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We present an implementation of the canonical and Laplace-transformed formulation of

the second-order Møller–Plesset perturbation theory under periodic boundary conditions

using numerical atomic orbitals. To validate our approach, we show that our results of

the Laplace-transformed MP2 correlation correction for the total energy and the band

gap are in excellent agreement with the results of the canonical MP2 formulation. We

have calculated the binding energy curve for the stacked trans-polyacetylene at the

Hartree–Fock + MP2 level as a preliminary application.
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1. INTRODUCTION

The second-order Møller–Plesset perturbation theory (MP2) is a post-Hartree–Fock approach to
take the electron correlation effect into account. Although it is very simple in form, it can capture
around 90% of the correlation energy (Bartlett and Stanton, 2007); so the MP2 method is still of
high interest in the quantum chemistry (Schütz et al., 1999; Kobayashi and Nakai, 2006; Bartlett
and Stanton, 2007) and solid-state physics communities (Suhai, 1983, 1992; Sun and Bartlett, 1996;
Pisani et al., 2008; Marsman et al., 2009; Schäfer et al., 2018).

However, the O(N5) calculation scaling of the original (canonical) MP2 method has limited the
application of the MP2 method in large systems. A series of algorithms have been proposed to
speed up the calculations, such as local MP2 method (Saebø and Pulay, 1993; Pisani et al., 2005,
2008; Maschio, 2011), Lapace-transformed MP2 method (Häser and Almlöf, 1992; Häser, 1993;
Ayala and Scuseria, 1999; Ayala et al., 2001; Schäfer et al., 2018), or resolution of the identity (RI)
MP2 method (Katouda and Nagase, 2010; Ren et al., 2012). The local MP2 method proposed
by Pulay (1983) and Saebø and Pulay (1993) has been efficiently implemented (Schütz et al.,
1999) in the MOLPRO code for molecules, then the periodic version of the local MP2 method
has been implemented (Pisani et al., 2005, 2008; Maschio, 2011) in the CRYSCOR code and in
the CP2K code (Usvyat et al., 2018) for extended systems. Since the spatially localized orbitals
or Wannier functions are adopted, the computational scaling of the local MP2 method is O(N).
The Laplace-transformed MP2 method is originally proposed by Häser and Almlöf (1992) and
Häser (1993), and have been implemented for both the molecule (Ayala and Scuseria, 1999) and
extended systems (Ayala et al., 2001) in the GAUSSIAN suite of programs. The localized atomic
orbitals have been employed and the computational scaling is also O(N). The Laplace-transformed
MP2 method has been combined with the resolution of identity (RI) technique to further improve
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the computational efficiency (Izmaylov and Scuseria, 2008).
Further rigorous integral screening scheme (Lambrecht et al.,
2005) has been introduced on top of the Laplace-transformed
MP2 to perform the calculations for a system comprising 1,000
atoms (Doser et al., 2008). Recently, the Laplace-transformed
MP2 method has also been implemented (Schäfer et al., 2018) in
VASP using stochastic orbitals.

So far, most of the implementations of the MP2 are adopting
the Gaussian-type orbital (GTO) as the basis set. However, in the
calculation of the periodic system, too diffused GTO with a long
tail will increase the number of cells in the auxiliary supercell,
and therefore the computational cost will increase. Compared
with GTO, the numerical atomic orbital (NAO) is strictly
localized, which could naturally leads to lower order scaling of
computational time vs. system size. Here in this work, we have
implemented the canonical MP2 and Laplace-transformed MP2
for the extended systems using NAO, and the results obtained
by these two approaches are consistent. Furthermore, we have
investigated theMP2 correlation correction to the band structure
with both the canonical and Laplace-transformed formulation;
our implementation has been validated by comparing the MP2
correlation correction of the total energy and the band gap to the
literature values.

The remainder of this paper is organized as follows. The
fundamental theoretical framework and the implementation
details for the canonical and Laplace transformed MP2 are
presented in section 2. The benchmark calculations are presented
in section 3. In section 4, we summarize our main achievement
and highlight the possible future research direction related to
this work.

2. METHOD

2.1. Numerical Atomic Orbitals
The numerical atomic orbital is defined by a product of a
numerical radial function and a spherical harmonic

χIlmn(r) = ϕIln(r)Ylm(r̂) . (1)

By solving the one-dimension radial Schrödinger equation

(−1

2

1

r

d2

dr2
r + l(l+ 1)

2r2
+ V(r)+ Vcut)ϕIln(r) = ǫlϕIln(r) , (2)

we can get the radial part of the numerical atomic orbital ϕIln(r),
where V(r) denotes the electrostatic potential for orbital ϕIln(r),
and Vcut ensures a smooth decay of each radial function, which is
strictly zero outside a confining radius rcut .

In order to perform the Hartree–Fock and MP2 calculation,
the electron repulsion integrals (ERIs) are needed:

(χµχν |χλχσ ) =
∫ ∫

χµ(r)χν(r)χλ(r′)χσ (r′)

|r− r′| drdr′ (3)

we use NAO2GTO scheme described to calculate them as shown
in the following section.

2.2. The NAO2GTO Scheme to Calculate
ERIs
In the NAO2GTO scheme, we fit the NAO with GTOs, then we
calculate the ERIs analytically; in this way, the strict cutoff of
the atomic orbitals is satisfied with NAO and the construction
of Hartree-Fock exchange (HFX) matrix can scale linearly with
the system sizes (Shang et al., 2011). Since the angular part of
the NAOs is spherical harmonic, while the GTOs are Cartesian
harmonic function, a transformation between the Cartesian
and spherical harmonic functions is performed within the
NAO2GTO scheme.

2.3. Canonical MP2 Formulation
In extended systems, the normalized crystal orbital ψi(k, r) is a
linear combination of Bloch functions φµ(k, r):

ψi(k, r) =
∑
µ

Cµ,i(k)φµ(k, r) (4)

φµ(k, r) = 1√
N

∑
R

χR
µ (r)e

ik·(R+rµ) (5)

in which N is the number of cells in extended systems, µ is the
index of the atomic orbitals, i refers to the crystal orbital index,
R denotes the cells in the extended systems (auxiliary supercell),
χR
µ (r) = χµ(r−R− rµ) refers to the atomic orbital whose center

is displaced from the cell R by rµ, and Cµ,i(k) are the coefficients
of the crystal orbitals.

TheMP2 correlation correction for the total energy of the unit
cell is

Emp2 = − 1

N

∑
i

∑
j

∑
a

∑
b

1

V4
k

∫
dki

∫
dkj

∫
dka

∫
dkb

(IA|JB)[2(IA|JB)− (IB|JA)]∗
ǫa(ka)+ ǫb(kb)− ǫi(ki)− ǫj(kj)

(6)

in which we use labeling i,j for occupied orbitals and a,b for
unoccupied orbitals. I/J refer to the composite index (i,ki)/(j,kj),
Vk is the volume of the Brillouin zone, and ǫi(ki) is the Hartree–
Fock eigenvalue for the eigenstate ψi(ki). It should be noted that
by using the identity (

∑
R exp ik · R = Nδk,0) derived with the

Born–von Karman periodic boundary condition, we can remove
one dimension integration over kj since kj = T(−ki + ka + kb),
where T is the translation operator. The formalism of summation
over 3-fold k points and over 4-fold k points (Equation 6) give the
same results.

Similarly, the MP2 correlation correction (ǫg(kg)(2)) to the
Hartree–Fock eigenstate ψg(kg) can be written as

ǫg(kg)
(2) = ǫg(kg)

MP2 − ǫg(kg)HF = U(g)+ V(g) (7)

U(g) = −
∑
i,a,b

1

V3
k

∫
dki

∫
dka

∫
dkb

(IA|GB)[2(IA|GB)− (IB|GA)]∗
ǫa(ka)+ ǫb(kb)− ǫi(ki)− ǫg (kg )

(8)

V(g) =
∑
i,j,a

1

V3
k

∫
dki

∫
dkj

∫
dka

(IA|JG)[2(IA|JG)− (IG|JA)]∗
ǫa(ka)+ ǫg (kg )− ǫi(ki)− ǫj(kj)

(9)
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When ψg(kg) is the occupied orbital at the valance band
maximum (VBM), we can see U(g) < 0,V(g) > 0 and
|U(g)| < |V(g)|, then the MP2 renormalization of the VBM is
positive and will move the VBM orbital upward. When ψg(kg) is
the unoccupied orbital at the conduction bandminimum (CBM),
we have |U(g)| > |V(g)|, so the MP2 renormaliztion of the CBM
is negative, and will move the CBM downward. In total, the MP2
renormalization of the band gap is negative, and the MP2 band
gap is smaller than the Hartree-Fock band gap.

2.4. Laplace-Transformed MP2 Formulation
The Laplace transform is defined as:

1

x
=

∫ ∞

0
e−xtdt, x > 0 (10)

which can be used to remove the denominator in the canonical
MP2 formulation:

1

ǫa(ka)+ ǫb(kb)− ǫi(ki)− ǫj(kj)
=

∫
e[ǫi(ki)+ǫj(kj)−ǫa(ka)−ǫb(kb)]tdt

(11)

The integration in Equation (10) can either be done by using
a least square fitting method (Häser and Almlöf, 1992; Häser,
1993) or by using a Jacobian transform (Ayala and Scuseria, 1999;
Kobayashi and Nakai, 2006) of the Laplace integration variable
in order to transform the integration range [0,∞) into the finite
range [0, 1]. Here, we use the transform as follows:

∫ ∞

0
e−xtdt =

∫ 1

0
e−xt dt

dr
dr =

∫ 1

0
f (r)dr (12)

in which the Jacobian transform is

t = r3 − 0.9r4

(1− r)2
+ r2 tan(

πr

2
) (13)

Then the final integration (
∫ 1
0 f (r)dr) in Equation (12) in

evaluated with Romberg quadrature method, which uses
refinements of the extended trapezoidal rule to reduce error in
definite integrals.

In this way, the Emp2 correlation correction energy can be
written as a new integration form:

Emp2 =−
∫

dt
∑

µ0,νRν ,λRλ ,σRσ

T
0RλRνRσ
µ,λ,ν,σ (t)[2(χ0

µχ
Rλ
λ |χRν

ν χRσ
σ )

− (χ0
µχ

Rσ
σ |χRν

ν χ
Rλ
λ )] (14)

where µ,ν,σ ,λ and the following λ,δ,τ ,κ refer to the indexes of
the atomic orbitals. (χ0

µχ
Rσ
σ |χRν

ν χ
Rλ
λ ) is the electron repulsion

integrals defined as

(χ0
µχ

Rσ
σ |χRν

ν χ
Rλ
λ ) =

∫ ∫
χ0
µ(r)χ

Rσ
σ (r)χRν

ν (r′)χRλ
λ (r′)

|r− r′| drdr′ .

(15)

and

T
RµRλRνRσ
µ,λ,ν,σ (t) =∑

γRγ ,δRδ ,τRτ ,κRκ

X
RµRγ
µγ X

RνRδ
νδ Y

RλRκ
λκ YRσRτ

στ (χ
Rγ
γ χRκ

κ |χRδ
δ χ

Rτ
τ )

(16)

The 4-fold k points are treated independently within X
RγRµ
γµ and

Y
RλRκ
λκ :

X
RγRµ
γµ =

occ∑
i

1

Vk

∫
dkiC

∗
γ i(ki)Cµi(ki)e

(ǫi−ǫf )teiki(Rµ−Rγ ) (17)

Y
RλRκ
λκ =

unocc∑
a

1

Vk

∫
dkaC

∗
λa(ka)Cκa(ka)e

−(ǫa−ǫf )teika(Rκ−Rλ)

(18)
In this way, the 4-fold integration over k-points in Equation (6)
can be reduced to 1-dimensional k-points integral as shown in
Equations (17) and (18). Furthermore, the locality of the atomic

basis function can be adopted for the calculation of T
RµRλRνRσ
µ,λ,ν,σ

and electron repulsion integrals, and the total computational
scaling could be O(N · Nk) if the distant screening between these
ERIs are applied. Here in this work, such distance screening
has not been used, so our implementation results in a O(N2 ·
Nk) scaling. It is worth noting that in order to keep the
exponential value (e(ǫi)t) in Equation (17)/Equation (18) to be
smaller than unity, we have inserted the Fermi energy level into
the exponential factor (e(ǫi−ǫf )t) in order to make the calculation
to be more stable.

Based on Equations (7) and (10), we have the Laplace-
transformed MP2 correlation correction (ǫg(kg)(2)) for
the eigenstate:

ǫg(kg)
(2) =

∫
dt

∑
µ0,νRν ,λRλ ,σRσ

G
0RνRλRσ
µ,λ,ν,σ (t)[2(χ0

µχ
Rλ
λ |χRν

ν χRσ
σ )

− (χ0
µχ

Rσ
σ |χRν

ν χ
Rλ
λ )] (19)

G
RµRλRνRσ
µ,λ,ν,σ (t) =

∑
γRγ ,δRδ ,τRτ ,κRκ

X
RµRγ
µγ Y

RλRκ
λκ (χ

Rγ
γ χRκ

κ |χRδ
δ χ

Rτ
τ )

× (−W
RνRδ
νδ YRσRτ

στ + X
RνRδ
νδ ZRσRτ

στ ) (20)

W
RγRµ
γµ = C∗

γ g(kg)Cµg(kg)e
(ǫg )teikg (Rµ−Rγ ) (21)

Z
RλRκ
λκ = C∗

λg(kg)Cκg(kg)e
−(ǫg )teikg (Rκ−Rλ) (22)

Similarly, in order to keep the exponential value to be smaller
than unity and avoid computational divergence, we inserted the
VBM/CBM value into the exponential factor when calculated the
MP2 reformulation of the VBM/CBM.

The canonical and Laplace-transformed MP2 methods
described above have been implemented in the Order-N
performance HONPAS code (Qin et al., 2014).
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3. RESULTS

In order to validate our implementation, we perform benchmark
calculations for 1-dimensional systems.We use norm-conserving
pseudopotentials generated with the Troullier–Martins scheme
to represent the interaction between core ion and valence
electrons. The single-zeta (SZ), double-zeta (DZ), and double-
zeta polarized (DZP) basis sets are generated using SIESTA. Then
the NAOs are fitted with GTOs to perform the Hartree–Fock
calculation as discussed in Shang et al. (2011).

First, we use a 1-dimensional hydrogen chain as an example
to make the comparison between the results of canonical MP2
and those of Laplace-transformed MP2. The lattice parameter
for the 1-dimensional H chain is set to 2.6 Å, and the H-H
bond length is set to 1.346 Å. The SZ basis set is adopted, so
that there are only two atomic orbitals in the unit cell. The
Brillouin zone is sampled by 1 × 1 × 6 k-points. The unit cell
is a 20 × 20 × 2.6 Å box, and the real-space integration mesh
is set to be 100 Ry. In the Laplace-transformed MP2 method, the
Romberg method is adopted to perform the final integration. The
accuracy of integration results depends on the order of Romberg
integration (n), since the results of the Romberg integration
are obtained in a recursive manner, R(n, j) = R(n, j − 1) +
R(n,j−1)−R(n−1,j−1)

4j−1−1
. As shown in Table 1, when the order of

Romberg integration increases from 3 to 8, the MP2 correlation
correction for the unit cell energy (Emp2) as well as the MP2

correlation correction for the band structure (ǫ(2)VBM, ǫ(2)CBM, ǫ(2)gap)
are converged to the results of canonical MP2. When using
the media precision parameter (n = 5) in Laplace- transformed
MP2, we get a absolute/relative error of 4 × 10−6 eV/0.0007%
for the correlation of the unit cell energy (Emp2), and we get
a absolute/relative error of 3 × 10−5 eV/0.02% for the MP2
correlation correction for the band gap (ǫ(2)gap). Overall, we find an
excellent agreement between the Laplace-transformed MP2 and
the canonical MP2 benchmark results.

We also examine the relative error between the results of
Laplace-transformed MP2 and those of canonical MP2 with
respect to the basis set size (SZ, DZ, DZP), as shown in
Table 2 with ethylene molecule as an example. Again, we find an
excellent agreement between the Laplace-transformed MP2 and
the canonical MP2 benchmark results.

TABLE 1 | The comparison between the results of canonical MP2 and those of

Laplace-transformed MP2.

H2-line Laplace Canonical

n 3 5 8

Emp2 (eV) −0.561442 −0.561190 −0.561194 −0.561194

ǫ
(2)
VBM (eV) 0.16736223 0.150361892 0.15033577 0.15033577

ǫ
(2)
CBM (eV) −0.03044718 −0.01888047 −0.01887073 −0.01887073

ǫ
(2)
gap (eV) −0.19780941 −0.16924236 −0.16920650 −0.16920650

Here, theMP2 correlation correction for the unit cell energy (Emp2) and theMP2 correlation

correction for the band structure (ǫ
(2)
VBM, ǫ

(2)
CBM

, ǫ
(2)
gap) have been examined with the above

two approaches. Here, we use a 1-dimensional hydrogen chain as an example.

Second, we perform the Laplace-transformedMP2 calculation
for the 1D polymer trans-polyacetylene as shown in Table 3. The
order of Romberg integration is set to be n = 5. The SZ basis set
is adopted in our calculation. The Brillouin zone is sampled by 1
× 1 × 30 k-points. The real-space integration mesh is set to be
200 Ry. We compare our calculated MP2 correlation correction
for the total energy per unit cell with the one obtained in Sun and
Bartlett (1996). The G3 geometry parameters as listed in Sun and
Bartlett (1996) are adopted to keep the geometry to be the same
for comparison. We get an absolute/relative error of 0.26 eV/8%
for the correlation correction of the unit cell energy (Emp2). The
difference comes from the usage of the different basis set, since
in Sun and Bartlett (1996), the STO-3G basis set is used, whose
shape is different from the SZ basis that we are using. For a similar
reason, when using the same G6 geometry parameter of trans-
polyacetylene (Sun and Bartlett, 1996), we get an absolute/relative
error of 0.09 eV/7% for the correlation correction of the band
gap (ǫ(2)gap) when compared with Sun’s result.

We then investigate the performance and scaling of
our implementation, and we show timings for the trans-
polyacetylene molecules with variable number of atoms in
Figure 1. We find a linear scaling for the calculation of ERIs and
an O(N2) scaling for the calculation of the Laplace-transformed
MP2. This is not too surprising, since we can see from Equation
(14) that there are two loops over the ERIs for the calculation of
Laplace-transformed MP2, so we get the O(N2) scaling.

Finally, we show the calculated binding-energy curves as
functions of the distance between two trans-polyacetylene chains
with the PBC-MP2 method. Although the MP2 theory gives
overestimation of the dispersion interaction energy (Tkatchenko
et al., 2009), it is still a superior starting point for the dispersion
correction compared to Hartree–Fock and semi-local density
functional theory (DFT). As shown in Figure 2, the MP2 method
results in a binding states. On the contrary, Hartree–Fock
and PBE functional fail to identify any binding between the
two chains. We can see in Figure 2 that the energy profile

TABLE 2 | The relative error between the results of canonical MP2 and those of

Laplace-transformed MP2 with different basis set.

Ethylene (C2H4) SZ (%) DZ (%) DZP (%)

Relative error 0.0007 0.003 0.001

Here, we use ethylene molecule as an example. The order of Romberg integration (n) in

the Laplace transformed MP2 is set to n = 5.

TABLE 3 | The comparison between our results and those from the literature (Sun

and Bartlett, 1996).

Trans-polyacetylene Sun and Bartlett (1996) (eV) Our results (eV)

Emp2 −3.22 −2.96

ǫ
(2)
gap −1.18 −1.09

Here, theMP2 correlation correction for the unit cell energy (Emp2) and theMP2 correlation

correction for the band gap (ǫ
(2)
gap) have been examined.
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FIGURE 1 | The CPU time for the ERI and MP2 calculation using SZ basis set. Here, the trans-polyacetylene molecules are used as the test systems.

FIGURE 2 | Interaction energy as functions of the distance between two

trans-polyacetylene chains as predicted by the Hartree-Fock (blue), PBE (red),

and MP2 (black) method. The unit cell is marked with shaded box.

calculated with Hartree–Fock and PBE functional shows a
repulsive behavior as the two chains are brought closer together.

4. CONCLUSIONS

We have implemented the canonical and Laplace-transformed
algorithms to calculate the MP2 correlation correction for the
total energy and the band gap of periodic systems in HONPAS
code with numerical atomic orbitals. The results obtained by
the canonical MP2 and Laplace-transformed MP2 are consistent
with each other. We have also validated the implementation

by comparing the results with the literature data. We have
studied the binding-energy curves for the two stacked trans-
polyacetylene chains, which shows the MP2 method can well
describe the correlation energy and the long-range van derWaals
interactions. Future work will address the application of the
Laplace-transformed MP2 method to 3-dimensional periodic
systems in the HONPAS code.
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