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Tuberculosis is one of the deadliest infectious diseases worldwide and the prevalence

of latent tuberculosis acts as a huge roadblock in the global effort to eradicate

tuberculosis. Most of the currently available anti-tubercular drugs act against the actively

replicating form of Mycobacterium tuberculosis (Mtb), and are not effective against

the non-replicating dormant form present in latent tuberculosis. With about 30% of

the global population harboring latent tuberculosis and the requirement for prolonged

treatment duration with the available drugs in such cases, the rate of adherence and

successful completion of therapy is low. This necessitates the discovery of new drugs

effective against latent tuberculosis. In this work, we have employed a combination of

bioinformatics and chemoinformatics approaches to identify potential targets and lead

candidates against latent tuberculosis. Our pipeline adopts transcriptome-integrated

metabolic flux analysis combined with an analysis of a transcriptome-integrated

protein-protein interaction network to identify perturbations in dormant Mtb which leads

to a shortlist of 6 potential drug targets. We perform a further selection of the candidate

targets and identify potential leads for 3 targets using a range of bioinformatics methods

including structural modeling, binding site association and ligand fingerprint similarities.

Put together, we identify potential new strategies for targeting latent tuberculosis, new

candidate drug targets as well as important lead clues for drug design.

Keywords: latent tuberculosis, target identification, systems biology, chemoinformatics, lead identification,

metabolic modeling, response network

1. INTRODUCTION

Tuberculosis, despite being one of the oldest infectious diseases known to humankindwith a history
dating back to 70,000 years, continues to affect millions of people, causing over 0.1 million deaths
globally every year (Barberis et al., 2017; WHO, 2018). A major roadblock in TB eradication is the
capacity of the causative organismMycobacterium tuberculosis (Mtb) to remain in a non-replicative
state inside an infected person for decades without causing any symptoms. An approximate 1.7
billion of the world’s population is thought to harbor latent tuberculosis (Ai et al., 2016; WHO,
2018). These individuals carry about a 10% lifetime risk of developing active TB, a risk that increases
in the presence of factors such as malnutrition or immunocompromised conditions. The treatment
of latent TB, therefore, becomes an important requirement for successful control and management
of TB around the world.
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Clinically, latent TB signifies a state of persistent immune
response to M.tuberculosis infection, where the host remains
asymptomatic and the bacilli are in a non-replicating dormant
state but have the potential to reactivate when the host gets
immunocompromised. Mtb owes its ability to reside for long
periods inside the host in a dormant condition to its capacity
of rewiring its own metabolism to a viable yet non-replicative
state which allows its maintenance and evasion of host immune
mechanisms (Gengenbacher et al., 2010). It gets engulfed by
alveolar macrophages at the site of infection, but prevents
phagosomal maturation and thus stops its own subsequent
destruction by the host immune system, forming granuloma
(Russell, 2001; Pethe et al., 2004). In most of the cases, the
granuloma becomes solid and fibrous, successfully containing
the infection inside and establishing latent TB infection
(Gengenbacher and Kaufmann, 2012). In order to survive
inside the host cells, the bacteria must adapt to their hostile
environment where they are challenged with various stresses
such as low nutrients, hypoxia, low pH etc. (Schnappinger et al.,
2003). Multiple in vitro models have elucidated different aspects
of the biochemical and molecular correlates ofMtb dormancy. A
metabolic downshift induced by the granuloma environment is
a predominant change that the pathogen goes through in order
to achieve the dormant state (Betts et al., 2002). The glyoxylate
shunt has been proven to be essential for bacterial survival during
dormancy (McKinney et al., 2000; Gengenbacher et al., 2010).
Hypoxia has been one of the most leveraged stress conditions in
induction of dormancy in vitro and it has led to the identification
of the Dos regulon that controls about 50 genes and regulates
bacterial adaptation into non-replicative state in hypoxia (Park
et al., 2003; Voskuil et al., 2004). Utilization of lipids as an
alternative carbon source has also been suggested as an important
adaptation in dormancy (Santucci et al., 2016).

Most of the anti-tubercular drugs target cellular processes
in actively replicating cells such as the transcription, cell wall
synthesis and the generation of ATP (Campbell et al., 2001;
Timmins and Deretic, 2006; Nagabushan and Roopadevi, 2014).
These drugs lose their potency against latent tuberculosis due
to the metabolic alterations seen in the dormant bacteria. At
present, for lack of better options, the existing anti-tubercular
drugs are administered for prolonged periods to latent TB
individuals. Although, both monotherapy and combination
therapy have been reported to have similar efficacy, the longer
duration monotherapy has been in common practice due to the
possibility of drug interaction between rifampicin/ rifapentine
and other drugs like the ones used for treatment of HIV (Fox
et al., 2017; Saha et al., 2020). This prolonged antibiotic course
is often perceived as unnecessary for an asymptomatic condition
by both the patient and the clinician, leading to lack of adherence
and an average of 20–30% treatment completion rate in most
cases (Horsburgh, 2004). Therefore to successfully eradicate

Abbreviations: FAD, Flavin Adenine Dinucleotide; FBA, Flux Balance Analysis;
GEM, Genome-scale Metabolic Model; GEO, Gene Expression Omnibus; GPR,
Gene Protein Rule; MDR, Multidrug Resistant; NAD, Nicotinamide Adenine
Dinucleotide; PDB, Protein Data Bank; TB, Tuberculosis; XDR, Extremely Drug
Resistant.

TB when about 2 billion of the world’s population could be
acting as the pathogen reservoir, new shorter drug regimens are
urgently required.

Although drug discovery for tuberculosis has gained
momentum with the emergence of MDR and XDR Mtb strains,
the number of new drugs has not increased significantly. An ideal
new TB drug should lead to a shorter treatment duration than
those in practice, have minimal toxicity and interaction with
other drugs and kill different subpopulations observed in clinical
TB with different replication rates (Lechartier et al., 2014).
Metronidazole, pretomanid and certain hydrazone molecules
have shown promise against non-replicating Mtb (Wayne and
Sramek, 1994; Stover et al., 2000; Bonnett et al., 2018). High-
throughput compound screening and bioinformatics analysis
have also identified potential drug candidates against dormant
tuberculosis (Cho et al., 2007; Raman et al., 2008; Defelipe et al.,
2016). Yet most of the proposed drugs in different phases of
clinical trial target processes like DNA replication and cell wall
synthesis which have limited efficacy against dormant bacteria
(Dietze et al., 2008; Gler et al., 2012; Naidoo et al., 2017). Since
the complete sequencing of Mtb genome (Cole et al., 1998),
different omics-based studies have provided insights into the
biology of tuberculosis in active and latent conditions and have
been utilized for drug target identification (Lew et al., 2011;
Goff et al., 2020). Although a drug-to-target pipeline has been
traditionally more successful in discovering new TB drugs
than a target-to-drug pipeline, it has not been able to identify
potential drugs for specifically killing the non-replicating
pathogen (Lechartier et al., 2014). On the other hand, drugs like
Bedaquiline, that target the ATP homeostasis are shown to have
high efficacy in killing dormant bacteria as they target processes
necessary for bacterial survival in dormancy (Koul et al., 2008;
Rao et al., 2008; Kaushik et al., 2019). It shows that in the case of
latent TB, a target-based drug approach might be more efficient
in identifying new drugs targeted toward processes crucial for
bacterial dormancy.

In this work, we have used a systems biology based
computational pipeline to strategically identify six different
potential drug targets for tackling latent TB. We further
select three of these as candidate targets and use multiple
bioinformatics and chemoinformatics approaches to identify
lead clues for these targets that may aid in the process of drug
discovery. Our approach utilizes a combination of transcriptome
analysis, genome-scale metabolic modeling, condition-specific
genome-wide protein-protein interaction networks and
bioinformatics based on protein sequences, protein structure,
binding sites and chemoinformatics that analyse the chemical
structures and topologies of the ligand molecules.

2. METHODS

2.1. Curation of Publicly Available
Transcriptome Data
The objective of this study was to identify potential drug targets
for latent TB. Transcriptome data was not publicly available
from dormant pathogens residing in infected host tissues. But, a
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TABLE 1 | Transcriptome datasets from GEO database considered in this study for in vitro Mtb for 4 different dormancy models.

GEO ID and platform Dormancy inducing

condition

Conditions and number of

samples

Stages and timepoints of

dormancy

References

GSE8786 (GPL5714) Hypoxia Exponential growth (35),

pre-dormancy (6) and Non-replicative

persistence (29)

NRP1 (Day 6–8), NRP2 (Day 10–20),

NRP3 (Day 30–80)

Voskuil et al., 2004

GSE10391 (GPL4388) Multiple stress (Low O2,

acidic pH, low glycerol)

Exponential growth (47),

pre-dormancy (39) and dormancy (8)

Dormancy (Day 9–18) Deb et al., 2009

GSE66408 (GPL18768) Potassium Deficiency Exponential growth (3) and dormancy

(9)

Early (Day 14), Mid (Day 24) and Late

dormancy (Day 34)

Ignatov et al., 2015

GSE84554 (GPL4057) Iron Deficiency Exponential growth (24),

pre-dormancy (12) and dormancy (18)

Dormancy (Day 7–14) Kurthkoti et al., 2017

significant number of studies have been successful in establishing
dormancy of Mtb in vitro with the application of different stress
conditions, which partially replicates the multitude of stresses
faced by the pathogen inside the host granuloma environment.
We searched in the public repository Gene Expression Omnibus
(GEO) (Edgar et al., 2002) for transcriptome data of dormant
Mtb and selected the datasets listed in Table 1 based on the
following criteria: (a) presence of well-defined timepoints of
Mtb dormancy, i.e., establishment of bacteriostasis and non-
culturability induced by external stress, (b) samples from
exponential/ logarithmic growth phase in absence of an external
stress, (c) data generated with microarray or RNAseq techniques,
(d) ≥ 3 samples per condition and time points, from which we
selected one dataset each (that has data for themaximumnumber
of time points) representing different stress conditions.

2.2. Gene Expression Analysis
Raw data from the selected datasets listed in Table 1 were
downloaded from GEO. Each dataset was pre-processed and
normalized separately using EdgeR and limma package from
Bioconductor in R statistical environment (Robinson et al., 2010;
Huber et al., 2015; Ritchie et al., 2015). In brief, the two-channel
microarray datasets were background corrected, followed by
within and between array normalization with loess and quantile
methods, respectively. The RNAseq dataset, GSE66408, was
subjected to the TMM scaling normalization method (Robinson
and Oshlack, 2010). Normalized gene expression values were
used for differential gene expression calculation between
dormancy and exponential growth conditions with moderated
t-statistics and Benjamini–Hochberg’s method to control for
false discovery rate (FDR). Genes with ≥ 1.5-fold change in
expression, with FDR ≤ 0.05 were considered to be statistically
significant differentially expressed genes (DEGs).

2.3. Contextualization of Mtb

Genome-Scale Metabolic Model and
Analysis of Reaction Fluxes
Genome-scale metabolic models (GEM) are large-scale in silico
reconstructions of metabolic networks of an organism that
describes the association between genes, proteins and reactions.
We selected the most updated GEM of Mtb, iEK1011, which
combined the previous GEMs and is manually curated for recent

literature, for this study (Kavvas et al., 2018). This model contains
1228 metabolic reactions, 998 metabolites and 1011 genes.

Flux balance analysis (FBA) is a constraint-based modeling
approach that analyzes the flow of metabolites through a
metabolic network, i.e., fluxes of metabolic reactions. The
principle and procedure for FBA have been thoroughly described
elsewhere (Raman and Chandra, 2009; Orth et al., 2010). To
identify the metabolic changes occurring inMtb when it enters a
dormant state, we integrated gene expression data from different
growth states into the metabolic model iEK1011, using the
algorithm E-Flux (Colijn et al., 2009). E-Flux utilizes continuous
gene expression data to set the upper and lower bounds of the
reaction fluxes using gene-protein-reaction (GPR) rule from the
model. Therefore, a reaction associated with highly expressed
genes in a given condition will allow higher flux through
it while maximizing the defined objective function. We have
used E-Flux (Colijn et al., 2009) to contextualize the iEK1011
model by integrating the corresponding transcriptome data.
Next, we have limited the exchange reactions of the respective
stress condition to replicate the experimental environment.
For example, in hypoxia-induced dormancy model, the oxygen
exchange reaction, that allows entry of oxygen into the cell,
is limited to reproduce the hypoxia state. We then computed
the fluxes through all the reactions for each growth and
dormancy condition and time point with FBA using the biomass
objective. The reactions with no flux or flux <1E-06 in both
exponential and dormancy conditions were removed from
further study. A reaction was considered to be significantly
perturbed in dormancy if flux fold-change ≥ 1.5, as compared
to corresponding exponential phase flux. The analysis was
performed using COBRA toolbox in MATLAB R2018b (Becker
et al., 2007; Heirendt et al., 2019).

2.4. Updation of Knowledge-Based Mtb

Protein-Protein Interaction Network
(MtbPPIN)
A high-confidence knowledge-based protein-protein interaction
network,MtbPPIN, was updated from the previously constructed
in-house Mtb network (Ghosh et al., 2013) using information
from databases as well as primary literature. First, all interaction
information available in the database STRING (Szklarczyk et al.,
2015) forMtbH37Rv strain was downloaded. Each interaction in
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the database is associated with a confidence score on a scale of 0
to 1000, where a higher score corresponds to higher confidence
interactions. Only the interactions with a confidence score ≥

800 were retained for MtbPPIN. Next, functional interactions
were manually curated from KEGG database (Kanehisa and
Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2019)Mtb pathways.
Further physical associations were added to the network from the
high-throughput screening studies (Wang et al., 2010; Wu et al.,
2017). High confident transcriptional regulatory interactions
were added to the network from multiple primary studies
(Balázsi et al., 2008; Zeng et al., 2012; Galagan et al., 2013;
Minch et al., 2015). Only the interactions between protein-coding
genes were retained. Directionality information was incorporated
into the network wherever available. Interactions representing
transcriptional regulation were directed from regulator to target,
signaling or metabolic interactions were directed from upstream
to downstream of the pathways. Interactions signifying physical
binding were considered as bidirectional. Unknown functionality
interactions were undirected. After a final round of manual
curation, the high-confidence genome-scale network, MtbPPIN
consists of 3,980 nodes (proteins) and 53,208 edges (interactions)
with 62% directionality. About 96% of the known Mtb H37Rv
proteome is included in MtbPPIN. MtbPPIN interactions are
provided in Supplementary File 1.

2.5. Response Network Analysis
Response network analysis is an in-house computational pipeline
that integrates transcriptome data in protein-protein interaction
networks to capture the important perturbations in a cell or
organism in a certain condition (Sambarey et al., 2013, 2017;
Padiadpu et al., 2016; Bhosle et al., 2020). We generated response
networks for each dormancy stage of each condition by weighing
the nodes and edges with transcriptome information using the
following Equations (1), (2), and (3). The feasibility of the flow of
information through the nodes can be calculated as the path cost
through those nodes (Equation 4).

Since the weights of the edges are inversely proportional to
the node weights, the lower the path cost the higher the flow of
information. The paths with the least cost capture the highest
perturbations in a given condition. The top 0.001 percentile paths
from both the active and repressed response networks were used
to obtain the top perturbed response networks of dormancy
stages (DormancyTPN). For cases where transcriptome data from
multiple timepoints are available for one dormancy stage, a
union of the DormancyTPN of the corresponding timepoints were
considered. All networks and pathways were visualized using
Cytoscape 3.7 (Shannon et al., 2003).

2.6. Structural Studies of Shortlisted Mtb

Proteins
For the shortlisted candidate target molecules, we studied their
protein sequences, structures and binding sites using well-
established bioinformatics methods. The input sequences of all
regulated proteins were retrieved from the Mycobrowser in
FASTA format (Kapopoulou et al., 2011). The structure template
appropriate for query sequence was identified using the popular
fold recognition software calledMUSTER (Wu and Zhang, 2008).

MUSTER is based on an extension of the traditional sequence
profile-profile alignment algorithms (PPA) with additional
structural features such as prediction of secondary structure
elements, solvent accessibility, backbone dependent dihedral
angle and hydrophobic scoring matrix. In addition to sequence
derived information, used by other programs, new features
incorporated byMUSTER aid in deriving structural relationships
thereby increasing the sensitivity of template being chosen. The
quality of template that is aligned with the query sequence was
verified based on the Z-score cutoff scheme as reported in the
original MUSTER paper. Z-score is obtained either by dividing
raw alignment score (Rscore) by full length alignment (Lfull)
or by dividing Rscore by partial length alignment (Lpartial). Z-
score value greater than 7.5 indicates a significant alignment of
query sequence over template structures. Finally, an all-atom
structure reconstruction was built using MODELER, a software
for comparative protein structure modeling (Webb and Sali,
2016). The quality and robustness of models were investigated
using ERRAT (Colovos and Yeates, 1993).

2.7. Consensus Binding Site Detection
Pipeline
Numerous site prediction algorithms are available online each
exploiting distinct ways to find binding pockets in the proteins.
Consensus identification of sites from multiple methods yields
high confidence binding sites essential for this work. Three
independent pocket detection methods used for this study
were (i) PocketDepth, a geometry-based method (Kalidas and
Chandra, 2008), (ii) SiteHound, energy-based (Ghersi and
Sanchez, 2009) and (iii) FPocket, based on Voronoi tessellations
(Le Guilloux et al., 2009). PocketDepth, an inhouse method, uses
the notion of a depth factor to identify putative binding pockets
for a given protein structure. It is a geometry-based method
which encompasses the protein as a volume of grid cells each
of size 1Å. All grid cells are then classified either as internal
(if the cell is within 2Å from atom occupied grids) or external
(everything else). A depth-first graph traversal search along all
six faces of the cube gives a list of connected cells defining the
pockets. The second algorithm, SiteHound, which is an energy-
based method, predicts a site by finding energetically favorable
regions on the protein surface using Molecular Interaction
Fields (MIF). Lastly, FPocket relies on Voronoi tessellation
by constructing a set of small alpha spheres in proteins that
connect four atoms on its boundary and all connected atoms are
equidistant to the alpha sphere center. All three methods run on
different principles and hence served as independent methods
from which only those sites predicted by all three methods were
considered as a consensus pocket. The minimum residue overlap
of 4 residues was considered for consensus pocket identification
and by default pocket definition from FPocket was used for
further analysis.

2.8. Multiple Approaches of Associating
Targets With Lead Molecules
Three methods were used for associating ligand molecules to
the selected targets, based on (i) binding site sub-structures,
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(ii) whole protein structures level and (iii) protein sequences.
The site-based association uses the structural similarity between
sites as a basis to transfer function from one protein to
another. It broadly comprises the following steps—comparing
binding sites against known ligand sites from Protein Data Bank
(PDB) (Berman et al., 2000) and transferring ligands, measuring
similarity between PDB ligands and drugs in DrugBank (Wishart
et al., 2008), and associating drugs to the query protein. On
the contrary, the second approach uses whole fold similarity
for making a ligand association transfer. For each drug entry
available in the DrugBank database, UniProt Ids of protein to
which it gets recognized were taken. Following that, the primary
sequence data of all drug binding proteins were downloaded
from the UniProt database (UniProt Consortium, 2019). A
large-scale protein structural modeling exercise was then set
up using the MUSTER program. Structural templates suitable
for modeling each sequence were taken based on Z-score 7.5.
Proteins whose Z-score value is less than 7.5 were not considered
further in this work as they do not have a reliable template for
predicting their structures. Finally, sequence-based annotation
involves identification of putative drug-like molecules based on
similarity with sequences in the ChEMBL database (Gaulton
et al., 2012). The binding energy of each drug molecule with the
target proteins was calculated using AutoDock (Forli et al., 2016).

3. RESULTS

3.1. Identification of Potential Drug Targets
for Latent TB With Systems-Level Analysis
With an aim of identifying targetable cellular mechanisms
that have increased activity in non-dividing Mtb, we configure
a multi-step computational pipeline that performs genome-
scale metabolic modeling followed by a contextualized genome-
wide protein-protein interaction network analysis (Figure 1).
Different steps in the pipeline serve as filters to select only
those genes that satisfy the criteria defined at that step. The
filters correspond to gene expression variations or alterations in
metabolic fluxes in associated reactions, as described below.

3.1.1. Genome-Wide Profiling of Alterations in Mtb

During Dormancy in Different Models Identify Most

Likely Perturbations Inside Latent Host Granuloma
First, we obtain an unbiased view of the alterations in the
dormant Mtb cells as compared to their actively replicating
counterparts. We selected publicly available transcriptome data
from various in vitro dormancy models of Mtb that employed
different kinds of stress factors, as described in the section 2, to
induce a non-replicating stage in the bacterial culture (Voskuil
et al., 2004; Deb et al., 2009; Ignatov et al., 2015; Kurthkoti
et al., 2017). We selected one dataset per condition, which
included hypoxia, multiple stress, potassium deficiency and iron
deficiency, to represent the different kinds of stresses faced by
Mtb in the granuloma environment. In each of the dormancy
inducing conditions, dormant cells showed a significant number
of genes to be differentially regulated (FC≥ ±1.5, FDR≤
0.05) when compared to cells growing in exponential phase
(Figure 2A). In the datasets where different stages of dormancy

were classified (GSE8786 and GSE66408), the transcriptome
showed a gradual change in the perturbation from early to later
time points. Although a large number of genes were perturbed in
each condition, the overall change in the transcriptome varied
between different conditions as could be observed from the
clustering pattern that clearly separates the dormancy conditions
from each other (Figure 2A). Each of the stress conditions
individually caused an up or downregulation in a large portion
of the Mtb transcriptome, but only 350 genes were differentially
regulated in all four of the conditions and 1393 genes were DEGs
in any three of the conditions studied (Figure 2B). Interestingly,
the commonly downregulated genes are enriched in protein
synthesis, metabolism and growth, indicative of a non-replicative
state whereas the commonly upregulated genes were enriched
in different biological processes such as “response to host
immune response,” “response to oxidative stress,” and “response
to copper ion” which are indicative of responses similar to those
observed in dormant Mtb surviving in latent TB granuloma
(Figures 2C,D). This shows that although individual stress-
inducing conditions trigger responses in Mtb that are mostly
specific to that particular stress, the transcriptome perturbation
that occurs in multiple conditions does indeed replicate the state
of the pathogen inside latent host granuloma, where it stays
metabolically dormant as a survival strategy against the host
immune response.

We used the transcriptome analysis of dormancy conditions
not only to ascertain the applicability of in vitro dormancy
models in studying latent TB in the host, but also as our first
step of the filter in the drug target identification pipeline for
dormantMtb.MtbH37Rv has 3994 known proteins annotated in
Uniprot (UniProt Consortium, 2019) and 4,173 genes annotated
in Mycobrowser (Kapopoulou et al., 2011). The first filter applied
in the drug target identification pipeline was that of a gene being
a DEG in 3 or more of the in vitro dormancy conditions studied.
This resulted in 1,393 genes from Mtb passing the first filter
(Figure 1 and Supplementary File 2).

3.1.2. Contextualized Genome-Scale Metabolic

Modeling Elucidates Most Perturbed Metabolic

Reactions in Dormant Mtb
Mtb goes through extensive metabolic remodeling to achieve
the non-replicative yet viable state during latency (Boshoff and
Barry, 2005; Schubert et al., 2015; Baker and Abramovitch,
2018). We utilized the most updated Genome Scale Metabolic
Model of Mtb, iEK1011, integrated with gene expression data,
to generate a contextualized metabolic model for each dormancy
condition (as described in section 2) (Colijn et al., 2009;
Kavvas et al., 2018). A consequent FBA on the exponential
growth as well as dormant Mtb specific iEK1011 provided
the fluxes through the reactions in the respective condition.
Contextualization of the GEM with transcriptome data showed
a 50-100% reduction in the generalized biomass production
reaction in the dormancy conditions from the exponential
growth phase (Figure 3A), showing the capability of the method
to replicate the dormancy phenotype. Fluxes through 421
reactions were found to be altered in three or the more
dormancy conditions (Supplementary Files 3, 4). Of these,
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FIGURE 1 | The computational pipeline used for drug target candidate identification for latent tuberculosis. The pipeline involved stepwise filters based on gene

expression, metabolic modeling, and protein-protein interaction network analysis to shortlist proteins crucial for Mtb dormancy. Six proteins were shortlisted as

potential drug target candidates from this pipeline.

407 reactions were downregulated in all the four dormancy
conditions compared to exponential growth phase whereas 14 of
the reactions showed significant upregulation across dormancy
condition (Figure 3B and Supplementary Figures 1A–C). The
downregulated reactions belonged to different amino acid
synthesis pathways, cell wall and mycolic acid biosynthesis,
fatty acid metabolism, aerobic respiration etc. (Figure 3C and
Supplementary File 5). Among the reactions with significant
upregulation across dormancy models were key reactions in
the fatty acid metabolism, glyoxylate cycle and glycine cleavage
system (Figure 3C and Table 2).

From this analysis, the differentially regulated reactions
were selected for further steps in the target identification
pipeline. The up and downregulated reactions without GPR
information were filtered out, leaving 12 and 356 reactions
into the pipeline, respectively. The 12 upregulated reactions
were associated with 45 genes, whereas the 356 downregulated

reactions were associated with 390 genes. Of these, 19 and
165 genes, respectively, overlapped with the list of 1393 DEGs
from the previous step (Figure 1 and Supplementary File 2).
These DEGs are involved in perturbed metabolic reactions in the
dormant state of Mtb and were taken forward to the next step of
the pipeline.

3.1.3. Response Network Analysis Identifies

Top-Ranked Hubs Associated With Perturbations in

Dormant Mtb
Response network analysis has been proven to be an elegant tool
in strategic identification of drug targets in pathogens due to
its capacity of delineating the most perturbed cellular processes
and cross-talk in a condition of interest Padiadpu et al. (2016),
Bhosle et al. (2020). Here, we have constructed a knowledge-
based functional interactomeMtbPPIN and generated dormancy
response networks (DormancyTPN) for each of the in vitro
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FIGURE 2 | (A) Variations in gene expression profiles of Mtb in different in-vitro dormancy models with respect to actively replicating Mtb. Gene expression alterations

are depicted as log2(fold changes) over an exponential growth condition taken as the reference in each dataset. Red signifies upregulation and blue signifies

downregulation of gene expression. Each column in the heatmap shows the gene expression in the time point and model indicated in the figure. (B) A Venn diagram

showing the overlap between DEGs (fold change ≥ ±1.5, FDR ≤ 0.05) between different dormancy models w.r.t. exponential growth. 350 genes were differentially

regulated in all four dormancy models at some time point and 1393 genes were differentially regulated in at least 3 models. (C) GO: biological processes

overrepresented in the commonly upregulated genes amongst dormancy conditions and (D) GO: biological processes overrepresented amongst the genes commonly

downreguated across multiple dormancy conditions as analyzed using the enrichment tool in DAVID database (Huang et al., 2009).
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FIGURE 3 | (A) Optimal flux through the hypothetical biomass reaction from iEK1011 in different timepoints of all the models showing a significant reduction in

biomass generation in dormancy compared to exponential growth. (B) Flux fold change of all non-zero reactions in Potassium deficiency model of dormancy at 3

different stages in comparison to the exponential growth phase. X axis in each contains the reactions with non-zero fluxes and Y axis shows the fold change value.

Most of the reactions are downregulated during dormancy. (C) A representative subgraph of metabolic pathways focused on the TCA-glyoxylate cycle of central

carbon metabolism in dormant state Mtb in multiple stress induced model. The thickness of the edges is directly proportional to flux through the reactions. Yellow

circles signify metabolites. Purple squares indicate reactions from the 14 commonly upregulated reactions across dormancy models. Red squares highlight the genes

eventually identified as drug target candidate further down the pipeline.

TABLE 2 | Reactions commonly upregulated in 3 or more dormancy models.

Reaction ID Reaction name Subsystem GPR

ASP1DC Aspartate 1-decarboxylase Alanine, Aspartate, and Glutamate Metabolism Rv3601c

P5CRx Pyrroline-5-carboxylate reductase(nadh) Arginine and Proline Metabolism Rv0500

GCCc Glycine-cleavage complex Citric Acid Cycle Rv3303c

EX_h2 H2 exchange Extracellular exchange

DESAT16 Palmitoyl CoA desaturase n C160CoA n C161CoA Fatty acid metabolism Rv3229c

FACOAL160 Fatty acid CoA ligase hexadecanoate Fatty Acid Metabolism Rv3826 or Rv1529 or Rv1185c or Rv2590

FACOAL161 Fatty-acid CoA ligase hexadecenoate Fatty Acid Metabolism Rv0035 or Rv0099 or Rv0119 or Rv0166 or 30 others

GCCa Glycine-cleavage complex Glycolysis/Gluconeogenesis Rv1832

GCCb Glycine-cleavage complex Glycolysis/Gluconeogenesis Rv2211c and Rv1826

GXRA Glycine dehydrogenase (deamidating) Glyoxylate metabolism Rv2780

QRr QRr Oxidative phosphorylation Rv3777

L_LACD2 L-Lactate dehydrogenase (ubiquinone) Pyruvate metabolism Rv1872c

FHL Formate-hydrogen lyase Redox metabolism Rv0084

H2td Hydrogen transport Transport

Details of subsystems and GPRs (Gene Protein Rule) are taken from iEK1011.
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TABLE 3 | Summarized details of the final shortlisted drug target candidates for dormant Mtb.

Gene ID Gene name Protein name Function Protein length Gene expression status Network properties

Rv2590 fadD9 Probable fatty-acid-CoA

ligase FadD9

(Fatty-acid-CoA synthetase)

Involved in lipid degradation,

specific function unknown

1168 Upregulated two-to

four-folds in all dormancy

models

Neighbors: 4, DEG among

neighbors: 1

Rv3515c fadD19 Long-chain-fatty-acid-

CoA/3-oxocholest-4-en-26-

oate-CoA

ligase

Involved in the activation of

long-chain fatty acids as

acyl-coA and cholesterol

degradation

548 Upregulated two to

seven-folds in all dormancy

models

Neighbors: 1, DEG among

neighbors: 1

Rv1832 gcvB Probable glycine

dehydrogenase

(decarboxylating)

Component of glycine

cleavage system, binds to

the α-amino group of

glycine

941 Upregulated 3-8 folds in 3

dormancy models

Neighbors: 18, DEG among

neighbors: 9

Rv2780 ald Alanine dehydrogenase Catalyzes reversible

reductive amination of

pyruvate to L-alanine,

functions as a

homohexamer

371 Upregulated 4- to 40-folds

in 3 dormancy models

Neighbors: 105, DEG

among neighbors: 39

Rv1994c cmtR HTH-type transcriptional

regulator (CmtR)

Metal-dependent repression

of cmt operon promoter,

functions as a homodimer

118 Upregulated 1.5- to 17-folds

in all dormancy models

Neighbors: 241, DEG

among neighbors: 103

Rv0324 Rv0324 Possible transcriptional

regulatory protein (Possibly

ArsR-family)

Possible transcriptional

regulator, specific function

unknown

226 Upregulated 1.5- to 3-folds

in 3 dormancy models

Neighbors: 26, DEG among

neighbors: 14

models and stages (see section 2). The DormancyTPN for a
condition captured the top active and repressed interactions
based on a stringent path-cost based filter. This not only
included metabolic enzymes but also other important proteins,
e.g., transcriptional regulators, structural components etc. In
our previous step of the target identification pipeline, 19
upregulated and 165 downregulated reaction-associated genes
were shortlisted. Proteins with higher expression or activity
level are more viable drug targets since inhibiting those with
a chemical or biological compound is more practicable than
increasing the activity of any protein with external intervention.
Thus, for the next stage of the pipeline, we treated the up and
downregulated candidates as two separate groups (Figure 1).
First, we shortlisted the proteins captured in the DormancyTPNs
of 3 or more in vitro dormancy models. 4 of the 19 upregulated
candidates were found to pass the response network filter.
These were Rv2590, Rv3515c, Rv1832, and Rv2780 (Table 3).
These four genes were selected as final shortlisted targets for
dormant Mtb (Figure 1 and Table 3). Since the DormancyTPNs
also provided crucial information on transcriptional regulation
of different genes, we aimed to find repressors of the genes
associated with downregulated reactions from the previous step.
Repressors of such genes could be expected to be upregulated
themselves, thereby acting as potential drug targets. With this
aim, we first filtered those of the 165 genes that were captured in
DormancyTPNs of 3 or more in vitro dormancy models, retaining
91. Next, we obtained all known and predicted transcriptional
regulators in Mtb from the Mycobrower and other resources
(Balázsi et al., 2008; Zeng et al., 2012; Galagan et al., 2013;
Minch et al., 2015). Edges capturing regulatory interactions
were selected from the DormancyTPNs. These interactions were
further pruned to retain only the edges occurring in at least 50%

of the dormancy conditions, where any of the 91 genes were
the targets of the regulators. This exercise provided a list of 25
transcriptional regulators. Two of these regulators were found to
be upregulated themselves and connected to genes significantly
downregulated in all the dormancy conditions, confirming
transcriptional repression (Figure 4). These two transcriptional
repressors of metabolic genes, Rv1994c and Rv0324, were added
to the final list of shortlisted candidate targets (Figure 1 and
Table 3).

The list of 91 downregulated genes associated with repressed
metabolic reactions also provide us with insights into potentially
poor targets for latent TB. A number of drug target candidates in
actively growing Mtb have been reported in literature (Jamshidi
and Palsson, 2007; Raman et al., 2008; Kaur et al., 2017). From
the present analysis, we observe that 27 of those predicted
active TB targets are not likely to be effective against dormant
TB (Supplementary File 6). We tested if known targets for
clinically used first and second-line drugs featured in our lists
and found that the model predicts most of the currently used
anti-TB drugs to show low efficacy against dormant bacilli
(Supplementary Table 1).

3.1.4. Supporting Evidence of Functional Importance

of Shortlisted Drug Target Candidates From

Experimentally Derived Literature
Multiple studies have used omics-based and individual molecular
techniques to study genes and proteins playing crucial roles in
Mtb in different in vivo infection models in cells or animals,
and in vitro conditions such as stress-inducing conditions or
dormancy. We used this vastly available knowledge as a fold of
validation for the potential of success of our shortlisted drug
candidates against latent tuberculosis. Five of our six shortlisted
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FIGURE 4 | A subnetwork of union dormancy response network for the 6 shortlisted drug target candidates and their first neighbors. The target candidates are

colored in red. Upward and downward triangular nodes signify up and downregulation of gene expression, respectively. cmtR (Rv1994c) is the biggest hub in the

network, followed by ald (Rv2780). Most over-represented pathways among the first neighbors of each of the hubs are mentioned.

targets [fadD9 (Rv2590), fadD19 (Rv3515c), ald (Rv2780), cmtR
(Rv1994c), Rv0324] have been reported to be transcriptionally
upregulated inMtb once they infect macrophages and encounter
the intra-phagosomal stress (Schnappinger et al., 2003). Another
proteomics quantification study showed that fadD9 (Rv2590),
gcvB (Rv1832), and ald (Rv2780) levels significantly increase
in Mtb in in vitro hypoxia-induced dormancy model (Schubert
et al., 2015). Upregulation of genes involved in lipid degradation,
such as fadD9 (Rv2590) and fadD19 (Rv3515c), in a high lipid
environment or hypoxia is intriguing because these conditions
closely simulate the environment inside a granuloma (Karakousis
et al., 2004; Salina et al., 2009). gcvB (Rv1832) and ald (Rv2780),
encoding a glycine cleavage complex component and L-alanine
dehydrogenase, respectively, have also been observed to be
present in high amount in hypoxia-induced dormancy models
at transcript and protein levels (Wayne and Lin, 1982; Betts
et al., 2002; Schnappinger et al., 2003; Rustad et al., 2008).
Glyoxylate shunt and the associated enzymes are critical to non-
replicating Mtb inside host cells and its survival in a nutrient-
limited condition (McKinney et al., 2000; Puckett et al., 2017).
Fatty acid degradation can be directly linked to increased flux

through glyoxylate shunt as an alternative source of energy.
Increased fatty acid oxidation also increases cellular demand
for NAD+ since it is utilized in the process. Higher activity of
L-alanine dehydrogenase (ald/Rv2780), can help the bacterial
cell to meet this demand of NAD+ in the reversible pyruvate
deamination reaction (Schnappinger et al., 2003). It may also
support the maintenance of NAD pool in dormant Mtb in
anaerobic condition when terminal electron acceptor oxygen
becomes limiting (Starck et al., 2004; Gopinath et al., 2015). ald
(Rv2780) has been suggested as a druggable target for dormant
Mtb in previous in silico analysis as well (Murphy and Brown,
2007; Defelipe et al., 2016). The two transcriptional regulators,
cmtR (Rv1994c) and Rv0324, identified as drug target candidates,
have also been implicated to be crucial in various dormancy
inducing models. cmtR (Rv1994c) is reported to be strongly
induced by copper-mediated toxicity in replicating as well as
dormant mycobacteria (Salina et al., 2018), whereas Rv0324
plays a major role in Mtb enduring hypoxic response and in
the tolerance against Bedaquiline (Peterson et al., 2016, 2020).
Overall, our shortlisted target candidates have been linked to
Mtb dormancy is various models of dormancy induction and
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it provides additional confidence in our prediction of their
potential in treating latent tuberculosis.

3.1.5. Pruning the Target Shortlist as Candidates for

Lead Identification
With our systems biology pipeline we have identified 6 drug
target candidates for latent tuberculosis treatment. Further, we
pruned the list to 3 targets most suitable for lead identification
with structural modeling and chemoinformatics analysis. cmtR
(Rv1994c) and ald (Rv2780) were linked to the highest number of
DEGs (103 and 39, respectively) amongst the 6 shortlisted targets
in the DormancyTPN subnetwork (Figure 4). As mentioned in
the previous section, ald (Rv2780) is reported to be important in
dormancy (Wayne and Lin, 1982; Betts et al., 2002; Schnappinger
et al., 2003; Rustad et al., 2008). On the other hand, although
cmtR (Rv1994c) has been mostly reported in the context of
metal toxicity, it is upregulated in all the dormancy conditions
studied and is highly connected in the top perturbed network.
Also, of the 6 shortlisted targets, experimentally solved structures
are available only for cmtR (Rv1994c) and ald (Rv2780) (Banci
et al., 2007; Tripathi and Ramachandran, 2008). The third target
candidate fadD19 (Rv3515c) was selected based on functional
relevance. Its function is well-elucidated, unlike some of the
target candidates in our list. It catalyzes the addition of CoA
group to long-chain fatty acids, which can get transferred
to the polyketide synthases (Trivedi et al., 2004). It is also
reported to catalyze thioesterification of C8 alkanoate side
chain of cholestenoate, which is an intermediate of cholesterol
degradation (Casabon et al., 2014) and is essential for cholesterol
degradation inMtb (Griffin et al., 2011). Accumulation of lipids,
especially cholesterol, inside host granuloma and its utilization
by Mtb plays a critical role in the survival and dormancy of the
bacteria (VanderVen et al., 2015). All the three selected targets
were found to have no close homologue in the human proteome.
ald (Rv2780) and fadD19 (Rv3515c) were suggested as druggable
targets in the tuberculosis drugome (Kinnings et al., 2010). In
summary, cmtR (Rv1994c), ald (Rv2780), and fadD19 (Rv3515c)
were selected as the most relevant targets to pursue in the next
phase of our study.

3.2. Associating Potential Lead Molecules
With Drug Target Candidates
We aimed to identify drug molecules that can be potentially
repurposed for latent TB or would provide clues for designing
new ligands for the selected targets. We utilized a combined
structural modeling and chemoinformatics approach for this
purpose as schematically represented in Figure 5.

3.2.1. Structural Characterization of Shortlisted Drug

Target Candidates
Three proteins (fadD19, ald, and cmtR) that were identified as
target candidates in the steps described earlier were analyzed with
a goal of identifying possible lead candidates. Structural insights
from these proteins were derived based on available in silico
structure prediction methods and high-resolution templates
available from PDB. MUSTER, a threading algorithm, was used
to find the optimal template based on query coverage with the

target structure and the Z-score (Wu and Zhang, 2008). With a
Z-score threshold greater than 7.5, all three proteins were found
to have high confidence templates, which were then modeled
using Modeler software (Webb and Sali, 2016). cmtR (Rv1994c)
is a winged helical DNA binding transcriptional repressor of 118
residues which senses lead and cadmium. CmtR exists both as
monomer and dimer with Cys-102 from one subunit and Cys57,
Cys-61 from another subunit forming cadmium binding site. The
far UV CD spectra reveal the major portion of this protein is
made of α helical segments (Banci et al., 2007).

ald (Rv2780) is an L-Alanine dehydrogenase catalyzing the
conversion of ammonia and pyruvate to L-alanine. It constitutes
two domains, substrate binding and NAD binding connected by
two alpha helices (Jackson et al., 2016). Both, cmtR (Rv1994c)
and ald (Rv2780) had a crystal structure already deposited
in PDB and hence the same protein was used for structural
modeling (Banci et al., 2007; Tripathi and Ramachandran,
2008). For fadD19 (Rv3515c), structural information was not
available. Nevertheless, all three proteins have good query
coverage and hence considered them for further analysis.
Supplementary Table 2 shows the result of structural modeling
exercise along with the template taken fromMUSTER fold library
and the extent of structural deviation in Å.

3.2.2. Characterizing the Drug Binding Nature of

Target Candidates
Using the modeled structures as input, the drug binding
capabilities of each of them against DrugBank molecules were
studied comprehensively via three independent approaches: (i)
Site-level study which involves binding site prediction, site
similarity against known PDB ligand binding site and ligand
similarity between PDB ligands and DrugBank molecules, (ii)
Measuring structural similarity against known DrugBank targets
by doing a pairwise structural alignment of six proteins onto
known drug binding proteins and (iii) By measuring the
sequence similarity of the query sequence with known DrugBank
target sequences.

(i)Binding site prediction:Consensus binding site prediction
yields a total of 5 high confidence pockets for three proteins that
can recognize small molecules (Figure 6). The nature and type of
ligand binding to individual sites could be analyzed based on pre-
existing resources. PDB currently holds unique 50,230 structural
complexes excluding buffer ligands, thus serving as a knowledge
base of protein-ligand interaction information (Rose et al., 2017).
A fast site comparison study was used to assign different PDB
ligands to consensus pockets using the in-house PocketMatch
algorithm (Yeturu and Chandra, 2008). All 5 high confidence
pockets were scanned against 50,230 known PDB binding sites
in an all-vs-all manner. The output of PocketMatch results was
pruned based on two scoring schemes, Pmax (to encompass global
similarities between sites) and Pmin (to capture local similarities
between sites). From our previous study, it was shown that Pmax

> 0.5 and Pmin > 0.6 reflect meaningful similarities between a
given pair of sites, hence the same cutoff was employed here
(Anand et al., 2012). The binding sites of all three proteins have
similarities with the sites of proteins recognizing natural ligands.
For example sites of ald (Rv2780) were predominantly mapped
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FIGURE 5 | Different ways of associating targets with DrugBank drugs. The site-based association uses binding site similarity as a metric for assigning function to a

protein. Consensus pocket prediction exercise yields two pockets for the protein fadD19 (Rv3515c), 1 pocket for cmtR (Rv1994c), and two pockets for ald (Rv2780).

Site matching exercise on PDB site library gave 43 ligands that could bind with fadD19. Ligand hits were then pruned by establishing chemical fingerprints on

DrugBank molecules. Cobimetinib and darifenacin came out as the best repurposable drug candidate for fadD19. No hits were identified for ald and cmtR. Fold based

annotation involves mapping drugs to the targets from the known drug binding proteins. The 3D structure of 4,234 proteins was built using MUSTER and MODELER,

of which one hit, very long-chain acyl-CoA synthetase, binding to bempedoic acid share a fold level similarity with fadD19. No hits were identified for ald and cmtR.

Finally, sequence derived analysis uses the sequence search option in ChEMBL to identify bioactive compounds. 10 drugs were identified for fadD19, 3 for cmtR. No

hit was obtained for ald.

to NAD and FAD liganded sites. Associations made with natural
ligand sites were not considered as we were only interested in
finding candidate drugs. To accomplish that, we used open-babel
and compared the 149 ligand hits obtained from PocketMatch
against ligands deposited in DrugBank. DrugBank stores ligand
molecules based on one of these groups, Approved, Nutraceutical
and Investigational and we screened only those in the Approved
category as most of the commercial drugs belong to this class.
Of 11,414 entries being deposited in DrugBank, 10 drugs were
identified as hits for fadD19 (Rv3515c) at a given Tanimoto
cutoff of 0.70 (Table 4 and Supplementary Figure 4). No hits
were obtained for cmtR (Rv1994c) and ald (Rv2780). For fadD19
(Rv3515c), the binding energy of each of the drugs was calculated
using Autodock. Full results describing the name of each drug
along with the predicted binding affinity with the respective
target is provided in Supplementary File 7.

(ii) Prediction of drug binding from structures: Next we
mapped drugs to our identified targets based on the existing
structural data available in databases such as DrugBank. For all
drug molecules available in DrugBank, the UniProt IDs of the
proteins that were known to recognize them were retrieved. The

sequence information of these proteins was then fetched from
the UniProt website amounting to a total of 4,555 sequences.
A structural library for DrugBank targets was created for all
4,555 proteins using the MUSTER programme. High confidence
templates were taken based on reported Z-score cutoff of 7.5
resulting in a total of 4,234 proteins that are suitable for structural
modeling. The final structure was built using MODELER. To
transfer functional annotation from one structure to another, we
employed a protein structure alignment approach to computing
the extent of deviations between structures using a well-known
structure alignment software called MUSTANG (Konagurthu
et al., 2006). All 3 proteins were aligned onto 4,234 structures
in a pairwise manner resulting in 12,702 combinations, out
of which only 1 pair aligned with an RMSD less than 3Å.
The protein Very long-chain acyl-CoA synthetase (UniProt
ID: O14975) was found to be structurally similar to fadD19
(Rv3515c) and was known to bind Bempedoic acid, a drug
for the treatment of hypercholesterolemia. As both fadD19
(Rv3515c) and O14975 possess global fold level similarity,
we believe Bempedoic acid can be used as a repurposable
drug candidate.
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FIGURE 6 | The structural model of the three shortlisted target candidates predicted along with the pocket identified from the consensus approach. (A) The

structures predicted for each of the 3 proteins, i.e., ald (Rv2780), cmtR (Rv1994c), and fadD19 (Rv3515c), are represented in cartoon format. (B) The docking pose of

the best drugs for the targets. fadD19 (Rv3515c) is docked against Bempedoic acid and Cobimetinib, while cmtR (Rv1994c) is docked with Pioglitazone. No drug hits

are identified for ald (Rv2780). (C) Three-dimensional structures of the 3 docked ligands.

(iii) Deriving drug binding from sequence analysis:

We explored associating drugs to our targets from proteins
that are known to bind drug molecules. Sequence-based
search option in ChEMBL was used to get the list of related
proteins along with their ChEMBL compounds in 2D sdf
format. Conversion from 2D to 3D coordinates was made
using Open Babel software (O’Boyle et al., 2011). Many of
the compounds available in ChEMBL are not annotated
and are completely new, but we were only interested in
drugs that were approved. To do this, the structure of
all ChEMBL molecules was scanned against approved
drugs in DrugBank. At a Tanimoto cutoff of 0.70, we
obtained 14 drug molecules for fadD19 (Rv3515c) and 3
for cmtR (Rv1994c) (Table 4, Supplementary Figure 4, and
Supplementary File 7). No drug hits were obtained for
ald (Rv2780).

4. DISCUSSION

Large-scale systems-level modeling approaches are becoming
increasingly popular to understand biological systems due to
its capacity of providing insights into their complex molecular
networks, pathways and crosstalk. High-throughput methods are
of particular importance in the field of drug discovery due to the
urgent need for new and improved drugs for most of the diseases.
Although chemical screening methods have been successfully
utilized for drug identification for many diseases (Ananthan
et al., 2009; Siqueira-Neto et al., 2010; Debnath et al., 2012), the
large scale experiments incur a high cost and time, and in many
cases, the mechanisms of action of the drugs remain a black-box.
Systems-level modeling provides an efficient top-down approach
for predicting potential drug targets in biological systems based
on functionality and to associate lead molecules with them.
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TABLE 4 | A list of top drug hits identified from three distinct methods.

Target genes DrugBank ID Drug name Known drug action Methods employed Calculated binding

energy (kcal/mol)

Rv3515c (fadD19) DB05239 Cobimetinib To treat metastatic melanoma. Inhibits

protein MAP2K1

Site level −10.09

Rv3515c (fadD19) DB00210 Adapalene To treat acne vulgaris Site level −9.85

Rv3515c (fadD19) DB00496 Darifenacin Treats overactive bladder by blocking M3

muscarinic acetylcholine receptors

Site level −9.30

Rv3515c (fadD19) DB00605 Sulindac It is a nonsteroidal anti-inflammatory drug Site level −8.80

Rv3515c (fadD19) DB00563 Methotrexate An immunosuppressant, inhibit enzymes

responsible for nucleotide synthesis

Site level −8.74

Rv3515c (fadD19) DB11936 Bempedoic acid An ACL inhibitor used in reducing LDL

cholesterol levels

Structure based −6.51

Rv3515c (fadD19) DB11800 Tivozanib Inhibitor of vascular endothelial growth

factor receptor

Sequence based −9.85

Rv3515c (fadD19) DB11828 Neratinib An irreversible tyrosine kinase inhibitor

used in treatment of breast cancer

Sequence based −9.16

Rv1994c (cmtR) DB01132 Pioglitazone Uses to treat type 2 Diabetes mellitus Sequence based −6.29

Rv1994c (cmtR) DB06133 Dimethylcurcumin An anti androgen that enhances

degradation of androgen receptors.

Sequence based −6.16

Rv1994c (cmtR) DB00412 Rosiglitazone An antidiabetic drug works by activating

peroxisome proliferator-activated

receptors

Sequence based −5.75

For each identified DrugBank hit, the common name and the known mechanism of drug action is provided along with the theoretical binding energy calculated using AutoDock.

Latent TB is a widespread disease and is difficult to tackle
due to our limited understanding of the condition. Majority of
the anti-TB drugs target cellular processes critical to replicating
pathogens (Campbell et al., 2001; Timmins and Deretic, 2006;
Nagabushan and Roopadevi, 2014). Two of the most well-
established phenomena associated with latent tuberculosis is the
non-replicative state of the bacteria and its significant metabolic
rewiring (McKinney et al., 2000; Betts et al., 2002; Voskuil et al.,
2004; Gengenbacher et al., 2010). Therefore an understanding of
the differences in the metabolic processes and their regulations
between actively growing Mtb and dormant ones holds the
potential of providing critical clues for tackling latent TB. In
this study, we have utilized a genome-scale metabolic model
of Mtb (iEK1011) integrated with transcriptome information to
identify the key differences between the replicating and dormant
pathogen. One major limitation in studying latent TB remains
the lack of a model system that correctly simulates the conditions
of the dormant bacteria inside human granuloma. Different
in vitro models have been established to achieve the dormant
state of Mtb but each of these has been limited in the use
of any one or few of the stress conditions that the bacteria
face inside the host, thereby mimicking the in vivo condition
only partially. In order to overcome this limitation, we have
considered different models of dormancy and identified the
metabolic alterations that occur across different stress conditions.
Such alterations are most likely to be occurring in dormant
Mtb inside the host and be critical for their survival, making
the associated enzymes interesting targets for drug discovery.
We further filtered the targets using transcriptome integrated
genome-wide protein-protein interaction network (response
network) analysis. This step provided a broader perspective into

the perturbations occurring in dormant Mtb as it considers
not only the metabolic network but all the other molecular
and functional interactions as well. The metabolic enzymes
captured in the top-perturbed response networks for dormancy
along with being associated with reactions with the highest flux
changes across dormancy conditions could be considered as
high confidence drug targets. fadD9 (Rv2590), fadD19 (Rv3515c),
gcvB (Rv1832), and ald (Rv2780) were shortlisted from this
pipeline as drug target candidates. Since overexpressed proteins
are easier to inhibit with a drug than targeting any gene
or protein that is downregulated, we intended to focus on
upregulated proteins as drug target candidates. Predictably, most
of the metabolic reactions were downregulated in dormant Mtb.
This led us to use the regulatory interactions from dormancy
response networks to find transcriptional regulators that might
be associated with such downregulated metabolic reactions.
We found two transcriptional regulators, cmtR (Rv1994c) and
Rv0324, to be regulating multiple metabolic reactions while being
upregulated themselves. All of these 6 target candidates were
closely connected with each other in the response network,
suggesting a functional interaction between them. The metabolic
enzymes in the shortlist are involved in lipid metabolism and the
glyoxylate cycle. These processes are critical in the maintenance
of dormancy in Mtb and survival inside nutrient-limited host
granuloma environment (McKinney et al., 2000; VanderVen
et al., 2015; Puckett et al., 2017), showing that the functional
relevance of the identified drug target candidates.

In the next step we further pruned the target shortlist
to 3 candidates, fadD19 (Rv3515c), cmtR (Rv1994c), and ald
(Rv2780), based on their biological significance and network
properties, for lead association. The structures of the target
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proteins were obtained from experimentally solved structures or
were generated with homology modeling. To identify potential
lead molecule associations three independent approaches were
taken. In the first approach, we predicted the binding sites for
each of the target candidates using a consensus between three
orthogonal methods, PocketDepth, SiteHound, and FPocket
(Kalidas and Chandra, 2008; Ghersi and Sanchez, 2009;
Le Guilloux et al., 2009). Each of these methods has its own
strengths and limitations and employs a different strategy for
binding site identification and deploying a consensus approach
provides higher confidence in the predicted binding sites.
Multiple resources were then scanned to find ligands and drugs
that can bind to the high-confidence binding sites in the target
proteins. In the second approach, structural information of
known drug-target interactions from DrugBank was used to
associate drugs with our three candidate proteins by finding
similarity between structural folds. In the third approach, lead-
target associations were obtained using a sequence level similarity
analysis in the ChEMBL database. The utilization of three
different approaches enables us to derive the strengths of each
of the methods and explore the available resources to the fullest.
We have successfully associated multiple known natural ligands
such as NAD and FAD as well as 28 drug molecules with our
shortlisted targets. These associated drug leads are already used as
approved drugs for other disease and could therefore be readily
explored for the possibility of repurposing.

In summary, this study provides a ready shortlist of potential
drug targets for latent tuberculosis to be further studied.
Multiple known drug molecules have been associated with the
shortlisted targets which can either be explored as possible
repurposable drugs or at the very least will provide significant
clues for chemically designing new drug molecules for the
target proteins.

5. EQUATIONS

For active response network,

NWi = FC(i) =
(Expression of gene ‘i’ in dormancy)

(Expression of gene ‘i’ exponential growth)
(1)

For repressed response network,

NWi = FC(i) =
(Expression of gene ‘i’ exponential growth)

(Expression of gene ‘i’ in dormancy)
(2)

Where NW means node weight, FC stands for fold change in
gene expression and ‘i’ indicates the gene.

The edge weight (EW) between nodes ‘i’ and ‘j’ is calculated
based on the node weights as,

EWij =
1

√

NWi × NWj
(3)

Path Cost =

∑n
i=1 EWi

Number of nodes in path
(4)
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