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For decades, the possibility to generate Reactive Oxygen Species (ROS) in biological

systems through the use of light was mainly restricted to the photodynamic effect:

the photoexcitation of molecules which then engage in charge- or energy-transfer to

molecular oxygen (O2) to initiate ROS production. However, the classical photodynamic

approach presents drawbacks, like per se chemical reactivity of the photosensitizing

agent or fast molecular photobleaching due to in situ ROS generation, to name a few.

Recently, a new approach, which promises many advantages, has entered the scene:

plasmon-driven hot-electron chemistry. The effect takes advantage of the photoexcitation

of plasmonic resonances in metal nanoparticles to induce a new cohort of photochemical

and redox reactions. These metal photo-transducers are considered chemically inert and

can undergo billions of photoexcitation rounds without bleaching or suffering significant

oxidative alterations. Also, their optimal absorption band can be shape- and size-tailored

in order to match any of the near infrared (NIR) biological windows, where undesired

absorption/scattering areminimal. In this mini review, the basic mechanisms and principal

benefits of this light-driven approach to generate ROS will be discussed. Additionally,

some significant experiments in vitro and in vivo will be presented, and tentative new

avenues for further research will be advanced.

Keywords: plasmon, hot-electron, metal nanoparticle, reactive oxygen species, redox biology, singlet oxygen,

photodynamic therapy

INTRODUCTION

Redox biology and redox control of biological functions are fundamental aspects of cell biology.
It is a relatively young field, but its mechanics and ramifications are extremely important for all
cellular processes: cell proliferation, survival, migration, differentiation, programmed cell death,
organogenesis, immunology, aging, cancer, and oncotherapy, etc. (Sies, 2020). Advancement in
this emerging field critically depends on the controlled production of reactive oxygen species
(ROS), to understand how redox signaling modulates biological functions (Zhang et al., 2019a).
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A classical approach to this has been the use of the photodynamic
effect to induce ROS production (Macia and Heyne, 2015).
This approach has been in use for oncological treatments for
several decades under the name of photodynamic therapy (PDT).
Although PDT is well-established as a therapeutic treatment,
there are serious disadvantages that still jeopardize the modality
(Sorrin et al., 2020). Indeed, low actinic light penetration is cited
as one of the severest (Fan et al., 2016). Moving into the near-
infrared (NIR, 700–1,100 nm) biological window to photoexcite
compounds is a very sought-after strategy (Deng et al., 2017).
Introduction of new photosensitizing compounds, like metal
nanoparticles, is another promising front (Chen et al., 2020).

Metal nanoparticles, particularly gold, silver or palladium,
provide many advantages because they absorb in the NIR and
have been shown to produce ROS upon illumination (Protti
et al., 2017). The mechanism producing ROS in illuminated
metal nanoparticles is the generation of energetic hot-electrons
due to the plasmonic effect, which appears in metals as a
consequence of their particular electronic structure (Halas,
2019). These nanoparticles display chemical non-reactivity in the
darkness and a resistance to oxidation that makes them ideal
photosensitizing elements in PDT (Chen et al., 2020). These
advantages can be exploited in the field of redox biology research,
as metal nanoparticles are excellent vehicles for controlled
photogeneration of ROS. Indeed, they are being employed for
light-driven environmental remediation that degrades pollutants
by ROS (Wang et al., 2018). This mini-review will introduce
the fundamentals of the plasmonic effect and its potential and
realized application in redox biology.

PLASMONIC HOT-ELECTRONS

The mechanism producing hot-electrons in metal nanoparticles,
which ultimately will lead to ROS generation, is different from
the photodynamic effect commonly employed in PDT. This
mechanism is singular and will be discussed in what follows.

The initial step in the metal nanoparticle excitation is the
induction of a plasmon resonance (Garcia, 2011; Boulais et al.,
2013; Halas, 2019). Metals, including metallic nanoparticles
down to very small sizes (<5 nm), present an overlap between
the valence and conduction bands: the outer valence electrons
do not belong to a particular metal atom, but move around
freely (conduction electrons) within the metal. These conduction
electrons respond efficiently to outside perturbations, such
as electromagnetic fields (i.e., light) (Kim et al., 2017). This
fast electronic response occurs at any spatial scale. However,
due to their extremely small (nanometric) size, conduction
electrons in metallic nanoparticles are perturbed within the
whole volume, not just the surface. Under illumination, the
oscillating electric field associated to the electromagnetic wave
completely “permeates” the nanoparticle (Figure 1A). Initially,
the electrons coherently couple to this oscillating electric field
and move together as an electronic bunch or cloud. Meanwhile,
the atomic nuclei (positively charged) stay fixed in the crystalline
lattice. The resulting effect is that of an oscillating electric dipole,
the plasmon, in resonance with the impinging light (Figure 1A).

The initial plasmon excitation occurs on a time scale of the order
of an optical cycle (1–10 fs) (Qiu and Wei, 2014; Amendola
et al., 2017). Intuitively, the plasmon “wraps” or “packs” a
photon within the nanoparticle, to a size much smaller than the
diffraction limit of said photon (100s vs. 10–100 nm).

The coherent electronic oscillation is unstable due to
the high probability of electron-electron and electron-phonon
interactions (phonons being quantized vibrations of the lattice).
After a very brief time (∼10 fs) the electronic cloud decouples
from the oscillating electric field due to these interactions,
and part of the dipole’s stored energy is channeled to
promote particular electrons to a high-energy (1–10 eV) state
(Figure 1B). These high-energy electrons are known, perhaps
somewhat counterintuitively, as non-thermal electrons, as their
“temperature” (kinetic energy) is much larger than the average
temperature within the nanoparticle and they are not in thermal
equilibrium with the rest of it (Boulais et al., 2013; Brongersma
et al., 2015; Amendola et al., 2017). Depending on the intensity of
the exciting light, a smaller or larger subpopulation of conduction
electrons will become non-thermal electrons (Figure 1C). These
non-thermal electrons have an energy significantly above the
Fermi level, which is the energetic level which has an electron
occupancy of 50% in a metal (Boulais et al., 2013; Baffou and
Quidant, 2014). In other words, the Fermi level represents
a threshold energy level for electrons to engage in chemical
reactions or leave the particle (ionization).

This initial non-thermal electron population is again unstable
to further thermalization by electron-electron scattering
(Brongersma et al., 2015; Amendola et al., 2017). The excess
energy is swiftly (100–500 fs) redistributed among all the
electrons in the particle, leading to a hot thermal Boltzmann
distribution (Figure 1D). Depending on the initial energy
available, this distribution has a larger or smaller tail of electrons
with significantly above-the-average thermal energy. These
hot-electrons provide most of the observed chemical reactivity
after plasmon excitation. The hot-electron population displays a
longer lifetime. Therefore, with their potential chemical energy
still large, they can engage in chemical reactions not observed
under dark conditions (Kim et al., 2017).

Finally, further electron-electron and, in particular, electron-
phonon scattering tend to redistribute heat from the electron
population to the whole nanoparticle, including the more
massive metal nuclei, increasing its overall temperature
(Figure 1E) (Amendola et al., 2017). This thermalizing step
usually takes 1–10 ps to complete (Saavedra et al., 2016; Liu J.
G. et al., 2018). Depending on the initial energy absorbed, the
nanoparticle can heat from fractions of a degree to thousands of
degrees. Many biological applications of plasmonic nanoparticles
rely on this photothermal effect, but it is beyond the scope of this
mini-review. Relevant information on this topic can be found in
Qiu and Wei (2014) and Yang et al. (2015).

A few general remarks are pertinent at this point. First,
plasmonic properties will vary depending on the particular metal
making up the nanoparticle (Kuncewicz et al., 2019). Each metal
displays its own plasmonic bands in different spectral regions.
Most research has been done with gold nanoparticles, due to
their very interesting properties and the possibility to tune the
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FIGURE 1 | Conceptual scheme showing the different steps in the induction and decay of a plasmon excited in a metal nanoparticle. (A) Left, initial electromagnetic

induction of an electric field (blue) by the impinging optical electromagnetic field (red). Right, induced internal dipole (plasmon) in the nanoparticle by the optical field

(note negative and positive induced charges). (B) Non-thermal electron excitation by plasmon decay. Electrons (red circles) are pumped to high energy levels leaving

behind holes (white circles). (C) Initial population of non-thermal electrons in an intensively excited (by pulsed laser) nanoparticle. Note that electrons reach energies of

2.5 eV and left behind holes of equal energetic magnitude. Molecular oxygen electronic levels have been included on the energy axis for comparison. (D) Hot-electron

(-hole) populations (red zones) after non-thermal electron (-hole) scattering. Electrons and holes are more abundant than in (C) and their energies are still large (up to

1 eV). The first excited state O2 (11) of molecular oxygen can be efficiently induced under this condition. (C,D) Reproduced with permission from Chadwick et al.

(2016). (E) Hot electrons (dull red circles) and phonons (black waves) scatter, transferring their excitation energy to the nanoparticle lattice which increases its

temperature and that of the environment by heat conduction.

absorption in the NIR biological window (Lv et al., 2015; Yang
et al., 2015; Mariano et al., 2018; Sharifi et al., 2019; Zhang et al.,
2020). But other metals also show promising features, like silver
(Mariano et al., 2018; Seemala et al., 2019), palladium (Long et al.,
2013; Liu Y. et al., 2018; Phan et al., 2019), tellurium (Yang et al.,
2017), and composite metal-semiconductor nanoparticles (Park
et al., 2015; Tatsuma et al., 2017).

Second, there is a very strong influence of the nanoparticle
size and shape in the plasmon response, as a consequence of
quantum effects arising at such nanometric scales. Therefore,
the absorption band can be tuned by just changing the size
and/or the shape (Baffou and Quidant, 2014; Yang et al., 2015),
and, for larger nanoparticles (>50 nm), or those with non-
spherical shapes (nanorods, nanocubes, nanocages, etc.), an
electric multipole can be induced under illumination instead of a
dipole (Garcia, 2011; Amendola et al., 2017). As a result, changes

in the nanoparticle’s size result in differences in the photonic
response (e.g., favoring photochemistry or photothermal effects,
Feng et al., 2019).

Third, different outcomes can be expected if illumination is
provided with a continuous wave (cw) source or with a pulsed
one, particularly for femtosecond and picosecond lasers. The
plasmon excitation process is basically the same in both cases
(Figure 1) but under very short pulsed excitation, a significant
fraction of the electron population becomes composed of hot-
electrons. This alters the optical properties of the nanoparticle,
enhancing the optical field close to it (see Nanoplasmas below),
and/or favors nanobubble cavitation (photothermal effect) in
aqueous solutions or biological systems (Boulais et al., 2013;
Besteiro et al., 2019). On the other hand, cw excitation pumps
a very small amount of hot-electrons at a time, but does it
so at a steady rate. Thus, a continuous photochemistry, which
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can result in ROS production, will take place (Hogan et al.,
2020).

The plasmonic approach to produce energetic charge carriers
has some similarities to the photocatalytic process displayed by
many semiconductors. Adequately photoexcited semiconductors
(e.g., TiO2 or ZnO) show electron-hole separation across the
band gap, which has been very efficiently employed to promote
photochemistry in a diversity of areas (photochemical water
splitting, fuel production, etc.), the photogeneration of ROS
being a particularly active application in this sense (Mills and Le
Hunte, 1997; Serpone and Emeline, 2012). Furthermore, it is a
commonplace strategy to synthesized semiconductors along with
metal particles to increase the efficiency of these photoprocesses,
favoring the separation of the charge carrier (Xu et al., 2019;
Zhang et al., 2019b). Recently, a further step has been proposed,
by using the metallic particle as the active partner, through its
plasmonic excitation, with the semiconductor taking a more
passive role on slowing charge carrier recombination and/or
taking advantage of its catalytic properties (Fu et al., 2019).

Keeping in mind the similarities between the plasmonic
metal excitation and semiconductor photoexcitation, there are
some significant differences to be remarked. The plasmonic
effect is an initially coherent effect, in which a large electron
population reacts to the electromagnetic field provided by the
exciting light. In contrast, photoexcitation in semiconductors
is considered a (electron-hole)-photon event, independent of
other photoexcitations occurring in the semiconductor (it can
be argued that very intense photoexcitation by pulsed lasers can
produce coherent effects, but this is an effect beyond the current
discussion). In plasmonics, an initial high-energy (∼10 eV)
electron, the result of the plasmon decay, produces several
hot-electrons with lower energy (1–5 eV) (Boulais et al., 2013;
Brongersma et al., 2015; Amendola et al., 2017). Photoexcitation
in semiconductors leads to production of conduction band
electrons with energies of 1–3 eV (Mills and Le Hunte, 1997; Xu
et al., 2019; Zhang et al., 2019b). Finally, unlike semiconductors,
metals do not have a forbidden energy band gap. This translates
into faster charge carrier recombination processes in metals as
compared to semiconductors. This is an important parameter
to consider in regards to the, in general, very small dimensions
of plasmonic metal nanoparticles, which favor surface-vs.-
volume effects.

HOT-ELECTRON ROS GENERATION

Once a hot-electron population is generated by plasmon
excitation, and before it decays as a thermal wave, there is
a time window for these hot-electrons to engage in reactive
chemistry with compounds adsorbed at the particle’s surface.
Two mechanisms have been proposed to explain such reactive
chemistry leading to ROS generation: direct hot-electron
chemistry and nanoplasmas.

Hot-Electron Chemistry
Hot-electron chemistry derives from the high chemical potential
of these electrons. Interactions at the nanoparticle surface
between hot-electrons and adsorbed molecules lead to very

efficient redox chemistry. A particular example of relevance for
redox biology is the plasmon-driven production of singlet oxygen
(1O2), the first excited state of O2. This excited molecule is
involved in many redox biological processes (Blázquez-Castro,
2017; Di Mascio et al., 2019) and it is at the mechanistic
foundations of PDT (Macia and Heyne, 2015; Chen et al., 2020).
As shown in Figures 1C,D, O2 energy levels (3Σ , 11, 1Σ) are
plotted against the electronic energy levels. Both initial non-
thermal electrons, and later hot-electrons have enough energy
to directly pump levels 1

1 and 1
Σ of O2 molecules. Therefore,

1O2 is sensitized by energy transfer with these hot-electrons
(Chadwick et al., 2016). If a hot-electron directly transfers from
the metal surface to occupy the 1

1 level, then the radical anion
superoxide (•O−

2 ) will be produced instead of 1O2. Further
reduction of a superoxide anion, either by another hot-electron
at the particle surface or through oxidation reaction with a
third molecule, will produce hydrogen peroxide (H2O2), a very
relevant ROS in redox biology (Parvez et al., 2018). Nanoplasmas
(see below), however, are a source of the very reactive hydroxyl
radical (•OH). If no nanoplasma is generated, it seems unlikely
that ROS other than singlet oxygen (1O2) or superoxide (•O

−

2 )
will be produced initially, as they would require more than one
electron transfer in sequence (Sies et al., 2017; Kalyanaraman
et al., 2018), something improbable given the fast reaction times
implicated in the plasmonic affect. Nevertheless, secondary ROS
should be produced, as it is well-known the electron avidity of
those initials species in order to further reduce themselves toward
H2O (Kalyanaraman et al., 2018). Furthermore, generation of
reactive nitrogen species (RNS) cannot be disregarded at this
point, particularly for nanoplasmas (see Nanoplasmas below),
as the electron energies involved should be sufficient to initiate
molecular nitrogen (N2) chemistry. If this turns out to be the
case, especially if they can be produced without a nanoplasma,
plasmonic excitation could be a novel route by which to produce
RNS in situ in biological systems (Weidinger and Kozlov, 2015).
Of course, this is a simplistic representation of the molecular
processes taking place, but is sufficient here to exemplify the
kind of interactions that permit the production of ROS after
plasmon excitation.

The principal ROS have been successfully produced through
plasmon excitation of different metal nanoparticles, such as
singlet oxygen (Vankayala et al., 2011, 2013; Gao et al., 2014;
Lv et al., 2015; Chadwick et al., 2016), superoxide (Gao et al.,
2014), hydrogen peroxide (Wen et al., 2016; Willis et al., 2020),
and hydroxyl radical (Gao et al., 2014; Wen et al., 2016).
Electrons transferred to oxygen from the nanoparticle can be
replenished through oxidation of nearby organic molecules or
biomolecules. Asmetal nanoparticles do not photobleach/oxidize
during exposure to ROS, they provide a significant advantage
in comparison to classical photosensitizers (Macia and Heyne,
2015).

Nanoplasmas
An alternative mechanism at work for producing ROS after
plasmonic excitation is the creation of a nanoplasma (Boulais
et al., 2013). This mechanism only takes place under short
pulse excitation (fs-ps) for reasons explained below. Briefly, a
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nanoplasma occurs when the medium (e.g., water) surrounding
the excited nanoparticle ionizes. This plasma breaks down
water giving rise to •OH, •H, H2O2, and also other radicals
and reactive molecules (Labouret et al., 2015). Hydrated and
solvated electrons are produced too, which are the most
powerful reducing agents known (Zilio et al., 2017). The
nanoplasma is excited by two mechanisms: electronic emission
from the nanoparticle or by plasmon-enhanced electromagnetic
breakdown. In the case of electronic emission, the electrons may
reach the medium either because they have enough energy to
move over the potential surface barrier (non-thermal electrons)
or because of thermionic emission (hot-electrons) (Labouret
and Palpant, 2016). In plasmon-enhanced breakdown the hot-
electrons enhance the optical electric field immediately outside
the nanoparticle, decreasing the threshold for plasma breakdown
(Boulais et al., 2012). In both cases, quasi-free electrons can
couple to the pulsed optical excitation while it lasts, and further
drive plasma expansion by inverse bremsstrahlung (Labouret and
Palpant, 2016; Zilio et al., 2017). Details of these processes are
far beyond the scope of this work and the interested reader is
directed to the bibliography for additional information.

Under most experimental situations the laser nanoplasma
leads to water superheating and nanobubble evolution.
Nanobubble inception requires a threshold electron density
of ∼1021 electrons cm−3 (Noack and Vogel, 1999; Vogel
et al., 2008). For redox biology applications reaching such a
threshold is undesirable, as the goal is to take advantage of
the ROS and radicals produced in the nanoplasma and not to
create a mechanically disrupting nanobubble (Labouret et al.,
2015; Schürmann and Bald, 2016). By carefully choosing the
irradiation parameters, it should be possible to obtain adequate
electron densities of 1010-1020 electrons cm−3 for biological
redox modulation (Vogel et al., 2005; Linz et al., 2015).

REDOX BIOLOGY AND PLASMONIC ROS

ROS due to plasmon excitation can exert a regulatory or
damaging action on biological structures, depending on several
parameters, chief among them the ROS dose (Figure 2A). At
high doses, biological damage and cell death occurs (PDT). At
low doses, more physiological modulation of redox hubs and
signaling can be achieved. Some examples of these two scenarios
employing plasmonic generation of ROS from illuminated
metallic nanoparticles will follow.

Photodynamic Therapy
At present, themost extended biological application of plasmonic
ROS is the destruction of tumoral cells. The formation of 1O2 by
excitation of gold nanorods (AuNRs) with 915 nm NIR light was
first demonstrated to effectively kill cancer cells in vivo in a B16F0
mouse model of melanoma tumor (Vankayala et al., 2014). The
authors showed that the photodynamic effect leading to apoptotic
cell death was dependent on the use of very low light doses (<130
mWcm−2). Changing the NIR excitation wavelength from 915 to
780 nm induced less effective destruction of solid tumors owing
to a combined action of photodynamic and photothermal effects,
or just photothermal action.

Experiments using gold nanocages (AuNCs) under NIR
one/two-photon irradiation demonstrated a plethora of
plasmon-mediated ROS generation mechanisms as previously
mentioned (Gao et al., 2014). This study shed light on the
advantage of using two-photon vs. one-photon irradiation,
by which a striking 6-fold increase in the quantum yield of
1O2 was achieved. The ability to fine tune intracellular ROS
levels paves the way for novel therapeutic strategies (e.g.,
regeneration) based on a more controlled production of ROS
(see Redox Cell Signaling below) (Blázquez-Castro et al.,
2012; Carrasco et al., 2015). An example of ROS generation
in tumor cells is shown in Figure 2B (Minai et al., 2013).
Burkitt lymphoma B cells and epithelial breast cancer cells were
targeted by antibody-coated gold nanospheres, then irradiated
by a few resonant femtosecond pulses, resulting in significant
intracellular ROS. Necrosis was induced between 90 and 300min
after treatment.

The biocompatibility of metal nanoparticles, their adequate
bodily clearance and the possibility to easily functionalize them
have made them attractive for novel therapeutic strategies. In
this regard, the anticancer potential of metal nanoparticles is not
restricted to their ability to destroy tumoral cells, but extends
to their use as theranostic platforms, integrating diagnosis,
treatment and monitoring (Sharma et al., 2015; Sharifi et al.,
2019). For example, efficient cancer treatment can be hindered
by the particular tumor tissue microenvironment, which can
include hypoxia, low pH and relatively high levels of H2O2.
Hypoxia-derived resistance to radiotherapy has been overcome
by using Pd@Au bimetallic core-shell nanostructures (TPAN)
as a platform to drive plasmon-enhanced robust catalysis of
local tumoral H2O2 under NIR excitation, to promote in situ
O2 production from H2O2 dismutation in a tumor mouse
model (Yang et al., 2019). Under this theranostic approach,
core-shell gold nanocage@manganese dioxide (AuNC@MnO2,
AM) nanoparticles have been proposed as multifunctional
platforms to treat and monitor tumors in a breast cancer-
bearing mouse model. In this model AM nanoparticles were
capable of (i) in situ oxygen production by local dismutation
of H2O2 in solid tumors; (ii) multimodal bioimaging; (iii)
NIR-dependent generation of additional ROS for oxygen-
boosted immunogenic PDT, involving cancer cell destruction
and simultaneous anti-tumoral immune response (Liang et al.,
2018).

Besides cancer treatment, interesting applications of
plasmonic ROS have been reported in other research areas. For
instance, plasmonic excitation of copper sulfide nanocrystals
can serve as photo-activated sterilizing agents in experimental
animal models (Liu et al., 2015). The NIR excitation of these
nanoplatforms induced the death of Sertoli cells in vitro,
as well as upon testicular injection in vivo followed by NIR
illumination. Another interesting use of gold nanostructures
as photodynamic agents has been as antimicrobial tools.
Naked gold nanoparticles irradiated with a low-power density
Nd:YAG laser efficiently destroyed E. coli ATCC 25922 by
1O2 (Lashkari et al., 2019). In sum, metal nanoparticles and
their plasmonic properties can be exploited in a wide range of
biomedical applications.
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FIGURE 2 | (A) Cellular ROS homeostasis and their pathophysiological effects. Cellular ROS levels undergo consistent changes in redox status. Under physiological

condition, ROS are maintained at equilibrium levels to facilitate physiological redox signaling (green radial network on the left). Impaired ROS production causes low

redox status and suppresses physiological redox signaling. In the case of high ROS status or oxidative stress, excessive ROS would initiate pathological redox

signaling and induce cellular damage and various diseases (red radial network on the right). Type 1 ROS is firstly generated and has essential physiological functions.

Type 2 ROS and type 3 ROS are subsequently products of Type 1 ROS and play important role in oxidative stress. Reproduced with permission from Zhang et al.

(2019a). (B) Necrosis in Burkitt lymphoma cells following high intracellular levels of ROS in nanoparticle-targeted cells irradiated by eight 550-nm 50-fs pulses.

Numbers at the bottom-left of each frame denote the time elapsed from the moment of irradiation. White arrows point to three representative cells in which excessive

ROS (green, dihydro-dichloro-fluorescein ROS probe) have accumulated, promoting cell necrosis (red, propidium iodide vital probe). Scale bar represents 20µm.

Reproduced with permission from Minai et al. (2013). (C) Laser inflicted subcellular damage. TEM micrographs of gold nanoparticles in HeLa cells before (a) and after

(Continued)
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FIGURE 2 | (b–f) cw 514 nm Ar-ion laser irradiation showing examples of the damage to the endosomes; (b–d) dissolution of the membrane of endosomes filled with

fewer particles (red arrows) while endosomes filled with more particles tend to remain intact or suffer only minor damage (blue arrows); (e,f) escape of nanoparticles

into the cytosol after laser-induced rupture of the endosomal membrane. Laser power density and exposure time: (b) 6 Wcm−2, 7min; (c,f) 20 Wcm−2, 1min; (d) 20

Wcm−2, 2min; (e) 6 Wcm−2, 3min. Scale bars are 500 nm. Reprinted with permission from Krpetić et al. (2010). Copyright 2010 American Chemical Society.

Redox Cell Signaling
Plasmon-driven PDT has been successfully employed with metal
nanoparticles for the last decade, at least in experimental models.
The same cannot be said of redox modulation. Milder conditions
should be studied under the paradigm of redox biology. For
example, it is now proven that gold nanoparticles efficiently
sensitize the production of 1O2 (Gao et al., 2014; Chadwick
et al., 2016) and H2O2 (Gao et al., 2014; Wen et al., 2016;
Willis et al., 2020). These ROS are known to act as a redox
signaling molecules under the right concentrations and exposure
conditions (Ryter and Tyrrell, 1998; Piette, 2015; Carrasco
et al., 2016; Blázquez-Castro et al., 2020). Consequently, similar
outcomes should be expected for in vitro and in vivo experiments
employing metal nanoparticles and mild plasmonic excitation.
Localizing nanoparticles at concrete subcellular sites (e.g., the
nucleus, Vankayala et al., 2015) should also permit assessment
of intracellular redox signaling (Al-Mehdi et al., 2012; Westberg
et al., 2016; Blázquez-Castro et al., 2018).

Another very interesting field of application would be that
of redox repair mechanisms. ROS induce rescue and repair
responses in biological systems (Epe, 2020). By adequately
localizing nanoparticles in particular cellular structures, these
mechanisms could be studied. An example is shown in Figure 2C
(Krpetić et al., 2010). Authors localized gold nanoparticles
to endosomes and selectively damaged these structures under
moderate illumination conditions. Cells apparently recovered
after the insult and even underwent mitosis for 5 days after
the experiment. It has been shown that gold nanoparticles are
able to damage DNA bases by redox chemistry under laser
exposure (Schürmann and Bald, 2016). Therefore, this could be
a complementary approach to study the DNA damage response,

a critical detection and repair mechanism for preserving the
genetic integrity of a cell (Poetsch, 2020).

OUTLOOK

Applications of plasmonic effects to redox biology are in their
infancy. At present, metal nanoparticles have proven their
value as efficient PDT agents. However, experimental research
making use of this approach in the area of redox regulation
and redox biology is still lacking. It has been our goal to
concisely present the fundamentals and advantages of plasmonic
ROS generation to the redox biology community, in the hope
that, sooner than later, studies with this technique will see
the light.
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