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Linear-scaling density functional theory (DFT) is an efficient method to describe the
electronic structures of molecules, semiconductors, and insulators to avoid the high
cubic-scaling cost in conventional DFT calculations. Here, we present a parallel
implementation of linear-scaling density matrix trace correcting (TC) purification algorithm
to solve the Kohn–Sham (KS) equations with the numerical atomic orbitals in the HONPAS
package. Such a linear-scaling density matrix purification algorithm is based on the
Kohn’s nearsightedness principle, resulting in a sparse Hamiltonian matrix with localized
basis sets in the DFT calculations. Therefore, sparse matrix multiplication is the most
time-consuming step in the density matrix purification algorithm for linear-scaling DFT
calculations. We propose to use the MPI_Allgather function for parallel programming
to deal with the sparse matrix multiplication within the compressed sparse row (CSR)
format, which can scale up to hundreds of processing cores on modern heterogeneous
supercomputers. We demonstrate the computational accuracy and efficiency of this
parallel density matrix purification algorithm by performing large-scale DFT calculations
on boron nitrogen nanotubes containing tens of thousands of atoms.

Keywords: linear-scaling density functional theory, density matrix purification algorithm, sparse matrix

multiplication, parallel implementation, tens of thousands of atoms

1. INTRODUCTION

The Kohn–Sham density functional theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham,
1965) has been successfully applied to perform first-principles calculations for describing the
electronic structures of both molecules and solids. However, conventional DFT calculations
based on direct diagonalization methods for solving the KS equations have a high cubic-scaling
cost (Goedecker, 1999), which can usually be used to study medium-scale systems containing up to
hundreds of atoms. Therefore, it is difficult to achieve massive parallelism for these conventional
cubic-scaling methods due to complex communication issues. To avoid the bottleneck arising
from the computational cost and memory usage of directly diagonalizing the Hamiltonian
matrix in conventional DFT calculations, linear-scaling methods using local basis functions
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have been proposed (Goedecker, 1999), strongly promoting
the applications of DFT calculations in large-scale systems
containing thousands of atoms.

In general, linear-scaling methods include direct, variational,
and purification methods (Bowler and Miyazaki, 2012). The
direct methods are featured by direct evaluation of density
matrix using various approximations, including divide and
conquer (Yang, 1991; Yang and Lee, 1995) and Fermi operator
expansion (Goedecker and Colombo, 1994; Goedecker and Teter,
1995; Liang et al., 2003). The variational methods minimize
the total energy with respect to the auxiliary density matrix or
Wannier-like orbitals, covering density matrix minimization
method (Daw, 1993; Li et al., 1993; Nunes and Vanderbilt,
1994) and orbital minimization method (OMM) (Galli and
Parrinello, 1992; Mauri and Galli, 1994; Kim et al., 1995;
Ordejón et al., 1995). The third scheme exploits the purification
polynomial and iterative solution, which is known as density
matrix purification method (Palser and Manolopoulos, 1998;
Niklasson, 2002; Niklasson et al., 2003). Nearly all of the
linear-scaling methods are based on the Kohn’s nearsightedness
principle with localized basis sets, such as Gaussian type
orbitals (GTOs) (Frisch et al., 1984) and numerical atomic
orbitals (Shang et al., 2010) (NAOs), resulting in the sparsity
of density matrix with a number of non-zero entries that
increase linearly with the system size, so the linear-scaling
matrix-matrix multiplication can be achieved (VandeVondele
et al., 2012; Kim and Jung, 2016). In particular, the density
matrix purification algorithms without prior knowledge
of the chemical potential, including the trace-preserving
canonical purification scheme of Palser and Manolopoulos
(PM) (Palser and Manolopoulos, 1998; Daniels and Scuseria,
1999), the trace-correcting purification (TC) (Niklasson,
2002), and the trace resetting density matrix purification
(TRS) (Niklasson et al., 2003), have been demonstrated as
accurate and efficient linear-scaling methods to describe
the electronic structures of molecules, semiconductors, and
insulators. However, almost all of the developed linear-scaling
techniques (direct, variational, and purification methods)
assume the presence of a non-zero gap in the electronic
structure, which prevents them from treating metallic systems.
Recently, Suryanarayana (2017) have employed the O(N)
Spectral Quadrature (SQ) method (Suryanarayana, 2013; Pratapa
et al., 2016) to study the locality of electronic interactions in
aluminum (a prototypical metallic system) as a function of
smearing/electronic temperature. They have found exponential
convergence accompanied by a rate that increases sub-linearly
with smearing. It is also worth mentioning that all these linear-
scaling methods based on Kohn’s nearsightedness principle
are limited to the localization of density matrix (Bowler and
Miyazaki, 2012). A recently published innovative version of
PEXSI scheme named iPEXSI (Etter, 2020), which does not
rely on the nearsightedness principle, can scale provably better
than cubically even in the absence of localization of density
matrix. The iPEXSI algorithm utilizes a localization property of
triangular factorization, which could extend the usable range of
linear-scaling method to metallic system without the constraint
of finite electronic temperature.

Nowadays, with the rapid development of modern
heterogeneous supercomputers, the high-performance
computing (HPC) has become a powerful tool for accelerating
the DFT calculations to deal with large-scale systems. Several
highly efficient DFT software based on low-scaling methods
have been developed, such as SIESTA (Soler et al., 2002),
OPENMX (Ozaki and Kino, 2005), CP2K (Kühne et al., 2020),
CONQUEST (Gillan et al., 2007), PROFESS (Ho et al., 2008),
FREEON (Challacombe, 2014), ONETEP (Skylaris et al.,
2005), BigDFT (Genovese et al., 2008; Mohr et al., 2014),
FHI-aims (Blum et al., 2009), ABACUS (Chen et al., 2010, 2011),
HONPAS (Qin et al., 2015), and DGDFT (Lin et al., 2012; Hu
et al., 2015a,b; Banerjee et al., 2016; Zhang et al., 2017), which
are capable to make full advantage of the massive parallelism
available on HPC architectures beneting from the local data
communication of sparse Hamiltonian matrix generated with
local basis sets. In linear-scaling DFT calculations, the kernel for
HPC is to parallel sparse matrix–matrix multiplication. In order
to realize the HPC parallelism, two massively parallel libraries
of BCSR (Borštnik et al., 2014) and NTPOLY (Dawson and
Nakajima, 2018) have been developed, which have shown
a high performance for the density matrix purification
algorithms implemented in the CP2K (Kühne et al., 2020)
and CONQUEST (Gillan et al., 2007) packages.

In this work, we present a parallel implementation of linear-
scaling density matrix second-order trace-correcting purification
(TC2) algorithm (Niklasson, 2002) to solve the KS equations
with the NAOs in the HONPAS package (Qin et al., 2015).
We propose to use the MPI_Allgather function for parallel
programming to deal with such sparse matrix multiplication
within the CSR format, which can be scaled linearly up
to hundreds of processing cores on modern heterogeneous
supercomputers. We demonstrate the computational accuracy
and efficiency of this linear-scaling density matrix purification
method by performing large-scale DFT calculations on boron
nitrogen nanotubes containing thousands of atoms.

2. METHODOLOGY

2.1. Density Functional Theory
We first give a brief review of Kohn–Sham density functional
theory (KS-DFT). The key spirit of KS-DFT is to solve the KS
equations defined as

Ĥψi(r) = (T̂ + V̂ion + V̂H + V̂xc)ψi(r) = εiψi(r) (1)

where Ĥ is the Hamiltonian operator, ψi is the ith molecular
orbital, and ǫi is the corresponding orbital energy. T̂ is the kinetic
operator, V̂ion is the ionic potential operator, and V̂H is the
Hartree potential operator defined as

V̂H(r) =
∫

ρ(r′)

|r− r′|
dr′ (2)

where the electron density is given by

ρ(r) =
Ne∑
i=1

ψ∗
i (r)ψi(r) (3)
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In the approximation of linear combination of atomic orbitals
(LCAO) (Mulliken, 1955), the ψi is expanded on a set of NAOs
{φµ(r)}

Nb
µ=1

ψi(r) =
Nb∑
µ

cµiφµ(r) (4)

where cµi is the expansion coefficient at the µth atomic orbital
and Nb is the number of NAOs. Then, the KS equations can be
rewritten into matrix notations as

HC = SCE (5)

where C is coefficient matrix and E is the corresponding orbital
energy. H and S are the Hamiltonian and overlap matrices over
the NAOs

Hµν =

∫
φ∗µ(r)Ĥφν(r)dr

Sµν =

∫
φ∗µ(r)φν(r)dr

(6)

The default choice in the SIESTA package is to use the direct
diagonalization method though the LAPACK and ScaLAPACK
libraries to solve this eigenvalue problem with a high cubic-
scaling cost. Therefore, the computational cost and memory
usage of such DFT calculations increase rapidly as the system
size, which are only limited to small systems containing hundreds
of atoms. In order to overcome this limitation, several linear-
scaling methods have been implemented in the SIESTA package,
such as the Kim–Mauri–Galli (KMG) orbital minimization
(OMM) method (Galli and Parrinello, 1992; Mauri and Galli,
1994; Kim et al., 1995; Corsetti, 2014) and divide and conquer
method (Cankurtaran et al., 2008). The KMG requires a initial
approximate Wannier functions and a prior knowledge of the
chemical potential. In the HONPAS-SIESTA package (Qin et al.,
2015), we implement the density matrix purification algorithms,
including the trace-preserving canonical purification scheme of
PM (Palser andManolopoulos, 1998; Daniels and Scuseria, 1999),
the trace-correcting purification (TC) (Niklasson, 2002), and the
trace resetting density matrix purification (TRS) (Niklasson et al.,
2003).

2.2. Linear-Scaling Density Matrix
Purification Algorithms
After constructing the Hamiltonian matrix, the density matrix
can be obtained by directly diagonalizing the Hamiltonian
matrix with cubic-scaling cost. In order to avoid the high
cost of explicit diagonalization, we implement three density
matrix purification algorithms, without prior knowledge of the
chemical potential for linear-scaling DFT calculations, including
the trace-preserving canonical purification scheme of PM, the
trace-correcting purification (TC) (Niklasson, 2002), and the
trace resetting density matrix purification (TRS) (Niklasson
et al., 2003), in the HONPAS package (Qin et al., 2015). In
this work, we use the second-order trace-correcting purification
(TC2) (Niklasson, 2002) algorithm with orthogonal basis sets to

illustrate our parallel algorithms. In the coordinate presentation,
the general form of density matrix can be given by

ρ(r, r′) =
Nb∑
i=1

f (εi)ψi(r)ψ
∗
i (r

′) (7)

where f (εi) is the Fermi distribution function of energy level εi at
finite electronic temperature

f (εi) =
1

1+ eβ(εi−µ)
(8)

with the chemical potential µ and the inverse temperature β =

1/kBT. Within the LCAO method, we can transform the density
matrix from coordinate presentation to the basis presentation,
then the density matrix element Pµν becomes:

Pµν =

∫
φ∗µ(r)ρ(r, r

′)φν(r
′)drdr′

=

∫
φ∗µ(r)

Nb∑
i=1

f (εi)ψi(r)ψ
∗
i (r

′)φν(r
′)drdr′

=

Nb∑
i=1

f (εi)
Nb∑
λ

cλi

Nb∑
κ

c∗κi

∫
φ∗µ(r)φλ(r)dr

∫
φ∗κ (r

′)φν(r
′)dr′

=

Nb∑
i=1

f (εi)
Nb∑
λ

cλi

Nb∑
κ

c∗κiSµλSνκ

(9)
If NAOs are orthogonal, the density matrix element Pµν can be
written as

Pµν =
Nb∑
i

f (εi)cµic
∗
νi (10)

Note that εi is relative to the eigenvalue of Ĥψi = εiψi, so Pµν
can be rewritten as

Pµν =

∫
φ∗µ(r)ρ(r, r

′)φν(r
′)drdr′

=

Nb∑
i

∫
φ∗µ(r)f (εi)ψi(r)ψ

∗
i (r

′)φν(r
′)drdr′

=

∫
φ∗µ(r)f (Ĥ)

Nb∑
i

(ψi(r)ψ
∗
i (r

′))φν(r
′)drdr′

=

∫
φ∗µ(r)f (Ĥ)φν(r

′)drdr′

(11)

which implies that P is commutative with H, namely [H, P] = 0.
Another substantial property of the appropriate density matrix is
particle conservation, Tr(P) = Ne/2.

When the electronic temperature is zero, f (εi) = 1 and the
density matrix of insulator can be written as

Pµν =
Ne∑
i

cµic
∗
νi (12)
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FIGURE 1 | The flowchart of density matrix purification TC2 method. There
are four time-consuming parts in the TC2 method, including constructing the
Hamiltonian matrix, initializing the density matrix P from the Hamiltonian matrix
with Cholesky and Lanzos methods, updating the density matrix with parallel
sparse matrix–matrix multiplication, and computing total energy and atomic
forces after SCF iterations.

which must satisfy the so-called idempotency PP = P with an
orthogonal basis.

The solution of eigenvalue problem is under three restricted
conditions of the density matrix mentioned above, which
is known as the purification method. The trace-preserving
canonical purification scheme of PM (Palser and Manolopoulos,
1998), which imposes commutation relation and trace-
preserving condition, works with a predefined occupation and
does not need the input or adjustment of the chemical potential.
Trace-conserving spectral projections are performed during each
iteration, until the density matrix Pn converges to the correct
one that satisfies the idempotency condition. This method
is inefficient at low and high partial occupancies (Palser and
Manolopoulos, 1998; Daniels and Scuseria, 1999). A subsequent
strategy proposed by Niklasson named TC algorithm (Niklasson,
2002). Its second-order form is called the second-order trace-
correcting purification (TC2) method (Niklasson et al., 2003).
The higher order TC2 requires additional matrix multiplications,
which pursues a more rapid reduction of errors and a less step of
purification iterations (Kim and Jung, 2016).

The TC2 purification algorithm is simple, robust, and rapidly
convergent for closed-shell systems, and more efficient in
orthogonal basis sets (Xiang et al., 2005). In this work,H denotes
the Hamiltonian matrix under the presentation of orthogonal
basis sets. Reasonably in the preparatory step, a transformation
H = ZTHAOZ is required, here the matrix Z is obtained by
solving out the inverse square root of overlap matrix S by the
Cholesky factorization (Cholesky, 2005). The idempotency and

Algorithm 1 The pseudocode of TC2 algorithm, where Ne is the
number of electrons, E is the energy-density matrix, εmin(H) and
εmax(H) denote the minimal and maximum eigenvalue of the
Hamiltonian matrix H, respectively.

subroutine TC2 (H, P, Ne)
1: S = LLT

2: Z = L−1

3: H = ZHAOZT

4: P0 = (εmaxI −H) / (εmax − εmin)

5: do iter = 1, niter
6: if Tr(Pn) ≤ Ne/2 then

7: Pn+1 = P2n
8: else

9: Pn+1 = 2Pn − P2n
10: δ = (Tr (Pn+1H)− Tr (PnH)) /Tr (PnH)
11: enddo

12: if (Converged) then
13: PAO = ZTPZ
14: E = PAOHAOS−1 = PAOHAOZTZ
15: endif

end subrouine

commutativity are satisfied naturally since the initial guess P0 is
obtained by the Lanczos method (Lanczos, 1950).

During each iteration step, the trace of Pn+1 is corrected by
P2n (Tr(Pn) ≤ Ne/2) or 2Pn − P2n (Tr(Pn) > Ne/2). Then, matrix
elements less than a numerical threshold δfilter (10−4 or 10−6) are
dropped to zero, thus maintaining the sparsity of density matrix.
The pseudocode of the TC2 algorithm is given in Algorithm 1
and its corresponding owchart is shown in Figure 1.

The density matrix purification method in HONPAS is based
on the fact that both the density matrix and Hamiltonian matrix
are sparse with NAOs. Therefore, sparse matrix multiplication
is the most expensive step in the density matrix purification
method. Figure 2 shows the sparsity of the density matrix P
saved as CSR format for the BN nanotubes consisting of 100 and
1,000 atoms (BNNT100 and BNNT1000) with different basis sets
[single-ζ (SZ), double-ζ (DZ), and double-ζ plus polarization
(DZP)] and thresholds (δfilter = 10−4 and 10−6) of non-zero
elements in the density matrix P.

When the selected basis sets are strictly localized, the
coefficient matrix C for BNNT100 and BNNT1000 systems
formed in a similar block diagonal matrix and arbitrary row
of the resultant P is occupied by same number of non-zero
elements since P = CCT . Therefore, the total number of non-
zero elements grows linearly with the system size under tight
binding approximation, which is the substantial precondition of
almost all linear scaling algorithms. If we have an observation
onto the first two columns of Figure 2, matrices show block-
multidiagonal patterns and sparse degree of BNNT 1000 with the
SZ basis set under δfilter = 10−4 is 11.6%, which is obviously less
than that of BNNT100 (87.7%). Variation trend of sparse degree is
consistent with the charactermentioned above from a perspective
of image. Moreover, the cutoff radius rc of the DZP basis set is
higher, so non-zero elements per row distribute more intensively
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FIGURE 2 | The sparsity of the density matrix P in the compressed sparse row (CSR) format of BN nanotubes (BNNTs) consisting of 100 and 1,000 atoms (BNNT100
and BNNT1000). Percentage under the system name indicates sparse degree of P. The matrix elements exceeding 10−2 are labeled as light blue and those
exceeding 10−1 are marked as red. White area is remained for elements with tiny values or zero. Density matrix becomes less occupied with its elements gathering
close to diagonal when the threshold after multiplication 100× tighter (10−6) than that of higher occupied matrix (10−4). When the basis sets become larger from SZ to
DZP, sparse degree varies and δfilter strongly affects the sparsity pattern.
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but their value is smaller than that of SZ and DZ. Sparse degree of
BNNT1000 also decreases significantly from that of BNNT100 in
the case of DZP basis set, such as 86.6% of BNNT100 and 16.4%
of BNNT1000 at the same threshold, respectively.

On the perspective of threshold as shown in Figure 2, we
observe that, as the system size increases, the influence of δfilter is
more significant, either the patterns or the sparse degree display
an obvious difference under δfilter = 10−4 and 10−6. For example,
the density matrix of BNNT1000 with the DZP basis set is 32.3%
occupied under δfilter = 10−6 and 16.4% occupied under δfilter
= 10−4. On the other hand, δfilter has a slight influence on the
sparsity of BNNT100 compared with BNNT1000, which implies
that the distribution of numerical value of matrix elements is
shifted to higher level than that of BNNT1000. Just as elements
dotted with deep color in BNNT100 are much more intensive
than those of BNNT1000. It should be noted that dropping
matrix elements less than δfilter and using strictly truncated NAOs
both contribute to the sparsity of P.

2.3. Parallel Implementation of Sparse
Matrix Multiplication
The time required to process matrix–matrix multiplications
during each iteration step accounts for a major part of total
time. Note that there are some additional steps such as data
communication and matrix addition. Fortunately, all matrices
we need to deal with are sparse, so that the number of dot
products reduces. The linear scaling cost arises from the fact that
all matrix operations are performed on sparse matrices, which
has a number of non-zero entries that increase linearly with the
system size (VandeVondele et al., 2012).

The sparsity of matrix also causes unexpected drawbacks.
An apparent disadvantage is, the matrix multiplication step
would change the sparsity pattern during the self-consistent field
(SCF) iterations, resulting in a load imbalance between matrix
computation and data commutation among different processing
cores. Since each matrix is distributed on a series of processes
in advance, the instability of sparsity pattern will occur at each
iteration, thus we also need to modify the data distribution after
each iteration or exploit a block-cyclic distribution scheme. Apart
from those, dropping matrix elements with the numerical value
less than a threshold can reduce the number of dot products. But
the computational accuracy of total energy and atomic forces is
sacrificed inevitably under a loose threshold. The parallel version
of TC2 algorithm in HONPAS is based on CSR data format and
message-passing interface (MPI), which is capable of performing
massive parallelism on modern heterogeneous supercomputers.
We employ the SPARSEKIT library to manipulate and deal with
sparse matrices, which provides programs for converting data
structures, filtering out elements, and performing basic linear
algebra operations with sparse matrix (Saad, 1994).

In the parallel TC2 module, there is a single hierarchical
structure of parallelization that consists of single type of data
distribution and communication scheme. The TC2 module
utilizes the MPI parallel programming to deal with data
communications between different MPI processes. In our work,
the MPI processes are organized in 1D row MPI grids. The

FIGURE 3 | Parallel data distribution and communication of sparse matrix
multiplication when Np = 4. The density matrix is partitioned into four row
block local matrices with 1D row BN nanotube (BNNT) grid parallelism (1p, 2p,
3p, and 4p). Each local matrix is stored in the compressed sparse row (CSR)
format. MPI_Allgather is invoked to integrate these four row block local
matrices into a global matrix in the CSR format.

density matrix is distributed by 1D row blocks across MPI
processes, and each process saves Nb/Np rows of global matrix.
Thus, such local and global sparse matrix–matrix multiplication
does not require additional data communication. Individual
process computes its part of the multiplication, processing a
row block of np (n = 1, 2, . . ., Np) at a time. After the local
multiplication has been processed, each processor just gathers a
local subset of global density matrix. We use the MPI_Allgather
function to gather local matrices into global density matrix
in each MPI process, similar to the case of MPI_Gather and
then MPI_Bcast, then performing local sparse matrix–matrix
multiplication at the next iteration step. Figure 3 illustrates the
schematic diagram of MPI communication on CSR data format,
in which we set Np = 4 to simplify the discussion.

3. RESULTS AND DISCUSSION

In this section, we demonstrate the computational accuracy and
efficiency of our parallel TC2 algorithm. We implement this
method in the HONPAS package (Qin et al., 2015), which has
been written in the Fortran programming language with the MPI
for parallelism. We use the norm-conserving Troullier-Martins
pseudopotentials (Troullier and Martins, 1991) to represent
interaction between core and valence electrons. We use the
exchange-correlation functional of local density approximation
of Goedecker-Teter-Hutter (LDA-PZ) (Goedecker et al., 1996)
to describe the electronic structures of these BNNTs with
a grid cutoff of 100 Ry. In our calculations, the NAOs
are generated by default parameters in SIESTA. We utilize
the linear-scaling density matrix TC2 purification algorithm
to calculate the electronic structures of a series of boron
nitride nanotubes (BNNTs), containing 100–18,000 atoms
(labeled by BNNT100-BNNT18000). The details of the input
parameters and atomic structures of BNNTs used in this
work as well as the performance data are shown in the
Supplementary Materials.
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TABLE 1 | Absolute error of total energy 1Etot (eV/atom) and the maximum of root
mean square error of atomic forces 1Fmax (eV/Å) of the TC2 method with varying
thresholds of δfilter = 10−4 and 10−6 for the BNNT100 system with SZ, DZ, and
DZP basis sets.

Basis sets δfilter 1Etot 1Fmax

SZ 10−4 3.36× 10−4 8.48× 10−3

DZ 10−4 2.26× 10−3 9.80× 10−2

DZP 10−4 8.80× 10−3 3.07× 10−1

SZ 10−6 3.70× 10−7 3.64× 10−5

DZ 10−6 4.72× 10−5 1.73× 10−4

DZP 10−6 1.06× 10−5 4.30× 10−4

The reference results are computed by the direct diagonalization method.

3.1. Accuracy
We benchmark the computational accuracy of parallel TC2
method by comparing the results with those obtained from the
diagnonalization method.We consider the effects of both the size
of basis sets (SZ, DZ, and DZP) and different values of thresholds
(δfilter = 10−4 to 10−6) on the computational accuracy of density
matrix TC2 purification algorithm. We define the errors of total
energy and atomic forces, respectively, as

1Etot =| 1ETC2 − EDIAG | /NA

1FI =| FTC2I − FDIAGI |

where NA is the total number of atoms and I is the atom index.
In the HONPAS calculations, the default convergence

accuracy for total energy and atomic forces are 10−4 eV/atom and
0.02 eV/Å, respectively. Table 1 shows that the TC2 purification
calculation for total energy is performed very well when choosing
a tight dropping threshold, and δfilter = 10−6 can yield a total
energy accuracy of 10−5 eV/atom at least. On the other hand,
strictly truncated NAOs can yield the sparsity without loss of
accuracy simultaneously (Shang et al., 2010). We compute the
total energy and atomic forces under different basis sets using
a variable threshold. As shown in Figure 4, the errors of atomic
forces from TC2 and those obtained from direct diagonalization
method are indistinguishable. For all tested systems, the accuracy
of the TC2 method can be obviously improved by tightening
the threshold (10−4 to 10−6). In particular, when the threshold
is set to 10−4, 1Fmax with the most general case of DZP basis
set reaches 10−1 eV/Å, which is already comparable to the
magnitude of atomic force itself. In contrast, 1Fmax = 4.30 ×

10−4 eV/Å under δfilter = 10−6 with the same basis set. The
noticeable error arises from the lack of information in density
matrix when too many elements are neglected after each iteration
step and the information of Hamiltonian matrix just included in
the initial step. However, the relative error of energy per atom
is less than 10−7 when threshold is set to 10−6 in the case of SZ
basis set, which indicates that the computational accuracy of TC2
method is still guaranteed. On the perspective of basis sets, high
accuracy is ensured when we employ rigorously localized basis
sets (SZ). Note that systems with the DZP basis set have relatively
larger errors, since the information of polarization orbital is

FIGURE 4 | Variation of root mean square error of atomic force on each atom
computed with the TC2 and diagonalization methods with different basis sets
(SZ, DZ, and DZP) and thresholds (δfilter = 10−4 and 10−6) for BNNT100.

partly omitted by dropping matrix elements. For instance, when
δfilter is set to 10−4, the energy error for SZ is 3.36× 10−4 but that
for DZP is 8.80×10−3 (still can achieve the converged accuracy).
As we have mentioned in section 2, non-zero elements those
hold relatively small value distribute more intensively in the case
of DZP basis set, and the physical information can be seriously
lacking under relatively large δfilter.

3.2. Efficiency
We demonstrate the computational efficiency and parallel
scalability of linear-scaling TC2 method by checking the
weak and strong scaling performance on BNNT systems with
the SZ basis set and a threshold of δfilter = 10−4. We
illustrate the total time of the main time-consuming parts as
shown in Figure 1: (a) Construction of Hamiltonian matrix,
(b) evaluation of density matrix P from Hamiltonian matrix
by Cholesky factorization following Lanczos method, and (c)
purification with matrix multiplication and addition. It should
be noticed that the data communication via MPI interface also
occupies numerous time resource while performing massive
parallelization over plenty of processing cores. Practical tests
on the computational efficiency and parallel scalability are
performed in the case of BNNT systems with MPI parallelism on
modern heterogeneous supercomputers, including comparison
of TC2 and diagonalization methods with respect to different
system sizes and process counts, as shown in Figures 5, 6,
respectively. There are some additional steps such as computing
total energy and atomic forces, which are all included in the total
wall clock time of outer SCF iterations in the TC2 method.

Since the computational cost of linear-scaling TC2 method
grows linearly with respect to the system size, a noteworthy speed
up is supposed to be observed. We choose all tested systems with
the SZ basis set to illustrate strong and weak scaling behaviors,
since it is more strictly localized, resulting in a relatively small
change of sparsity pattern after each iteration step. The variation
of total time with respect to the system size is plotted in Figure 5.
We can see that the scaling of TC2 is fitted to O(N) due to the
linearly growing sparse degree of P, and the number required
to perform multiplication has the same trend. Linear scaling
behavior is obtained with various systems containing 2,000–9,000
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FIGURE 5 | Weak scaling of wall clock time per SCF iteration with respect to
the number of atoms with the message-passing interface (MPI) parallelism for
BN nanotubes (BNNTs) with 2,000 and 9,000 atoms (BNNT2000 and
BNNT9000) computed with the TC2 and diagonalization methods.

FIGURE 6 | Strong scaling of wall clock time per SCF iteration with respect to
the number of cores with the message-passing interface (MPI) parallelism for
BN nanotubes (BNNTs) with 3,000 and 18,000 atoms (BNNT3000 and
BNNT18000) computed with the TC2 and diagonalization methods.

atoms under serial mode (Np = 1), and it continues to scale
further up to 500 cores at least, which benefits from the efficient
parallel implementation of matrix multiplications based on the
CSR formatted sparse density matrix. A speed-up of 4.7 can be
achieved for 9,000 atoms (500 cores) and could be larger for
more atoms. The fitted scaling for explicit diagonalization is
just O(N1.9) with number of atoms fewer than 5,000 when the
number of processors is relatively large, arising from the load
imbalance that problem size (number of computational tasks)
distributed on each process is not adequate and some cores
remain idle. If the processors keep increasing, low efficiency of
parallelization is going to happen. When the size of system grows
sufficiently or processing cores have a relevant scale, fitted scaling
turns back to O(N3) due to the cubic scaling of conventional

diagonalization step. As a conclusion, linear-scaling TC2 method
outperforms explicit diagonalization in terms of expansibility to
large systems and massive parallel implementation.

Figure 6 compares the parallel scalability of TC2 to
diagonalization methods. As it can be seen, the parallel
scalability of both methods is unsatisfactory, especially with
the smaller system size. This issue arises in the load imbalance
caused by idle processors since computational tasks are
inadequate compared with hundreds of cores. Test for 18,000
atoms with diagonalization is not represented due to a memory
overflow problem (the dimension of matrix is 72,000). Unlike
the diagonalization method, test for TC2 has been performed
since the utilization of CSR data format reduces the memory
requirement. TC2 method demonstrates just scaling up to 600
cores, since the 1D processes layout prevents it from massive
parallelization. The performance of global MPI communications
such as MPI_Allgather is strongly impacted by the physical
distance of remote processing cores, which prompts us to utilize
BCSR storage format and 2D block-cyclic processor layout.

4. CONCLUSION AND OUTLOOK

In summary, we present a parallel implementation of linear-
scaling density matrix trace correcting (TC) purification
algorithm to solve KS equations with numerical atomic orbitals
in the HONPAS package. We use the MPI_Allgather function
for parallel programming to deal with the sparse matrix
multiplication within the CSR format, which can scale up
to hundreds of processing cores on modern heterogeneous
supercomputers. We demonstrate the computational accuracy
and efficiency of this linear-scaling density matrix purification
algorithm by performing large-scale DFT calculations on boron
nitrogen nanotubes containing tens of thousands of atoms.

However, our parallel implementation of TC2 method in
HONPAS is inferior to that of BigDFT (Genovese et al.,
2008; Mohr et al., 2014), ONETEP (Skylaris et al., 2005), and
CONQUEST (Gillan et al., 2007). They exploit more than one
level of organization and data distribution schemes resembling
the BCSR format to handle the groups of atoms, which achieve
high flexibility in load balancing (Bowler et al., 2002) with
high performance on modern heterogeneous supercomputers.
In the future, We plan to implement a massively parallel
algorithm based on the NTPoly library (Dawson and Nakajima,
2018) in HONPAS. The NTPoly library utilizes the 3D
sparse matrix multiplication algorithm, that is, the processors
are organized into a three dimensional, cube-shaped virtual
topology. In this case, density matrix purification algorithms
can scale up to thousands of processing cores on modern
heterogeneous supercomputers.
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