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Lithium metal with high theoretical specific capacity (3,860 mAh g−1), low mass density,

and low electrochemical potential (−3. 040V vs. SHE) is an ideal candidate of the battery

anode. However, the challenges including dendrite propagation, volume fluctuation, and

unstable solid electrolyte interphase of lithium metal during the lithium plating impede the

practical development of Lithium metal batteries (LMBs). Carbon-based materials with

diverse structures and functions are ideal candidates to address the challenges in LMBs.

Herein, we briefly summarize the main challenges as well as the recent achievements of

lithium metal anode in terms of utilizing carbon-based materials as electrolyte additives,

current collectors and composite anodes. Meanwhile, we propose the critical challenges

that need to be addressed and perspectives for ways forward to boost the advancement

of LMBs.

Keywords: composite anodes, current collectors, additives, carbon-based materials, lithium metal

anodes, battereis

INTRODUCTION

Since Sony commercialized lithium-ion batteries (LIBs) in 1991, rechargeable LIBs have been
successfully applied to portable electronics and electric vehicles (Yang G. et al., 2019; Yang T.
et al., 2019; Lee et al., 2020; Maroufi et al., 2020; Pellow et al., 2020). However, the constrained
energy density of the traditional LIBs based on intercalation chemistry are unable to meet
the ever-growing requirement of high-energy-density batteries. Lithium metal batteries (LMBs)
with high capacity and high energy density have attracted numerous attentions. Compared
with commercial LIBs, LMBs employ metallic Li as an anode, which is based on a continuous
plating/stripping mechanism, contributing to higher energy output (Chen C. et al., 2019; Zhang
T. et al., 2019; Widijatmoko et al., 2020; Ye et al., 2020). Lithium metal anodes are known as
the “Holy Grail” electrodes due to the unique advantages, such as the lowest density among
metals, high theoretical specific capacity (3,860 mAh g−1) and the lowest electrochemical
potential (−3.040V vs. standard hydrogen electrode) (Xie et al., 2019; Shi et al., 2020; Zhang
Q. et al., 2020; Zhou Y. et al., 2020). Moreover, when LMBs collocate with high capacity
cathodes, such as sulfur (S) and oxygen (O2), it can achieve excellent specific energy and be
regarded as promising next-generation energy storage systems beyond LIBs and other storage
systems (Hong et al., 2019; Sloop et al., 2019; Xiao et al., 2019; Gan et al., 2020; Guo
et al., 2020; Li W. T. et al., 2020). Unfortunately, the development of LMBs is hindered by
the inevitable shortcomings of lithium metal anode, including dendrite propagation, volume
fluctuation, and unstable solid electrolyte interphase (SEI), originating from the high chemical
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reactivity and “hostless” nature of lithium metal during the
plating/stripping process (Li Q. et al., 2018; Li Z. et al., 2020; Pan
et al., 2020).

Carbon-based materials with good electrical and thermal
conductivity, excellent structural stability, as well as high
surface area and abundant surface functional groups have been
extensively applied in numerous research fields (Liu et al., 2017;
Yan et al., 2019; Tian et al., 2020). Even more noteworthy is that
carbon-based materials offer a versatile platform to construct
new architectures with interconnected porosity and active sites
(Ge et al., 2018; Zhang Z. et al., 2018a; Zhang W. et al.,
2019). The surface chemistry of carbon-based materials can be
easily modified to improve the binding properties. Consequently,
doping or co-doping with different heteroatoms (N, S, P) (Wei
et al., 2019; Liu et al., 2020; Ma et al., 2020; Zhang D. M.
et al., 2020) makes the carbon-based materials exhibit further
enhancement of the electrocatalytic activity. Owing to these
diversified functions of carbon-based materials, they have been
intensively used to ameliorate the challenges of LMBs (Zuo et al.,
2018; Xue et al., 2019; Huang et al., 2020).

Although there are many reported reviews on LMBs, very
few reports that specifically describe carbon-based materials
in addressing the challenges in LMBs. This review provides
a comprehensive overview of the application of carbon-based
materials in improving the performance of lithiummetal anodes.
In this review, we focus on the main challenges faced by lithium
metal anodes and emphasize the effective strategies employing
carbon-based materials as electrolyte additives, current collectors
and composite anodes to achieve high performance lithiummetal
anodes. We believe that this review is informative and could offer
some new insights for this exciting area.

CHALLENGES OF LITHIUM METAL
ANODES

The LMBs were born in the 1970’s. However, they have almost
stagnated since then, lagging far behind the development of LIBs.
As we all know, lithium metal is very active and can react with
almost all organic electrolytes to form a SEI (Figure 1). An ideal
SEI film should be electrically insulating and ionically conductive.
Moreover, it should have good chemical and mechanical stability
to withstand the volume change and protect the lithium metal
from further exposure to the electrolyte. Nevertheless, due to the
“hostless” property and unevenness of lithium metal surface, Li+

preferentially deposits at the tips, resulting in uneven deposition
of lithium and the formation of dendrites during the repeatedly
stripping and plating process. The dendrites inevitably cause
the electrode volume changes, which lead to the destruction
of SEI film and then exposure of fresh lithium metal to the
electrolyte. This is followed by continuous side reactions until
the electrolyte is depleted, which have a negative impact on the
Coulomb efficiency (CE). At the same time, the aforementioned
process can in turn exacerbate the dendrite growth.

Eventually, there are two possibilities of the uncontrolled
dendrites. Firstly, the dendrites may fall off from the anode
surface to form “dead Li,” causing the loss of active materials

FIGURE 1 | Schematic diagram of the challenge of anode for LMBs.

and greatly reduce the utilization of Li. Secondly, the dendrites
may pierce the separator to reach the cathode, causing a
short circuit. These intrinsic challenges of lithium metal lead
to many undesirable drawbacks such as unstable SEI, severe
volume change and uncontrolled dendrite growth during
electroplating/stripping in the rechargeable LMBs, which have
been hindered their practical applications over the past 40 years
(Zhang R. et al., 2017).

APPLICATION OF CARBON-BASED
MATERIALS IN LITHIUM METAL ANODES

So far, tremendous strategies have been proposed to suppress
the dendrites growth. These strategies can be classified into
the following categories: (1) electrolyte manipulation, including
modification of additives in the electrolyte (Zhang X. Q. et al.,
2017; Huang et al., 2018; Li X. et al., 2018), and adoption of solid
or polymer electrolytes (Aldalur et al., 2018; Girard et al., 2019;
Huo et al., 2020; Hu Z. et al., 2020); (2) SEI engineering (Li C.
et al., 2019; Yan et al., 2020), such as artificial SEI film (Zhu et al.,
2019); (3) electrode structure design (Zhang Y. et al., 2018, 2019).

Carbon-based materials with unique physical and chemical
properties can act as electrolyte additives to inhibit the dendrite
growth. In addition, the various structures, high surface area and
flexibility enable the carbon-based materials to be as hosts to
accommodate the volume change (Jorge et al., 2019; Nan et al.,
2019; Zhang X. et al., 2020).

Carbon-Based Materials to Construct
Composite Anodes
On account of the intrinsic “hostless” of lithium metal,
the lithium deposits on the planar electrode will undergo
severe volume changes, resulting in continuous fracture and
regeneration of the SEI film. Unstable SEI film will seriously
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reduce the lifespan of the battery. Therefore, confining the
lithium metal in scaffold is an effective way to accommodate the
volume change (Yang et al., 2018; Pei et al., 2019; Tang et al.,
2020). The as-prepared structured composite anode can regulate
the Li+ deposition and induce dendrite-freemorphology, thereby
achieving a high capacity and long cycle life lithium metal anode
(Wang et al., 2017; Zhang R. et al., 2018a). The 3D porous scaffold
with multiple ion and electron transfer paths and high surface
area is often employed as host for lithium metal. Moreover, the
current density can be dissipated by this 3D conductive porous
scaffolds, resulting in a lower local current density (Chazalviel,
1990; Zhou T. et al., 2020), which can effectively control the
growth rates of lithium dendrites.

The 3D porous scaffolds, such as copper foam (Yang et al.,
2018; Yue et al., 2019b), nickel foam (Huang X. et al., 2019; Sun
et al., 2019), mesoporous carbon (Zhang S. J. et al., 2019; Jeong
et al., 2020), and carbon nanotube sponge (Yang G. et al., 2019),
can accommodate infinite volume expansion and suppress
dendrite growth during repeated electroplating/stripping
processes. Besides, the composite electrode, assembled with
a carbon-based skeleton, has good flexibility and can be used
on wearable electronic devices. Nevertheless, most hosts need
to be coated with a lithiophilic layer because of their poor
lithiophilicity and the requirements of constructing a composite
anode. Unlike metal frameworks that require complex processes
to enhance lithiophilicity, carbon-based scaffolds have very
significant advantages in practical applications. For example,
some lithiophilic functional groups can be introduced into
the most carbon hosts by facile surface chemistry approaches.
Additionally, carbon-based materials with low density enable the
high practical energy density batteries.

Tao et al. reported a simple surface ozonolysis and
ammoniation treatment strategy to tune the lipophilicity of
carbon scaffold (Tao et al., 2020). The flexible and lithiophilic
carbon film (CF) is composed of multiple layered interwoven
nanofibers. Due to the good mechanical strength and thermal
stability, CF can be easily wetted by molten lithium to form
a stable Li@CF composite anode. The as-prepared Li@CF
composite electrode could deliver a high practical capacity
of 3,222 mAh g−1 and behave a good rate performance.
In addition, no obvious dendrites have been observed in
the electrode.

Lithiophilic coating is an effective strategy to enhance the
wettability between liquefied lithium and carbon matrix, because
these coating layers can react with molten lithium to reduce the
surface energy of carbon matrix or form alloys with lithium.
Silicon can coat on the carbon-based materials via chemical
vapor deposition to form the LixSi alloys (Liang et al., 2016;
Hapuarachchi et al., 2018). Thus, the molten metallic lithium
can easily and quickly flow into the scaffolds with silicon
coating. Some metal oxides, such as ZnO (Zhao et al., 2019;
Yue et al., 2020), CuO (Wu et al., 2018; Zhang C. et al.,
2018; Huang K. et al., 2019), Co3O4 (Li S. Y. et al., 2019;
Pan et al., 2019), can undergo redox reactions with molten
lithium. Based on this fact, the scaffold coated with metal oxide
can obtain enhanced lithiophilicity. Yue et al. coated CuxO
(CFeltCu) on a porous carbon felt (CFelt) and prepared a stable

FIGURE 2 | Schematic diagram of the different strategies of carbon-based

materials in addressing the challenges of lithium metal anodes: (A) Scheme

illustration of the synthesis process of NPCC-Li. Li C. et al. (2019) with

permission from WILEY-VCH. (B) Illustration of the GQDs regulated deposition

processes Reprinted with permission from Hu Z. et al. (2020) with permission

from Elsevier. (C) Schematic illustrations of the fabrication of 3D Cu@N-doped

graphene. Reprinted with permission from Zhang Z. et al. (2018a) with

permission from WILEY-VCH.

CFeltCu-Li composite anode via thermal infusion method (Yue
et al., 2019a). During the thermal infusion process, the Cu
nanoparticles derived from copper oxide reduced by molten
lithium are evenly dispersed on the surface of the CFelt. To some
extent, these Cu nanoparticles with high conductivity can not
only regulate the Li stripping/plating behavior, but also reduce
the local current density of anode. Therefore, the CFeltCu-
Li composite anode presented outstanding cycle stability (over
1,000 h) and low overpotential (25mV) without dendrite growth
in symmetric cells.

Although the metal oxide coating can significantly improve
the lithium affinity of carbon-based materials, the specific
capacity and rate performance of lithium anodes have
deteriorated to some extent. Carbon matrix with heteroatom
co-doping can effectively overcome the above mentioned
obstacle. A stable lithium composite anode that is composed of
N and P co-doped carbon cloth and lithiummetal, was presented
by Li and coworkers (Figure 2A) (Li K. et al., 2019). N and P
can provide enhanced surface lithiopholicity for carbon-based
material, facilitating molten lithium diffusion and uniform
coating. This composite anode delivered stable voltage hysteresis
over 600 h at a current density of 3 mA cm−2.

All the aforesaid approaches require complex preparation
processes. In order to simplify the synthesis process, Go et al.
made carbon cloth more affinity between lithium and carbon
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by a facile heat treatment in air (Go et al., 2019). Numerous
nanocrevasses can be introduced in carbon cloth during the
heat treatment, allowing the successful infusion of molten
lithium. As a result, the as-prepared composite anode with lower
local current density presents long-term cycling and dendrite-
free morphology.

Carbon-Based Materials as Additive
Liquid organic electrolytes play a vital role in LIBs, due to their
good wettability with electrode and ionic conductivity. However,
the side reaction between lithium metal and electrolyte has
negative affect on the electrochemical performance of lithium
metal anode. The liquid electrolyte is composed of solvent,
lithium salt and additives, which determine the uniformity and
stability of SEI film. Therefore, modifying the additives can
improve the performance of the electrolyte, then changing the
deposition morphology of lithium (Tao et al., 2017; Wang et al.,
2020).

In general, soluble Li-containing compounds and organic
compounds, such as LiNO3 (Yan et al., 2018), LiF (Wang et al.,
2019) and fluoroethylene carbonate (FEC) (Zhang R. et al.,
2017), are commonly employed as additives. These additives
are generally used as sacrifices to react with lithium metal in
advance, forming a SEI film with controllable composition and
good stability. On the contrary, when the carbon-based material
is used as additive, it serves as the initial nucleation site for
Li deposition instead of reacting with Li. Nanodiamond with
a size of ∼ 5 nm and high crystallinity is an early member
of the carbon-based material family (Cheng et al., 2017). The
nanodiamond particles treated by octadecylamine (ODA) can
be well-dispersed in the ester-based electrolyte. In Li||Cu half-
cell batteries, due to the nanodiamonds inherit large surface area
and strong binding energy with Li, the Li+ can adsorb on the
surface as the initial heterogeneous seeds instead of growing on
the copper current collector. Moreover, nanodiamond-guided
Li deposits are small enough to form a uniform distribution
of deposition. When charging, the co-deposits of nanodiamond
and Li can be stripped into the electrolyte to maintain a stable
content of nanodiamond in the electrolyte, improving the cycling
stability of the Li anode. Whereas, the nanodiamonds tend to
aggregate and form clusters easily, which is negatively affect the
long-term cycle.

With the development of technology, more and more new
materials are recognized and applied in various fields. Graphene
quantum dots (GQDs) with tiny size can be well-dispersed
in the electrolyte without further modification (Deng et al.,
2016; Park et al., 2016; Tam et al., 2019). Hu et al. directly
added GQDs to the electrolyte, which is composed of Li bis
(trifluoromethane)-sulfonimide (LiTFSI, 1.0M), 2.0 wt% LiNO3,
1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME; 1:1 by
volume) (Hu Y. et al., 2020). Due to the quantum confinement
effect (Zhang W. et al., 2018), GQDs act as the heterogeneous
seeds enable continuously adjust ion dispersion and avoid high
local electric field in the subsequent plating process, which is
conducive to the uniform deposition and inhibit the dendrite
growth (Figure 2B). However, the complex synthesis procedures

and extreme conditions of GQDs leads to high costs, which limits
its large-scale application.

Carbon-Based Materials as Current Collect
The current collector is one of the important components of
LIBs. It is commonly used as a substrate to support active
materials. During battery operation, the current collector not
only transfer electrons between the active material and the
external circuit, but also diffuse the heat generated inside the
battery (Jin et al., 2018; Zhang Z. et al., 2018b). Generally,
planar copper foil is used as anode current collector, while it is
easy to cause severe dendrite formation. Due to the porosity,
low cost, good electronic conductivity and confinement of 3D
current collectors, they have attracted great attention from
researchers. 3D metallic materials, such as copper foam, nickel
foam and aluminum foam, with good electronic conductivity
and high specific surface area have been regarded as the most
competitive candidates. However, the nucleation overpotential
of lithium deposited on the 3D metal structure is relatively
higher than other current collectors, causing uneven nucleation
and inhomogeneous lithium deposition. Carbon-based materials
have good lithium affinity, and composite with metal materials
can effectively improve battery performance. When N-doped
graphene combined with 3D metal materials, an improving
LMBs performance can be achieved. Zhang et al. prepared a
3D porous copper coated with N-doped graphene via a CVD
process (Figure 2C) (Zhang R. et al., 2018b). Due to the presence
of pyridinic and pyrrolic nitrogen, there is a strong interaction
between N-doped graphene and Li+, leading to homogeneous
Li+ flux and a uniform Li deposition.

Themorphology of carbon-basedmaterial is critical to control
the lithium loading and deposition location. The 3D carbon-
based materials with random sponge-like structure lead to Li+

preferentially deposit on the outer surface of the 3D framework.
To solve this problem, a sequence of materials with regular
structures have been investigated. A 3D construction is fabricated
by vertically arranged nanofibers (VACNFs) directly grown on a
planar copper foil. When it acts as a host for the lithium metal
anode (Chen Y. et al., 2019), the special structure of VACNFs not
only provides well-aligned brush-like space for Li+ deposition,
but also enhances the surface electrochemical activity because of
the active graphitic edge sites. Therefore, this composite material
can effectively decrease the local current density, suppress the
lithium dendrite growth and result in dendrite-free Li deposits.

Although the 3D metal structure exhibits excellent
performance as a current collector, the defects, such as
high density and easy erosion, cannot meet the requirements
of high-performance storage systems. Compared with active
materials, the density of metal current collectors is generally
higher, resulting in a low mass proportion of active materials
in the entire electrode, which inhibits the improvement of
the energy density of the entire battery (Zhou et al., 2018).
During the repeated charge/discharge process, the metal current
collector electrochemically eroded, resulting in a short cycle life.
Carbon-based materials with light weight and good chemical
stability can avoid the aforementioned problems encountered by
metal current collectors. Among carbon-based materials, carbon
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nanotubes (CNTs) are highly conductive and commercially
available, and as an electrode behaving good lithium storage
capacity (Che et al., 1998). Yang et al. used the commercial CNTs
sponge as a current collector, which has high specific surface
area and graphitic-amorphous carbon composite feature (Yang
G. et al., 2019). In the initial stage of electroplating, the lithium-
storage of the CNTs (above 0V) makes it a “pre-lithiated” host,
enhancing its wettability with subsequent lithium deposits
(below 0V) and lowering the lithium nucleation overpotential.
More importantly, the high surface area of the porous CNTs
sponge enable the increased density of lithium nucleation sites
and reduced local current density on the carbon nanotubes as
well as uniform lithium deposition.

CONCLUSIONS

In recent decades, researchers have been committed to
developing more strategies to meet the safety and high energy
storage requirements of lithium metal anodes. Carbon-based
materials with various structures and unique chemical properties
play a significant role in minimizing the shortcomings of lithium
metal anodes. This review outlines the challenges of lithiummetal
anodes and the diverse strategies of carbon-based materials in
advanced LMBs.

The diversity of carbon-basedmaterialsmakes it play a specific
role in different strategies to solve the safety issues of lithium
metal anodes. Nanodiamonds and GQDs with a size of several
nanometers can be used as electrolyte additives to form initial
nucleation sites, guiding the uniform deposition of Li+ on
the electrode surface. As the size of the carbon-based material
increases, it has greater flexibility, higher porosity and a larger
surface area, which helps it be modified or composited with
other materials. The abundant functional groups on the surface
of the carbon-based material enable it combine with other metal
oxides or as a coating material for other 3D porous frameworks.
The 3D porous scaffolds composite constructed with lithiophilic
materials can be used as a current collector for Li+ deposition and
be assembled with lithium metal to form a composite electrode.

Therefore, the 3D porous scaffolds can effectively overcome
the “hostless” problem of lithium metal, accommodate huge
electrode volume changes during electrochemical process, as well
as contribute to a stable cycle life.

On account of the special structural and morphological
features, carbon-based materials are also widely used in other
research fields. Carbon-basedmaterials can not only be employed
as the electrode materials for LIBs and supercapacitors, but
also act as the metal-free electrocatalysts for oxygen reduction
reaction, oxygen evolution reaction, and hydrogen evolution
reaction, because of its large specific surface area, defective sites,
as well as tunable electronic structure.

Carbon-based materials with low price, abundant nature
reserves, versatile structure easy fabrication, have a significant
impact in the field of electrocatalysis and energy storage,
especially for large-scale high-energy-density batteries. It is
believed that the development of carbon-based materials plays a
significant role in the commercial application of LMBs.
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