scatter plot of the formation energy calculated by density functional theory (DFT) and
DP for potentially candidate structures. The inset shows relationship between average energy calculated by DFT and DP. (C) The formation energy as a function of
molar fraction of Al atom for different Mg–Al phases where solid line denotes the convex hull constructed by DFT results. The formation energies calculated by DFT are
marked by blue circle and DP ones are marked by red diamond. All of known structures from materials project are re-optimized and directly used to construct the
convex hull. Pentagon indicates the stable experimental phases and star labels new stable phase.
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on these 5,169 DP-optimized structures, a crude convex hull is
constructed. Then the criterion for Eabh is introduced to remove
the thermodynamically unstable structures, and, finally, 1,495
structures are selected for further DFT refinements. As shown
in the inset of Figure 2B, for all DFT refined structures, the
energies per atom calculated by DP and DFT are in excellent
agreement. The largest and root mean square error (RMSE) of the
total energy per atom are about 17 and 2 meV/atom, respectively.
As for the formation energy in Figure 2B, the largest error and
RMSE are about 15 and 6 meV/atom, respectively. Among them,
the errors of the formation energies of experimentally stable
phases (Zhuang et al., 2017) Mg17Al12 and Mg23Al30 (labeled by
pentagon in Figure 2C) are 15 and 6 meV/atom, which confirms
the validity of our 20 meV/atom selection criteria.

The convex hull based on DFT results is then constructed
and presented in Figure 2C, including two experimentally stable
structures Mg17Al12 and Mg23Al30 labeled by green pentagon.
One new stable structure with a formula of MgAl29 is discovered
and denoted by red star. Based on the DFT-refined convex hull,
we look for new structures that are potentially synthesizable by
experiments. We use the following criteria: Eabh < 20 meV/atom

FIGURE 3 | (A–F) The side view of conventional crystal structures of Mg12Al8,
Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16, and Mg5Al27 is shown, respectively. The
Mg and Al atoms are indicated by yellow and blue ball.

and Efa < 1 meV/atom, where Eabh and Efa are DFT-calculated
values, and obtain 31 potentially candidates, including 1 stable
structure and 30 meta-stable structures. However, we may note
that most of those newly proposed meta-stable structures locate
at the boundary region of the concentration range. That is to say,
most of these structures have very low concentration of Al or Mg.
Compared with these phases, the phases in the middle region
are of more interesting, from which we propose six new meta-
stable structures, namely Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10,
Mg8Al16, and Mg5Al27. The corresponding side view of the
crystal structures are shown in Figures 3A–F and the geometric
structure parameters are listed in Table 1.

As listed in Table 1, the meta-stable structures can be divided
into two groups according to their lattice types. Mg7Al9,
Mg14Al18, and Mg6Al10 have a tetragonal lattice, whereas
Mg12Al8, Mg8Al16, and Mg5Al27 have a cubic lattice. Moreover,
all structures have nearly zero or negative formation and small
energy above convex hull, which indicates that these structures
may be synthesizable by experiments in future.

Given the encouraging stability metrics above, we proceed
to study the dynamic and mechanical stability of these newly
proposed intermetallic compounds via DP model. As shown in
Figure 4, the phonon structures show no imaginary frequency,
which indicates that all of those intermetallic compounds are
dynamically stable. As for the mechanical aspect, the elastic
stability conditions (Mouhat and Coudert, 2014) for cubic
crystals are given as:

C11 − C12 > 0, C11 + 2C12 > 0, C44 > 0, (5)

and those for tetragonal crystals are given as:

C11 > |C12|, 2C
2
13 < C33(C11 + 2C12), C44 > 0, C66 > 0. (6)

According to Table 2, both groups of structures meet the elastic
stability conditions, which indicates that these 6 intermetallic
compounds are mechanically stable. Further, we use the Pugh’s
ratio Bv/Gv to assess the expected average ductility (Pugh, 1954).
According to Pugh, a larger Bv/Gv value implies a better ductility
property. As shown in Table 2, the Pugh’s ratio of both Mg8Al16
and Mg12Al8 are larger than that of hcp Mg (2.08). In particular,
the Pugh’s ratio of Mg12Al8 (2.42) is comparable to that of
Al (2.47), so it may have excellent ductility. Considering its

TABLE 1 | Lattice parameters a(Å), b(Å), c(Å), density ρ (g/cm3), space group
symbol Sm, lattice type, formation energy Efa (meV/atom), and energy above the
convex hull Eabh(meV/atom) of Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16,
and Mg5Al27 calculated by DFT.

Formula Natom a b c ρ Sm Lattice type Efa Eah

Mg12Al8 20 7.38 7.38 7.38 2.10 P4332 Cubic −22.05 3.09

Mg7Al9 16 5.98 5.98 8.44 2.27 P4/mmm Tetragonal −0.82 18.74

Mg14Al18 32 5.98 5.98 16.92 2.27 I4/mmm Tetragonal −0.10 19.45

Mg6Al10 16 5.93 5.93 8.43 2.33 I4/mmm Tetragonal 0.87 17.71

Mg8Al16 24 7.67 7.67 7.67 2.30 Fd-3m Cubic −13.73 1.30

Mg5Al27 32 8.21 8.21 8.21 2.55 Pm-3m Cubic 0.60 7.95
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FIGURE 4 | (A–F) The phonon structures of Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16, and Mg5Al27 calculated by Deep Potential (DP) model are shown.

TABLE 2 | Elastic constants, bulk modulus Bv (GPa), shear modulus Gv (GPa),
Young’s modulus Ev (GPa), Pugh’s ratio (Bv/Gv ), and Poisson’s ratio ν of Mg12Al8,
Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16 and Mg5Al27 calculated by the DP model.

Formula C11 C12 C13 C33 C44 C66 Bv Gv Bv/Gv EV ν

Mg9a,1 59.57 26.54 21.05 72.94 15.08 16.12 36.53 17.59 2.08 45.48 0.29

Mg12Al8 71.26 35.75 36.50 73.15 21.19 21.38 48.14 19.89 2.42 52.45 0.32

Mg7Al9 94.75 30.55 39.20 84.63 32.91 22.00 53.81 28.08 1.92 71.77 0.28

Mg14Al18 89.19 31.60 40.27 85.57 32.16 23.48 54.57 27.49 1.99 70.60 0.28

Mg6Al10 101.77 36.06 42.59 92.14 31.37 23.23 59.65 29.05 2.05 74.97 0.29

Mg8Al16 97.47 49.80 48.72 95.07 30.68 31.73 65.06 28.35 2.29 74.27 0.31

Mg5Al27 95.40 39.17 39.87 104.71 37.48 40.21 58.91 35.09 1.68 87.84 0.25

Al4a,2 117.64 63.34 58.20 108.46 32.55 40.44 78.15 31.65 2.47 83.66 0.32

The subscript v denotes the Voigt expressions. The same properties of Mg and Al element

are also calculated for comparison (here, the minor inconsistency of elastic constants

comes from inherent error of DP model and computation error).
aAll values are calculated by authors based on DP model.
1Zhuang et al. (2017) give DFT values of C11 = 66 GPa, C12 =25 GPa, C13 = 19 GPa,

C33 = 70 GPa, C44 = 20 GPa, Bv = 37 GPa, Gv = 21 GPa, Bv/Gv = 1.76 GPa, and

EV = 54 GPa.
2Zhang et al. (2019) give DFT values of C11 = 111.2 GPa, C12 = 61.4 GPa, C44 = 36.8

GPa, Bv = 78.0 GPa, and Gv = 32.1 GPa.

lower density (2.10 g/cm3) compared with Al (2.72 g/cm3),
this intermetallic compound may have potential applications in
automotive, aerospace, electronic, and device industries if it can
be synthesized. In addition, the Mg5Al27 has a higher Young’s
modulus among all these structures, which indicates that this
material may be applied to manufacture high strength devices.

Finally, we test the accuracy of a recent version of the
MEAM potential (Jelinek et al., 2012) and see whether it can
be used for a similar task or not. For a direct comparison, we
test it on all DFT-refined structures and report the results in
Figure 5. As shown by the red diamonds and green pentagons
in Figure 5A, MEAM exhibits much larger errors compared with
DP for most of the structures, and there are MEAM predictions
outside the range of the plot (±100 meV/atom) due to large
errors. MEAM results show a large spread on the convex hull
plot constructed by DFT results (Figure 5B). For the tested
structures, the largest error of Efa is 204 meV/atom, and the
RMSE is 44 meV/atom. Moreover, the largest error of per-
atom total energy is 465 meV/atom, and the mean error is
236 meV/atom. As such, if we use MEAM+CALYPSO to do
a screening of the structures, the selection criteria for further
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FIGURE 5 | (A) Scatter plot of the formation energy calculated by density functional theory (DFT) and Deep Potential (DP) for potentially candidate structures. (B) The
formation energy as a function of molar fraction of Al atom for different Mg–Al phases where solid line denotes the convex hull constructed by DFT results. The
formation energies calculated by DFT, DP, and MEAM are marked by blue circle, red diamond, and green pentagon, respectively.

DFT refinement would be Efa and Eabh larger than at least 200
meV/atom. As a rough estimation, according to these criteria,
∼ 1 × 106 structures will need to be refined by DFT, which
is not computationally feasible at all. Above all, we conclude
that although MEAM is very efficient, it cannot be used to
improve the efficiency of constructing a convex hull at the level
of DFT accuracy.

To demonstrate the efficiency of our DP-based procedure,
we use two groups of structures to compare the time
performance. One group is composed of several Mg31Al
structures and the other group consists of MgAl31 structures.
The test results shows that, compared with DFT relaxation,
DP has an average speed-up ratio about 3,700 and 650
for Mg31Al and MgAl31, respectively, which indicates
DP has better time scaling and can be used for larger
systems. All tests are performed on Intel(R) Xeon(R)
Gold 6248 CPU @ 2.50 GHz.

CONCLUSIONS

In this paper, we demonstrate that the DP+CALYPSO scheme
is reliable for crystal structure prediction for binary alloy
system in a wide concentration range. As a concrete example,
we use this scheme to predict potentially stable intermetallic
compounds of the Al–Mg binary system. Six new meta-stable
Al–Mg intermetallic compounds are successfully predicted,
including Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16, and
Mg5Al27. All the meta-stable structures are predicted to have
thermodynamic stability, dynamic stability, and mechanical
stability. In particular, Mg12Al8 shows excellent ductility and
Mg5Al27 has high Young’s modulus. We remark that the
exploration strategy proposed in this work can be combined

with the DP-GEN protocol (Zhang et al., 2019, 2020) to
generate more training data and improve the DP potential.
Moreover, to serve a larger community, DeePMD-kit can
be interfaced with other popular general-purpose crystal
structure prediction software such as CALYPSO, USPEX, and
Pychemia. However, some disadvantages also exits for current
scheme, such as expensive cost for training a model, low
interface efficiency with CALYPSO, and so on, which limits its
application to search complex multicomponent systems with
larger number of atoms. We will leave these problems in our
future work.
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