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Nitrogen-doped mesoporous carbon microspheres have been successfully synthesized

via a spray drying-vapor deposition method for the first time, using commercial

Ludox silica nanoparticles as hard templates. Compared to freeze-drying and air-drying

methods, mesoporous carbon with a higher packing density can be achieved through

the spray drying method. Vapor deposition of polypyrrole followed by carbonization and

etching is beneficial for the generation of ultra-thin carbon network. The mesoporous

carbon microspheres possess a mesopore-dominate (95%) high surface area of 1528

m2 g−1, a wall thickness of 1.8 nm, and a nitrogen content of 8 at% in the framework.

Benefiting from the increased apparent density, high mesopore surface area, and

considerable nitrogen doping, the resultant mesoporous carbon microspheres show

superior gravimetric/volumetric capacitance of 533.6 F g−1 and 208.1 F cm−3, good rate

performance and excellent cycling stability in electric double-layer capacitors.

Keywords: mesoporous carbon, microspheres, spray drying, vapor deposition, supercapacitor

INTRODUCTION

Electric double layer capacitors (EDLCs), a typical type of supercapacitors, are appealing power
sources for consumer electronics and uninterruptible power supplies owing to their high power
density, rapid charge/discharge, environmental friendliness, and long cycling life (Simon and
Gogotsi, 2008, 2020; Choi et al., 2012; Wang et al., 2012; Liu et al., 2019, 2020; Noori et al., 2019; Li
et al., 2020). Porous carbonmaterials have attracted tremendous attention as electrodematerials for
supercapacitors because of their high specific surface area, high conductivity, high chemical stability
and tunable porous structures (Zhai et al., 2011; Tian et al., 2016, 2018; Hou et al., 2018; Wang
et al., 2018; Liu et al., 2019; Shao et al., 2020). Microporous carbons with pore sizes smaller than
2 nm and high surface areas have been widely utilized in EDLCs (Zhang et al., 2009; Yan et al., 2014;
Gadipelli et al., 2020). It was found that the capacitance reached a plateau when the microporous
surface area went above 1,500 m2 g−1 (Barbieri et al., 2005; Weingarth et al., 2014), indicating that
the total surface area measured by gas sorption methods is not fully electrochemically accessible.
The partially inaccessible small micropores also decreased the rate performance of microporous
carbon (Zhang and Zhao, 2009). In the past decades, mesoporous carbon materials with pore sizes
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of 2–50 nm have become promising candidates for EDLC
applications (Simon and Gogotsi, 2008, 2020; Zhai et al., 2011;
Choi et al., 2012; Wang et al., 2012, 2018; Tian et al., 2016,
2018; Hou et al., 2018; Liu et al., 2019, 2020; Noori et al.,
2019; Li et al., 2020; Shao et al., 2020). Huang et al. (2008)
demonstrated that the capacitance normalized by surface area
was higher in mesoporous carbon compared to microporous
carbon in aqueous solutions, suggesting a high capacitance can be
achieved in carbon materials with high mesoporous surface area.
Qian et al. reported the synthesis of mesoporous carbon with a
high total surface area of 1,300 m2 g−1 and a high percentage
of mesopore surface area (1,200 m2 g−1). This material showed
a high capacitance of 340 F g−1 at 1A g−1 and 66% capacity
retention at 10A g−1 due to the small pore size of 2–3 nm (Qian
et al., 2014). Li et al. (2013) reported the fabrication of protein-
derived carbons with a high mesopore surface area percentage
of ∼93% but a relatively small total surface area of 810 m2 g−1.
There are few reports on the synthesis of mesoporous carbons
with large mesopores and high mesopore surface areas (>1,400
m2 g−1) for supercapacitor applications.

In general, mesoporous carbons can be synthesized through
soft-templating or hard-templating methods (Li et al., 2016).
Surfactant molecules are generally used in the soft-templating
method (Wei et al., 2013; Shen et al., 2015) and in the
synthesis of mesoporous silicas as templates for the hard-
templating approach (Ryoo et al., 1999). Instead of surfactants,
using commercial Ludox silica nanoparticles as porogens is
a convenient approach for the surfactant-free synthesis of
mesoporous carbon (Han et al., 2000). However, the synthesis
was usually conducted in solutions (Han and Hyeon, 1999),
resulting in carbon materials with undefined morphology and
relatively low packing density, unfavorable for the volumetric
performance of EDLCs (Gogotsi and Simon, 2011; Wang et al.,
2016). The packing density can be improved by controlling either
the nanostructure or the micro-morphology (Li et al., 2015; Lin
et al., 2016). Cui et al. reported the synthesis of porous carbon
microspheres with increased packing density because small-sized
spheres can be accommodated into the packing voids of large-
sized spheres (Li et al., 2015). However, oil/water microemulsion
was applied in the morphology control, not suitable for scalable
synthesis. Spray drying, on the other hand, is a facile method for
the synthesis of multi-shelled metal oxides (Zhou et al., 2013) and
the assembly of colloidal silica nanoparticles into microspheres
(Tan et al., 2012). When Ludox silica templates, resorcinol and
formaldehyde as carbon precursors were used via the spray
drying method, silica/polymer microspheres and subsequently
mesoporous carbon microspheres were synthesized (Li et al.,
2014), with a surface area below 1,200 m2 g−1. Wang et al.
reported the synthesis of a partially graphitized porous carbon
by spray drying Ludox silica with sucrose (Wang et al., 2015a,b).
However, the capacitance of the obtained carbon microspheres
is only 91 F g−1 at 10mV s−1 due to the presence of a high
proportion of micropores.

The choice of carbon precursors is crucial for replicating
the template morphology with a homogenous carbon layer.
Compared to resorcinol/formaldehyde or sucrose used in

conventional infiltration and polyfurfuryl alcohol used in high-
temperature chemical vapor deposition (CVD) (Lin et al., 2015),
volatile precursors such as pyrrole applied in low-temperature
vapor deposition achieved a uniform coating and maintained
the structural stability of the template (Han et al., 2013). The
high nitrogen content coming from carbonized polypyrrole
contributed further to pseudo-capacitance and improved the
overall capacitance of carbon materials (Shen and Fan, 2013;
Wang et al., 2014). Ferrero et al. (2015) reported the preparation
of N-doped hollow carbon nanospheres using vapor deposition
of pyrrole on preformed silica nanoparticles, which have a
faithfully replicated morphology of the silica template but a
low packing density. It remains a challenge to use a convenient
approach and synthesize mesoporous carbon microspheres with
a high packing density, large mesopores and high mesopore
surface areas for supercapacitors.

Herein, we report the preparation of nitrogen-doped
mesoporous carbon microspheres by a spray drying-vapor
deposition method for the first time, using commercial Ludox
colloidal silica nanoparticles as porogens. The resultant
mesoporous carbon microspheres have a mesopore-dominant
(95%) high surface area (1,528 m2 g−1) with 8 At% nitrogen
doping, an increased apparent density, and consequently
excellent gravimetric/volumetric performance as an electrode
material in EDLCs.

EXPERIMENTAL SECTION

Material Synthesis
Highly Nitrogen-doped mesoporous carbon microspheres were
synthesized via spray drying and vapor deposition method.
Typically, Ludox SM colloidal silica (40 g, 30 wt.% suspension
in H2O, Sigma-Aldrich) was mixed with iron chloride (FeCl3)
solution (0.3M, 25ml) and deionized water (200ml). The
mixture was ultrasonicated for over 1 h and kept stirring while
spray drying. The suspension was spray dried at an inlet
temperature of 220◦C, a pump rate of 1.5ml/min, andN2 gas flow
of 60 ml/min. The spray dried sample was coated with pyrrole
vapor for 48 h in 50◦C oven before carbonized at 800◦C for 10 h
in a nitrogen atmosphere. Then the composite was washed with
5 wt.% hydrofluoric acid (HF) to remove the sacrificial silica
template. The resulting product was centrifuged and washed
repeatedly with deionized water and dried in an oven (addressed
asMC-7-SD). For comparison, all other procedures remained the
same, but the suspension was dried using 50◦C oven or freeze-
drier after sonication. The resultant was addressed as MC-7-AD
or MC-7-FD, respectively. Activated carbon Darco R© G-60 (-100
mesh, Sigma-Aldrich) was also used for comparison.

Characterization
Field emission scanning electron microscopy (SEM) images were
obtained using JEOL 7001. Transmission electron microscopy
(TEM) images were taken using JEOL 1010 at 100 kV. High
resolution transmission electron microscopy (HRTEM) was
conducted under a Tecnai G2 F20 (FEI) operated at 200 kV.
Nitrogen sorption isotherms were measured by Tristar II Surface
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Area and Porosity analyser (Micromeritics). The sample was
degassed at 180◦C overnight under vacuum before the test.
X-ray photoelectron spectroscopy (XPS) was recorded on a
monochromatic Al Kα (1,486.6 eV) X-ray source and 165mm
hemispherical electron energy analyzer. The elemental analysis
was carried out using a Thermo Flash EA-1112 Series NCHS-
O analyzer. Dynamic light scattering (DLS) measurement was
conducted on a Malvern Zetasizer Nano ZS instrument at room
temperature. Thermogravimetric (TG) analysis was performed
using METTLER TOLEDO TGA/DSC1 STARe System from 25
to 900◦C in air with a heating rate of 5◦C min−1.

Electrochemical Measurements
A slurry composing of active material (80 wt.%), carbon black
(10 wt.%), and polytetrafluoroethylene (PTFE, Sigma-Aldrich,
60 wt.% dispersion in H2O) (10 wt.%) was mixed with ethanol.
The working electrode was prepared by encapsulating mixture
into Ni foam and dried at 100◦C overnight. A three-electrode
system was used to measure the electrochemical performance in
6M KOH solution. Ni foam and Hg/HgO electrode were served
as counter and reference electrode, respectively. Electrochemical
measurements were carried out over a 1V potential window
(−1∼0V vs. Hg/HgO) using SolartronMultistat 1480. According
to the capacitance value, the energy density (E) and power density
(P) can be calculated using the following equations:

E = CV2/2

P = E/t

where C is the specific capacitance, V is the operating voltage,
and t is the discharge time.

RESULTS AND DISCUSSION

Nitrogen-doped mesoporous carbon microspheres were
synthesized by a spray drying-vapor deposition process
(Figure 1A). Typically, commercially available colloidal silica
nanoparticles (Ludox SM) with a diameter of around 7 nm
(Supplementary Figures 1a,b) were dispersed in water. The
suspension was atomized in the chamber of a spray drier to form
droplets that were then dried in flight. Silica nanoparticles were
agglomerated during the drying process, forming microspheres
under contraction force. As a catalyst, iron chloride was added to
the silica/water suspension and embedded in microspheres after
spray drying for the oxidative polymerization of pyrrole. Then,
pyrrole vapor was introduced to form a thin layer of polypyrrole
coating on silica nanoparticles. After carbonization at 800◦C in a
nitrogen atmosphere and removing sacrificial silica template, N-
doped mesoporous carbon microspheres were obtained (named
as MC-7-SD). In order to highlight the advantage of spray drying
method, silica aggregates were also synthesized using air-drying
(Gierszal and Jaronic, 2007) and freeze-drying (Zhang et al.,
2005) methods as reported in the literature for comparison. The

resultant mesoporous carbons after 800◦C carbonization and
etching were denoted as MC-7-AD and MC-7-FD, respectively.

The apparent densities of MC-7-SD, MC-7-AD and MC-
7-FD were measured as reported in the literature (Liu et al.,
2016; Pei et al., 2016) and are shown in Figure 1B. MC-7-SD
shows a higher apparent density (0.50 g cm−3) compared to
MC-7-AD (0.31 g cm−3) and MC-7-FD (0.15 g cm−3), slightly
lower than that of a commercial activated carbon (0.54 g cm−3).
The obvious difference in apparent densities is explained in
scanning electron microscopy (SEM) observations. The low
magnification SEM image (Figure 2a) reveals that MC-7-SD has
a micro-sized spherical morphology with a particle size of 700–
5,000 nm (Supplementary Figure 1c). The invagination zones
on the granules are probably caused by temperature (Biswas
et al., 2016) and/or the polydispersity of constituent nanoparticles
(Sen et al., 2012) during rapid spray drying. It is reported
that the spherical morphology exhibits a higher packing density
compared to other morphologies because the packing voids from
large spheres accommodate smaller ones (Ying et al., 2004; Pan
et al., 2020; Yue et al., 2020a,b). For comparison, MC-7-AD and
MC-7-FD show fragmented morphologies with random particle
packing (Figures 2b,c), leading to lower packing densities.

Transmission electron microscopy (TEM) was used to reveal
the mesostructure of MC-7-SD, MC-7-AD, and MC-7-FD. TEM
image of MC-7-SD (Figure 2d) shows a mesoporous micro-
spherical morphology. As shown in Figure 2d inset, the thickness
of the mesoporous carbon wall is around 1.8 nm. Different
from MC-7-SD, the morphologies of MC-7-AD and MC-7-FD
samples are monoliths with rich mesopores (Figures 2e,f). After
measurement from the inset high magnification TEM images,
the mesopore sizes in MC-7-AD and MC-7-FD are 7-8 nm, and
the thicknesses of carbon layers are 3.0 and 3.1 nm, respectively.
To fully characterize the porous structure of mesoporous carbon
materials, nitrogen sorption analysis was employed. As shown
in Figure 3A, all three samples show typical IV isotherms
with H2 hysteresis loops. The adsorption branches of MC-7-
AD and MC-7-FD show major capillary condensation steps in
relative pressure (P/P0) range of 0.7–0.8 and >0.9, indicating the
existence of large mesopores and packing voids. The adsorption
isotherm of MC-7-SD shows a capillary condensation step
at a relatively lower P/P0 of 0.6–0.75, indicating a relatively
small pore size. No capillary condensation is observed at P/P0
> 0.9, suggesting small-sized spheres accommodates into the
packing voids of large-sized spheres. The pore size distributions
(PSD) calculated by Barrett–Joyner–Halanda (BJH) model from
adsorption branches are shown in Figure 3B. The PSD of MC-7-
AD andMC-7-FD show a peak centered at 7 nm, which is close to
the size of Ludox silica templates (Supplementary Figures 1a,b).
A shoulder peak at 2–5 nm can also be observed. Unlike MC-7-
AD and MC-7-FD, MC-7-SD shows a wide PSD in the range of
2–9 nm, which can be attributed to the small mesoporous packing
voids in the microspheres (Ying et al., 2004; Pan et al., 2020; Yue
et al., 2020a,b).

As summarized in Table 1, the total pore volume of MC-
7-AD, MC-7-FD, and MC-7-SD are 2.7, 2.3, and 1.6 cm3 g−1,
respectively. MC-7-SD shows the lowest total pore volume
because most of its pore volume is attributed by mesopores,
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FIGURE 1 | (A) Illustration of the synthesis approach of MC-7-SD, (B) the apparent density of (I) MC-7-SD, (II) MC-7-AD, (III) MC-7-FD, and (IV) activated carbon

materials. The mass of each material is 50 mg.

while the total pore volumes of MC-7-AD and MC-7-FD are
combinations of mesopores and packing voids. In order to
differentiate the contribution of pore volume from mesopores
with different sizes, the pore volume of specific pore size range
is calculated from the cumulative pore volume-pore size plots
(Figure 3C). In MC-7-SD sample, 55% of total pore volume (0.8
cm3 g−1) was attributed to mesopores with sizes of 2–5 nm, while
only 20% of pore volume (0.3 cm3 g−1) came from mesopores
with sizes of 5–9 nm (Table 1). On the contrary, 0.3 cm3 g−1

of pore volume of MC-7-AD and MC-7-FD was attributed to
2–5 nm mesopores (12 and 14%, respectively), and the majority
of pore volume come from mesopores with sizes of 5–9 nm (1.3
cm3 g−1 (52%) and 1.2 cm3 g−1 (59%), respectively). MC-7-SD
also shows the highest Brunauer-Emmett-Teller (BET) surface
area (1,528 m2 g−1, Table 1) with an extraordinary mesoporous
surface ratio (95%) compared to MC-7-AD and MC-7-FD (1,338
and 1,229 m2 g−1, respectively).

To investigate the formation of mesopores with
sizes of 2–5 nm in MC-7-SD, MC-7-AD, and MC-
7-FD, X-ray photoelectron spectroscopy (XPS) was
conducted to analyze the Fe concentration on the
surface of as-dried microspheres/aggregates. XPS spectra
(Supplementary Figure 2) show the Fe/SiO2 molar ratios of
the as-dried aggregates are 3.4 and 3.6% after air-drying and
freeze-drying method, respectively, similar to the feeding ratio

in silica/water suspension (3.7%). However, the Fe/SiO2 molar
ratio of the as-dried microspheres after spray drying reduces to
1.1%, which is caused by the loss of Fe catalyst carried by inlet
gas during spray drying (Wilkowska et al., 2016). As previously
reported, the reduction of Fe catalyst results in less polypyrrole
coated on the surface of spray-dried microspheres (Yang
et al., 2005). The thermal gravimetric (TG) analysis of SiO2/C
composites after carbonization (Supplementary Figure 3)
further supported our conclusion. The composite after spray-
drying method shows 9.5 wt.% carbon, lower than those after
air-drying (12.9 wt.%) and freeze-drying methods (13.0 wt.%).
The smaller carbon coating amount is in accordance with the
thinner carbon layer observed from HRTEM. It is reported that
thin carbon layer ends up in an invaginated morphology with
reduced pore size after etching (Zhang et al., 2015). The nitrogen
sorption results show that the size-reduced mesopores exist in
MC-7-SD, MC-7-AD, and MC-7-FD. With a thinner carbon
layer, MC-7-SD exhibits a higher proportion of small-sized
(2–5 nm) mesopores compared to MC-7-AD and MC-7-FD.

In order to investigate the structural change of mesoporous
carbon microspheres as a function of carbonization temperature,
MC-7-SD was carbonized at 650, 800, and 950◦C. As shown
in Supplementary Figure 4, a typical mesoporous micro-
spherical morphology is well maintained despite various
temperatures. A slight increase of the specific surface area
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FIGURE 2 | (a–c) SEM and (d–f) TEM images of MC-7-SD, MC-7-AD, and MC-7-FD, respectively. (d–f) insets are HRTEM images of the edge of MC-7-SD,

MC-7-AD, and MC-7-FD, respectively. The scale bars in insets are 10 nm.

FIGURE 3 | (A) Nitrogen adsorption/desorption isotherm, (B) pore size distribution curves and (C) cumulative pore volume-pore size plots of MC-7-SD, MC-7-AD,

and MC-7-FD.

and pore volume was observed with the rising of carbonized
temperature (Supplementary Table 1). The increase in specific
surface area and pore volume is similar to a previous report
(Shen et al., 2015), which is mainly due to the higher
degree of carbonization at increased temperature. Raman
spectra (Supplementary Figure 5) show the graphitization of
mesoporous carbons. The distinguishable peak at 1,360 cm−1

(D band) is associated with the structural imperfections due
to the lack of long-range order in amorphous and quasi-
crystalline forms of carbon materials; meanwhile, the peak at
1,592 cm−1 (G band) corresponds to the E2g species (stretching
vibrations) of the infinite crystalline graphite (Tuinstra and
Koenig, 1970; Wang et al., 1990; He et al., 2013). The intensity
ratio between D and G band (ID/IG) provides a meaningful
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index for the crystallinity of carbon material. The ID/IG ratio
slightly decreases from 0.90 to 0.88 with the increase of
the carbonization temperature from 650 to 950◦C, which is
attributed to the increasing crystallinity of carbon at higher
carbonization temperature. The nitrogen doping contents of
MC-7-SD samples carbonized at 650, 800, and 950◦C were also
investigated. The XPS survey spectra (Supplementary Figure 6)
show the surface chemistry is dominated by C, O, and N for
all mesoporous carbons. The N content decreases from 13.21 to
5.57 at% with the ascending temperature from 650 to 950◦C.
Elemental analysis (Supplementary Table 2) was conducted to
determine the nitrogen content in bulk material. It is also shown
that the nitrogen content in MC-7-SD samples decreases from
13.29 to 6.47 wt.% when the carbonization temperature increases
from 650 to 950◦C, which is attributed to the decomposition
of N-containing functional groups at elevated temperatures
(Shen et al., 2015). The capacitive performances of MC-7-
SD carbonized at 650, 800, and 950◦C were tested in 6M
KOH (Supplementary Figure 7). The charge-discharge curves of
three samples exhibit a typical EDLC behavior with triangular
shapes. As mentioned before, MC-7-SD carbonized at higher
temperature possesses a better crystallinity, but the N-doping
content is decreased. Consequently, the capacitance of MC-7-SD
is the lowest (242.5 F g−1) carbonized at 650◦C and the highest
(362.8 F g−1) at 800◦C. Further increasing the carbonization
temperature to 950◦C leads to decreased capacitance of 330.1 F
g−1 (all at 1 A g−1). For this reason, 800◦C was chosen as the
optimized carbonization temperature of MC-7-SD, MC-7-AD,
and MC-7-FD in the following studies.

Regardless of various drying method during synthesis,
elemental analysis reveals that MC-7-SD, MC-7-AD, and MC-7-
FD show similar nitrogen content after carbonization at 800◦C
(Table 2). XPS results further confirmed that about 8 at%
nitrogen is accommodated in mesoporous carbons. Commonly,
the high-resolution N1s spectra (Figure 4) include pyridinic-
N (398.3 ± 0.1 eV), pyrrolic-N (399.7 ± 0.1 eV), quaternary-
N (400.9 ± 0.1 eV), and pyridine N-oxide (402.2 ± 0.3 eV).
Quaternary-N, also known as graphitic-N, has higher thermal
stability by incorporating N atoms into graphitic carbon plane
and bonded with three sp2 carbon atoms. As shown in Table 2,
MC-7-SD, MC-7-AD, and MC-7-FD samples possess 30.09,
40.61, and 39.65% of quaternary-N, respectively. The high
proportions of quaternary-N in polypyrrole-derived carbon are
beneficial for the electron transfer and electrical conductivity
of carbons (Hou et al., 2015). On the other side, pyrrolic-N
and pyridinic-N often considered electrochemically active in
aqueous solution, contributing pseudo-capacitance due to the
additional p-electron donation to the aromatic π system (Lai
et al., 2012; Sun et al., 2014). The total proportion of pyrrolic-N
and pyridinic-N in MC-7-SD (32.54 and 29.23 at%) are higher
than those in MC-7-AD (28.97 and 22.51 at%) and MC-7-FD
(33.76 and 19.19 at%), possibly due to more edges in the carbon
framework. With more electrochemically active nitrogen, MC-
7-SD is expected to show larger pseudo-capacitive contribution
in capacitance.

The electrochemical performances of MC-7-SD, MC-7-AD,
and MC-7-FD have been evaluated. Figure 5A shows the

TABLE 1 | Textural properties of MC-7-SD, MC-7-AD, MC-7-FD and activated

carbon.

Sample SBET

(m2 g−1)

Smicro

(m2 g−1)

Smeso

(m2 g−1)

Vt

(cm3 g−1)

V2−5nm

(cm3 g−1)

V5−9nm

(cm3 g−1)

MC-7-SD 1,528 69 1,459 1.6 0.8 0.3

MC-7-AD 1,338 55 1,338 2.7 0.3 1.3

MC-7-FD 1,229 66 1,229 2.3 0.3 1.2

Activated

carbon

840 498 342 0.8 – –

SBET is BET surface area calculated from P/P0 = 0.05–0.3, Smicro is t-plot micropore

area, Smeso is mesopore area calculated from equation Smeso = SBET -Smicro, Vt is total

pore volume at P/P0 = 0.995, Va−bnm is the pore volume in the range of a–b nm, which

is calculated from the cumulative pore volume.

TABLE 2 | The nitrogen-doping content of MC-7-SD, MC-7-AD, and MC-7-FD.

Sample N (wt%) N (at%) Pyridinic-

N

(at%)

Pyrrolic-N

(at%)

Quaternary-

N

(at%)

Pyridine

N-oxide

(at%)

MC-7-SD 9.46 8.67 32.54 29.23 30.09 8.14

MC-7-AD 9.75 7.05 28.97 22.51 40.61 7.91

MC-7-FD 9.33 8.50 33.76 19.19 39.65 7.40

rectangular-shaped CV curves of MC-7-SD, MC-7-AD, and
MC-7-FD. The broadened redox peaks in CV curves can be
observed from −0.8 to −0.3V. These wide and vague peaks
are attributed to multiple faradaic peaks (Lin et al., 2015),
partially associated with the pseudo-capacitance of pyrrolic-
N/pyridinic-N (Xu et al., 2012). The representative galvanostatic
charge-discharge curves of mesoporous carbons at a current
density of 1A g−1 are shown in Figure 5B. The charge-discharge
curves are nearly linear and symmetric with a slight curvature,
which suggests a good capacitive behavior and electrochemical
reversibility (Zhang et al., 2016). The dependence of specific
capacitances on the current density in Figure 5C shows that
MC-7-SD delivers the highest specific capacitance (533.6 F g−1

at 0.1 A g−1, 362.8 F g−1 at 1A g−1) with a high surface area
normalized capacitance (23.74 µF cm−2 at 1A g−1), giving
a high maximum energy density of 74 Wh kg−1 (at 0.1 A
g−1). The specific capacitance and surface area normalized
capacitance of MC-7-SD are higher than those of micropore-
dominate activated carbon (161.5 F g−1 and 19.22 µF cm−2 at
1A g−1, Supplementary Figure 8), revealing the high utilization
efficiency of mesopore-dominate structure. With higher specific
surface area and more electrochemically active nitrogen, the
capacitance of MC-7-SD (362.8 F g−1) is better than those of
MC-7-AD and MC-7-FD (317.5 and 291.9 F g−1 at 1A g−1,
respectively). Electrochemical impedance spectroscopy (EIS)
measurements of MC-7 supercapacitors were also performed.
Typical Nyquist plots in the frequency range of 0.01 to
100,000Hz are shown in Supplementary Figure 9. The Nyquist
plot, composed of a depressed semicircle in high frequency
region and a sloping line in low frequency area, can be fitted
using an equivalent circuit (Supplementary Figure 9 inset). In
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FIGURE 4 | High-resolution N1s spectra of (A) MC-7-SD, (B) MC-7-AD, and (C) MC-7-FD.

FIGURE 5 | (A) Cyclic voltammetry curves at 5mV s−1, (B) galvanostatic charge/discharge curves at 1 A g−1, (C) specific capacitance of MC-7-SD, MC-7-AD, and

MC-7-FD and (D) cycle performance of MC-7-SD, MC-7-AD, and MC-7-FD at 5A g−1.

the circuit, Re represents the electrolyte and ohmic resistance,
referring to the incept of the plot with Z’ axis. Rct and Q
are the charge transfer resistance and double-layer capacitance,
respectively, contributing to the depressed semicircle spanning Z’

axis. The low frequency sloping line corresponds to the Warburg
impedance (Zw) that pertains the ion diffusion in the electrode.
Comparison of Rct values for three MC-7 materials reveals
the lowest Rct of MC-7-SD, corresponding to improved charge
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transfer process due to efficient-packed carbon mesopores. After
cycling, the plots maintained similar profiles.

It is noted the capacitance of MC-7-SD is comparable or
better than those of mesoporous carbons reported in literature
(Supplementary Table 3). Even at a high current density of 20A
g−1, a capacitance of 242.2 F g−1 (10 kW kg−1 power density)
can be maintained, corresponding to 66.8% of capacity retention.
Compared to other mesopore-dominant carbon materials (Qian
et al., 2014), the higher capacity retention of MC-7-SD indicates
the advantage of large mesopore sizes favorable for rapid
charge/discharge. A long-lasting cycle life with <8% capacitance
loss after 10000 cycles is obtained in MC-7-SD under 5A g−1

(Figure 5D), slightly weaker than those of MC-7-AD and MC-
7-FD (5 and 6% capacitance loss, respectively). This observation
is in accordance with a previous report: larger pores facilitate
the ion transportation, resulting in better cycling stability
under high current charge-discharge (Ma et al., 2014). Apart
from high gravimetric performance, MC-7-SD also achieves
a superior volumetric capacitive behavior (208.1 F cm−3 at
0.1 A g−1) when calculating using an apparent density of
0.50 g cm−3. The superior electrochemical performance of MC-
7-SD for EDLCs can be attributed to its unique structural
features. Firstly, the thin carbon layer coated by vapor deposition
results in a high mesoporous surface area, which leads to
a high accessible electrode-electrolyte interface for electric
double layer formation. Secondly, the high content of nitrogen
doping provides additional electrochemically active nitrogen for
pseudo-capacitance. Thirdly, relatively large mesopores in the
carbon framework are beneficial for the remarkable capacitance
retention at high current densities. Fourthly, the micro-spherical
morphology of MC-7-SD is ideal for effective packing and
excellent volumetric capacitive performance.

CONCLUSION

In summary, nitrogen-doped mesoporous carbon microspheres
have been successfully synthesized by spray drying-vapor
deposition method. The resulting carbon microspheres possess
a mesopore-dominate (95%) high surface area of 1528 m2 g−1,

a nitrogen-doping of 8 at%, and an apparent density of
0.5 g cm−3. Benefiting from its unique features, MC-7-SD
manifests excellent gravimetric/volumetric performance (533.6 F
g−1 and 208.1 F cm−3). Our work opens up opportunities for
the fabrication of efficient-packed porous carbon materials with
heteroatom-doping for wide applications.
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