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ZnO nanoparticles (NPs) were synthesized using a hydrothermal method. Scanning

electron microscope (SEM) and X-ray diffraction have been used for characterizing

the synthesized ZnO NPs. An electrochemical sensor was fabricated using ZnO

NPs–modified glassy carbon electrode for simultaneous determination of ascorbic acid

(AA), dopamine (DA), and uric acid (UA). The proposed electrochemical sensor exhibited

excellent detection performance toward three analytes, demonstrating that it can

potentially be applied in clinical applications. The results indicated the ZnO NPs–modified

electrode can detect AA in the concentrations range between 50 and 1,000µM. The

ZnO NPs–modified electrode can detect DA in the concentrations range between 2

and 150µM. The ZnO NPs–modified electrode can detect UA in the concentrations

range between 0.2 and 150µM. The limits of detections of AA, DA, and UA using ZnO

NPs–modified electrode were calculated to be 18.4, 0.75, and 0.11µM, respectively.

Keywords: electrochemical sensor, zinc oxide, ascorbic acid, dopamine, uric acid

INTRODUCTION

Ascorbic acid (AA), dopamine (DA), and uric acid (UA) are active substances with important
biological research value existing in the extracellular fluid of the human central nervous system.
Among them, AA plays an important role in promoting the growth of organisms and synthesizing
antibodies (Ejaz and Jeon, 2017; Fu et al., 2018). As an important biological small molecule
substance in the human central nervous system, the content of DA in the body below or beyond the
normal level will directly affect the mental activities of the human body (Atta et al., 2019). When
purine metabolism is abnormal in the human body, excessive UA can be produced; UA retained in
the body will change the pH value of body fluid and form an acidic internal environment, which has
an important impact on the function of somatic cells (Hsu et al., 2017; Nagles et al., 2017). In view
of the important medical research value of detecting the contents of these three substances, rapid
and accurate detection methods are essential for the diagnosis (Abellán-Llobregat et al., 2018). In
recent years, the detection of AA, DA, and UA has attracted considerable attention (Fu et al., 2019,
2020; Shamsadin-Azad et al., 2019; Karimi-Maleh et al., 2020c; Zhou et al., 2020).
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At present, the common detection methods of AA are
spectrophotometry, chromatography, fluorescence, and
electrochemical sensor (Gopalakrishnan et al., 2018; Atta
et al., 2020). The principle of spectrophotometry is that
AA reacts with reagent to form chromogenic group and
deoxyascorbic acid through redox or derivatization reaction
with reagent, thus indirectly realizing the detection of AA
concentration. This method is simple and has good selectivity,
but the dyes involved in the reaction are unstable and easily
interfered by sulfhydryl, reducing ketone and sulfite plasma.
High-performance thin-layer chromatography (HPLC) uses
silica particles with narrow particle size as adsorbent, which has
obvious advantages in the separation effect. Gas chromatography
has good selectivity in the determination of trace substances
(Zhang et al., 2018a,b). However, AA is a polar compound,
which requires a series of sample pretreatment and increases
the complexity of determination. The fluorescence method is a
direct or indirect detection method based on the fluorescence
intensity quenching and recovery of the probe after adding
AA. Fluorescence detection of AA has strong interference
ability and high sensitivity, which is suitable for the rapid
detection of trace AA in actual samples (Zhang et al., 2018c;
de Faria et al., 2020). The detection methods of DA include
chemiluminescence, spectrophotometry, fluorescence, liquid
chromatography, and electrochemical sensors. The detection
principle of chemiluminescence is that the chemical energy
absorbed by the material is converted into light energy when
the chemical reaction occurs (Cinti et al., 2018). The content of
the material in the sample is reflected by the luminous intensity.
In spectrophotometry, the complex is formed by the reaction
between DA and chromogenic agent. The absorbance of the
complex at a specific absorption wavelength has a certain linear
relationship with the concentration of DA. The fluorescence
method can detect the content of DA in pharmaceuticals by
measuring the fluorescence intensity (Ghanbari and Hajian,
2017; Long and Fu, 2017). Compared with other methods,
HPLC has a higher separation rate. Because the DA itself has
fluorescence, the combination of fluorescence and HPLC as
an effective detection method has been widely concerned in
the analysis of DA. At present, phosphotungstic acid reduction
(PAR) method, HPLC, enzyme method, and electrochemical
sensor have been established in clinical setting to detect UA.
The principle of determination of UA by PAR is that under
alkaline conditions, phosphotungstic acid reacts with UA to
produce tungsten blue and allantoin (Feng et al., 2020; Hou
et al., 2020; Karimi-Maleh et al., 2020a). The concentration of
UA is indirectly obtained by colorimetry. This method has good
accuracy for the detection of UA, but it requires higher purity of
phosphotungstic acid. HPLC has the advantages of simple mobile
phase and good separation effect, but the complex pretreatment
of samples is time-consuming. The enzyme detection of UA
is to use enzyme to catalyze the decomposition of UA to get a
certain concentration of product and then calculate the content
of UA (Karimi-Maleh and Arotiba, 2020; Karimi-Maleh et al.,
2020a). The enzymemethod for UA detection is relatively simple;
however, the high cost of enzyme and the constant temperature
of the reaction process limit its application.

The specificity of recognition between enzyme and substrate
makes the enzyme sensor have high selectivity and low detection
limit. However, the activity of the enzyme is greatly affected by
external environmental factors such as pH, temperature, and
material toxicity, which makes the enzyme sensor have low
stability and short life. At the same time, because of the limited
types of enzymes, its application scope is greatly limited. In
order to overcome the shortcomings of enzyme sensors, many
scientists have developed a series of enzyme-free sensors with
good stability, simple preparation, and low cost. Nanomaterials
have the advantages of large specific surface area, many surface-
active sites, high conductivity, good adsorption performance,
and strong catalytic performance, which can greatly improve
the sensitivity and stability of the sensor. They can be
used to immobilize biomolecules and as biomarkers to label
biomolecules. They can be used as catalysts in electrochemical
reactions to catalyze reactions and enhance the efficiency of
electron transfer. In this work, we report the preparation of
ZnO nanoparticles (NPs) using a simple one-pot synthesis
method (Yumak et al., 2011; Naderi Asrami et al., 2020). The
formed ZnO NPs have been used for glassy carbon electrode
(GCE) modification and used as a sensitive electrochemical
sensor for simultaneous detection of AA, DA, and UA. As
oxidation potentials of AA, DA, and UA severely overlap, their
electrochemically simultaneous determination is still a challenge.
The modification of ZnO could successfully separate three
analyte oxidation peaks.

MATERIALS AND METHODS

Zinc nitrate hexahydrate [Zn(NO3)2·6H2O], UA, DA, AA,
and hydrazine were purchased from Yeyuan Biotech. Co. Ltd.
Phosphate-buffered solution was prepared by mixing K2HPO4

and KH2PO4 to appropriate 0.1M with an appropriate pH. All
reagents were of analytical grade.MilliporeMilli-Qwater (18M�

cm) was used throughout.
The preparation of ZnO NPs has been carried out by previous

report (Fu and Fu, 2015). Briefly, 20mL of zinc nitrate solution
(0.05M) was prepared under stirring. Then 0.5mL hydrazine
solution (1 wt %) was added into the solution. The slurry
was sonicated for 0.5 h and transferred into a Teflon-lined
stainless-steel autoclave. The autoclave was heated to 120◦C for
2 h. The precipitate (denoted as ZnO NPs) was collected after
centrifugation and dried in an oven.

All electrochemical measurements were performed using CHI
760 electrochemical workstation with a conventional three-
electrode system. A platinum wire, a 3M Ag/AgCl electrode,
and a GCE were as auxiliary electrode, reference, and working
electrode, respectively. The GCE was modified by the ZnO NPs
dispersion and coated with a layer of Nafion before analysis.

RESULTS AND DISCUSSION

Figure 1A shows the scanning electron microscope image of
ZnO NPs after coating with Nafion film. It can be seen that a thin
layer of the Nafion was covered above the ZnO NPs, which could
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FIGURE 1 | (A) SEM image and (B) XRD pattern of synthesized ZnO NPs.

FIGURE 2 | EIS plots of bare GCE and ZnO NPs/GCE.

prevent the detachment of the NPs during the electrochemical
reaction. The formation of ZnO NPs was investigated by X-ray
diffraction (XRD) (Figure 1B). The XRD pattern of the ZnO
NPs displays the peaks at 31.5◦, 34.4◦, 36.4◦, 47.2◦, 56.1◦, 62.8◦,
and 68.2◦. These peaks can be indexed to hexagonal wurtzite
ZnO (JCPDS 36-1451). The average size of the ZnO NPs can be
calculated to 32.3 nm using the Debye–Scherrer equation.

The electrochemical property of the synthesized ZnO
NPs–modified GCE and bare GCE were investigated by
electrochemical impedance spectroscopy (EIS). The EIS plot of
bare GCE exhibited a larger semicircle compared with that of the
ZnO NPs/GCE (Figure 2), suggesting the modification of ZnO
NPs could lower the electron-transfer resistance of GCE. This

result indicates the modification of ZnO NPs can enhance the
electrochemical property of the GCE. Therefore, it is expected
to have a higher electrochemical response when interacting with
analytes (Karimi-Maleh et al., 2020b).

The electrocatalytic activity of the ZnO NPs was studied using
AA as an analyte and shown in Figure 3A. It can be seen that
the CV of bare GCE exhibited no distinct response toward
0.5mM AA oxidation, whereas the ZnO NPs/GCE showed a
clear oxidation peak of AA at 0.07V. The superior sensing
activity can be ascribed to the enhanced conductivity by ZnO
NPs with the intrinsic electrocatalytic property. In addition,
the ZnO NPs–modified GCE showed a larger background
compared with that of the bare GCE, suggesting the ZnO
NPs increase the electroactive surface area of the electrode.
Then, the electrocatalytic behavior of the ZnO NPs/GCE was
further studied using all three analytes. Figure 3B shows the CV
profiles of ZnO NPs/GCE toward AA, DA, and UA. Three well-
separated oxidation peaks were noticed at 0.08, 0.42, and 0.79V,
corresponding to the oxidation of UA, DA, and AA, respectively.
This observation indicates the prepared ZnO NPs/GCE can
be used as an electrochemical sensor for AA, DA, and UA
simultaneous detection.

The effect of pH on the detection of AA, DA, and UA using
ZnO NPs/GCE was investigated. Figures 4A–C show the CV
profiles of ZnO NPs/GCE toward AA, DA, and UA in the
range of 4.4–8.4, respectively. The increasing of peak current
was observed in all three cases when the pH increases until
7.4. Then, further increasing of pH leads to the decreasing of
the current response. Therefore, pH 7.4 was selected to be an
optimum condition.

The sensing activity of ZnO NPs/GCE has been tested for
individual AA, DA, and UA. During the test, the concentration
of one analyte was changed, whereas the other two analytes
remained the same. Figure 5A shows the SWV profiles of the
ZnO NPs/GCE toward AA in the concentrations range between
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FIGURE 3 | (A) CV of bare GCE and ZnO NPs/GCE toward 500µM AA. (B) CV of ZnO NPs/GCE at mixture of AA, DA, and UA.

FIGURE 4 | CVs of (A) 1,000µM AA, (B) 100µM DA, and (C) 100µM UA at the ZnO NPs/GCE values of 4.4, 5.4, 6.4, 7.4, and 8.4.

FIGURE 5 | (A) SWVs for AA (50–1,000µM) at ZnO NPs/GCE. (B) Calibration plots of AA concentration vs. current.

50 and 1,000µM. The peak currents exhibited a linear regression
from 50 to 1,000µM (Figure 5B) with an equation of Ipa(AA) =

5.3662+ 0.10771 CAA (R2 = 0.9976). Figure 6A shows the SWV

profiles of the ZnO NPs/GCE toward DA in the concentrations
range between 2 and 150µM. The peak currents exhibited a
linear regression from 2 to 150µM (Figure 6B) with an equation
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FIGURE 6 | (A) SWVs for DA (2–150µM) at ZnO NPs/GCE. (B) Calibration plots of DA concentration vs. current.

FIGURE 7 | (A) SWVs for UA (0.2–150µM) at ZnO NPs/GCE. (B) Calibration plots of UA concentration vs. current.

of Ipa(DA) = 0.6997 + 1.02465 CAA (R2 = 0.9985). Figure 7A
shows the SWV profiles of the ZnO NPs/GCE toward UA in the
concentration range between 0.2 and 150µM. The peak currents
exhibited a linear regression from 0.2 to 150µM(Figure 7B) with
an equation of Ipa(DA) = 7.7951 + 1.07205 CAA (R2 = 0.9977).
The limits of detections of AA, DA, and UA using ZnONPs/GCE
were calculated to be 18.4, 0.75, and 0.11µM, respectively.

The stability of the ZnO NPs/GCE was tested by 10
successive measurements in three analytes. The responses
remained almost stable with relative standard deviation
(RSD) of 3.2, 3.7, and 4.5% for AA, DA, and UA,
respectively. The reproducibility of the ZnO NPs/GCE
was investigated by six individual ZnO NPs/GCE toward
three analytes. The RSD was calculated to be 2.6, 3.1, and
4.4% for AA, DA, and UA, respectively. The selectivity
of the ZnO NPs/GCE was tested by the presence of
several potential interferences. As shown in Figure 8, 50-
folds of common ions such as Na+, K+, Mg2+, Ni2+,
and Ca2+ and 20-folds of glucose, sucrose, vitamin

B6, and acetaminophen exhibited no interference on
the sensing.

To illustrate the applicability of the ZnO NPs/GCE for real
sample analysis, measurements were carried out in vitamin C
(labeled as 50mg/mL) and DA hydrochloride tablet (labeled as 20
mg/mL) by employing the standard addition method. As shown
in Supplementary Table 1, the recovery of the spiked samples
ranged between 93.49 and 102.01%, indicating the successful
application of the ZnO NPs/GCE for the determination of AA,
DA, and UA in real samples.

CONCLUSION

We proposed an electrochemical sensor based on ZnO NPs for
the simultaneous determination of AA, DA, and UA. The sensor
showed a stronger ability to oxidize AA, DA, and UA compared
with that of a bare GCE. The ZnO NPs/GCE exhibited a linear
regression from 50 to 1,000µM for AA, a linear regression
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FIGURE 8 | Anti-interference property of the ZnO NPs/GCE.

from 2 to 150µM for DA and a linear regression from 0.2 to
150µM for UA. The limit of detections of AA, DA, and UA using
ZnO NPs/GCE were calculated to be 18.4, 0.75, and 0.11µM,
respectively. The results suggest that ZnO NPs can be considered
as an excellent candidate for electrochemical sensing.
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