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For complex molecules, nuclear degrees of freedom can act as an environment for

the electronic “system” variables, allowing the theory and concepts of open quantum

systems to be applied. However, when molecular system-environment interactions

are non-perturbative and non-Markovian, numerical simulations of the complete

system-environment wave function become necessary. These many body dynamics can

be very expensive to simulate, and extracting finite-temperature results—which require

running and averaging over many such simulations—becomes especially challenging.

Here, we present numerical simulations that exploit a recent theoretical result that

allows dissipative environmental effects at finite temperature to be extracted efficiently

from a single, zero-temperature wave function simulation. Using numerically exact

time-dependent variational matrix product states, we verify that this approach can be

applied to vibronic tunneling systems and provide insight into the practical problems

lurking behind the elegance of the theory, such as the rapidly growing numerical demands

that can appear for high temperatures over the length of computations.

Keywords: open quantum systems, tunneling, thermal relaxation, decoherence and noise, vibronic, matrix product

state (MPS)

1. INTRODUCTION

The dissipative quantum dynamics of electronic processes play a crucial role in the physics
and chemistry of materials and biological life, particularly in the ultra-fast and non-equilibrium
conditions typical of photophysics, nanoscale charge transfer and glassy, low-temperature
phenomena (Miller et al., 1983). Indeed, the through-space tunneling of electrons, protons and
their coupled dynamics critically determine how either ambient energy is transduced, or stored
energy is utilized in supramolecular “devices,” and real-time dynamics are especially important
when the desired processes occur against thermodynamical driving forces, or at the single-to-few
particle level (Devault, 1980; May and Kühn, 2008).

In many physio-chemical systems, a reaction, energy transfer, or similar event proceeds in the
direction of a free energy gradient, necessitating the dissipation of energy and the generation
of entropy (Dubi and Dia Ventra, 2011; Benenti et al., 2017). A powerful way of modeling the
microscopic physics at work during these irreversible dynamics is the concept of an “open”
quantum system (Breuer and Petruccione, 2002; Weiss, 2012). Here a few essential and quantized
degrees of freedom constituting the “system” are identified and explicitly coupled to a much larger
number of “environmental” degrees of freedom. Equations of motion for the coupled system and
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environment variables are then derived and solved, with the
goal of obtaining the behavior of the “system” degrees of
freedom once the unmeasureable environmental variables are
averaged over their uncertain initial and final states. It is in this
“tracing out” of the environment that the originally conservative,
reversible dynamics of the global system gives way to apparently
irreversible dynamics in the behavior of the system’s observable
variables. The effective behavior of the system “opened” to the
environment is entirely contained within its so-called reduced
density matrix, which we shall later define. Important examples
of the emergent phenomenology of reduced density matrices
include the ubiquitous processes of thermalization, dephasing,
and decoherence.

In the solid state, a typical electronic excitation will interact
weakly with the lattice vibrations of the material, particularly the
long-wavelength, low frequency modes. Under such conditions
it is often possible to treat the environment with low-order
perturbation theory and—given that the lattice “environment”
relaxes back to equilibrium very rapidly—it is possible to derive
a Markovian master equation for the reduced density matrix,
such as the commonly used Bloch-Redfield theory (Breuer
and Petruccione, 2002; May and Kühn, 2008; Weiss, 2012).
However, in sufficiently complex molecular systems, such as
organic bio-molecules, the primary environmental degrees of
freedom acting on electronic states are typically the stochastic
vibrational motions of the atomic nuclear coordinates. Unlike the
solid state, these vibrations can: (1) couple non-perturbatively
to electronic states, (2) relax back to equilibrium on timescales
that are longer than the dynamics they induce in the system,
and (3) have frequencies ω such that h̄ω ≫ KBT, where T is
the environmental temperature, and so must be treated quantum
mechanically (zero-point energy and nuclear quantum effects).
In this regime, the theory and numerical simulation of open
quantum systems becomes especially challenging, as the detailed
dynamics of the interacting system and environmental quantum
states need to be obtained, essentially requiring the solution of a
correlated (entangled) many body problem.

One well-known and powerful approach to this problem in
theoretical chemistry is the Multi-layer Multiconfigurational
Time-dependent Hartree (ML-MCTDH) technique, which
enables vibronic wave functions to be efficiently represented and
propagated without the a priori limitations due to the “curse of
dimensionality” associated with many body quantum systems
(Lubich, 2015;Wang and Shao, 2019). However, computationally
demanding methods based on the propagation of a large wave
function from a definite initial state will typically struggle when
dealing with finite-temperature environments (vide infra), as
the probability distribution of initial states requires extensive
sampling. For this reason, the majority of ML-MCTDH studies
have been effectively on zero-temperature systems.

In this article we will explore a recent and intriguing
development in an alternative approach to real-time dynamics
and chemical rate prediction. This approach is based on the
highly efficient representation and manipulation of large, weakly
entangled wave functions with DMRG, Matrix-Product, and
Tensor-Network-State methods (Orus, 2014). These methods,
widely used in condensed matter, quantum information and

cold atom physics, have recently been applied to a range of
open system models, including chemical systems, but—as wave
function methods—are typically used at zero-temperature (Prior
et al., 2010, 2013; Chin et al., 2013; Alvertis et al., 2019; Schröder
et al., 2019; Xie et al., 2019). However, a remarkable new result
due to Tamascelli et al. shows that it is indeed possible to obtain
the finite-temperature reduced dynamics of a system based on
a simulation of a “pure,” i.e., zero-temperature wave function
(Tamascelli et al., 2019).

In principle, this opens the way for many existing wave
function methods to be extended into finite temperature regimes,
although the present formulation of Tamascelli et al.’s T-
TEDOPA mapping is most easily implemented with matrix
product states (MPS). In this article, we shall investigate this
extension to finite temperature in the regime of relevance
for molecular quantum dynamics, that is, non-perturbative
vibrational environments, and present numerical data that
verifies the elegance and utility of the method, as well as some
of the potential issues arising in implementation.

The structure of the article is as follows. In section 2, we will
summarize Tamascelli et al.’s T-TEDOPA mapping. In section
3, we verify the theory by comparing numerical simulations
against an exactly solvable open system model, and also employ
further numerical investigations to provide some insight into
the manner in which finite temperatures are handled within this
method. By looking at the observables of the environment, we
find that the number of excitations in the simulations grows
continuously over time, which may place high demands on
computational resources in some problems. In section 4, we will
present results for a model system inspired by electron transfer
in a multi-dimensional vibrational environment, and show how
the temperature-driven transition from quantum tunneling to
classical barrier transfer are successfully captured by this new
approach. This opens a potentially fruitful new phase for the
application of tensor network and related many body approaches
for the simulation of non-equilibrium dynamics in a wide variety
of vibronic materials and molecular reactions.

2. T-TEDOPA

In this section we shall summarize the essential features of the
T-TEDOPA approach, closely following the original notation
and presentation of Tamascelli et al. (2019). Our starting point
is the generic Hamiltonian for a system coupled to a bosonic
environment consisting of a continuum of harmonic oscillators

HSE = HS +HE +HI , (1)

where

HI = AS ⊗
∫ ∞

0
dωÔω,HE =

∫ ∞

0
dωωa†

ωaω. (2)

The Hamiltonian HS is the free system Hamiltonian, which for
chemical systems, molecular photophysics and related problems
will often be a description of a few of the most relevant diabatic
states at some reference geometry of the environment(s) (May
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FIGURE 1 | (A) A generic open quantum system contains a few-level “system” (S) that interacts with a much larger thermal heat bath of bosonic oscillators (the

environment, E). The continuum of oscillator modes are initially uncorrelated with the system and each is thermally occupied with characteristic temperature T = β−1.

Coupling and stochastic fluctuations of the environment lead to the effective thermalization of the system, once the environmental states have been traced over. (B) In

the T-TEDOPA approach, the harmonic environment is extended to include modes of negative frequency, and all modes (positive and negative frequency) are initially in

their ground states. It can be formally demonstrated that the thermalization of S in (A) can always be obtained from the pure zero-temperature state in (B), provided

the spectral density of the original environment is known.

and Kühn, 2008). AS is the system operator which couples to the
bath. For the bath operators we take the displacements

Oω =
√

J(ω)(aω + a†
ω), (3)

thus defining the spectral density J(ω). This has been written
here as a continuous function, but coupling to a discrete set
of vibrational modes in, say, a molecular chromophore, can be
included within this description by adding suitable structure
to the spectral density, i.e., sets of Lorentzian peaks or Dirac
functions (Wilhelm et al., 2004; Schulze and Kuhn, 2015;
Mendive-Tapia et al., 2018). The state of the system+environment
at time t is described by a mixed state described by a density
matrix ρSE(t). The initial condition is assumed to be a product
of system and environment states ρSE(0) = ρS(0)⊗ ρE(0) where
ρS(0) is an arbitrary density matrix for the system and ρE(0) =
exp(−HEβ)/Z , with the environment partition function given
by Z = Tr{exp(−HEβ)}. Such a product state is commonly
realized in photophysics, where the reference geometry for the
environment is the electronic ground state and the electronic
system is excited according to the Franck-Condon principle
into some manifold of electronic excited states without nuclear
motion (Mukamel, 1995; May and Kühn, 2008). Indeed, this
can also occur following any sufficiently rapid non-adiabatic
event, just as ultra-fast charge separation at a donor-acceptor
interface (Gélinas et al., 2019; Smith and Chin, 2015). The
environment thus begins in a thermal equilibrium state with
inverse temperature β , and the energy levels of each harmonic
mode are statistically populated, as shown in Figure 1A. For
a very large (continuum) of modes, the number of possible
thermal configurations of the initial probability distribution
grows extremely rapidly with temperature, essentially making a

naive sampling of these configurations impossible for full wave
function simulations. We note, however, that some significantly
better sampling methods involving sparse grids and/or stochastic
mean-field approaches have been proposed and demonstrated
(Alvermann and Fehske, 2009; Binder and Burghardt, 2019).

The initial thermal condition of the environmental oscillators
is also a Gaussian state, for which is it further known that the
influence functional (Weiss, 2012)—which is a full description of
the influence of the bath on the system—will depend only on the
two-time correlation function of the bath operators

S(t) =
∫ ∞

0
dω〈Oω(t)Oω(0)〉. (4)

Any two environments with the same S(t) will have the same
influence functional and thus give rise to the same reduced
system dynamics, i.e., the same ρS(t) = Tr{ρSE(t)}. That the
reduced systems dynamics are completed specified by the spectral
density and temperature of a Gaussian environment has been
known for a long time (Weiss, 2012), but the key idea of
the equivalence—and thus the possibility of the interchange—
of environments with the same correlation functions has only
recently been demonstrated by Tamascelli et al. (2018).

The time dependence in Equation (4) refers to the interaction
picture so that the bath operators evolve under the free bath
Hamiltonian: Oω(t) = eiHEtOω(0)e−iHEt . Using Equation (3) and
〈a†
ωaω〉 = nβ (ω) we have

S(t) =
∫ ∞

0
J(ω)[e−iωt(1+ nβ (ω))+ eiωtnβ (ω)]. (5)
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Making use of the relation

1

2
(1+ coth(ωβ/2)) ≡

{

nω(β),ω ≥ 0

−(n|ω|(β)+ 1),ω < 0
(6)

we can write Equation (5) as an integral over all positive and
negative ω

S(t) =
∫ ∞

−∞
dωsign(ω)

J(|ω|)
2

(1+ coth(
ωβ

2
))e−iωt . (7)

But Equation (7) is exactly the two-time correlation function one
would get if the system was coupled to a bath, now containing
positive and negative frequencies, at zero temperature, with a
temperature weighted spectral density given by

Jβ (ω) = sign(ω)
J(|ω|)
2

(1+ coth(
ωβ

2
)). (8)

Thus, we find that our open system problem is completely
equivalent to the one governed by the Hamiltonian

H = HS +Hext
E +Hext

I , (9)

in which the system couples to an extended environment, where

Hext
I = AS ⊗

∫ ∞

−∞
dω

√

Jβ (ω)(aω + a†
ω),

Hext
E =

∫ ∞

−∞
dωωa†

ωaω,

(10)

and which has the initial condition ρSE(0) = ρS(0) ⊗ |0〉E 〈0|.
The system now couples to a bath consisting of harmonic
oscillators of positive and negative frequencies which are initially
in their ground states, as shown in Figure 1B. This transformed
initial condition is now far more amenable to simulation as the
environment is now described by a pure, single-configuration
wave function, rather than a statistical mixed state, and so
no statistical sampling is required to capture the effects of
temperature on the reduced dynamics!

Analyzing the effective spectral density of Equation (8), it can
be seen that the new extended environment has thermal detailed
balance between absorption and emission processes encoded in
the ratio of the coupling strengths to the positive and negative
modes in the extended Hamiltonian, as opposed to the operator
statistics of a thermally occupied state of the original, physical
mode, i.e.,

Jβ (ω)

Jβ (−ω)
= 〈aωa†

ω〉β
〈a†
ωaω〉β

= eβω (11)

Indeed, from the system’s point of view, there is no difference
between the absorption from an occupied, positive energy, bath
mode and the emission into an unoccupied, negative energy,
bath mode.

In fact, the equivalence between these two environments
goes beyond the reduced system dynamics as there exists a
unitary transformation which links the extended environment

to the original thermal environment. This means that one
is able to reverse the transformation and calculate thermal
expectations for the actual bosonic bath such as 〈a†

ω(t)aω(t)〉β .
This is particularly useful for molecular systems in which
environmental (vibrational) dynamics are also important
observables that report on the mechanisms and pathways
of physio-chemical transformations (Musser et al., 2015;
Schnedermann et al., 2016, 2019). This is a major advantage of
many body wave function approaches, as the full information
about the environment is available, c.f. effective master equation
descriptions which are obtained after averaging over the
environmental state. We note that the idea of introducing a
second environment of negative frequency oscillators to provide
finite temperature effects in pure wave functions was previously
proposed in the thermofield approach of de Vega and Bañuls
(2015). This approach explicitly uses the properties of two-mode
squeezed states to generate thermal reduced dynamics, but the
original thermofield approach, unlike the T-TEDOPA mapping,
considered the positive and negative frequency environments as
two separate baths.

Following this transformation a further step is required
to facilitate efficient simulation of the many-body
system+environment wave function. This is to apply a unitary
transformation to the bath modes which converts the star-like
geometry ofHext

I into a chain-like geometry, thus allowing the use
of MPS methods (Chin et al., 2010, 2013; Prior et al., 2013). We
thus define new modes c(†)n =

∫ ∞
−∞ Un(ω)a

(†)
ω , known as chain

modes, via the unitary transformation Un(ω) =
√

Jβ (ω)pn(ω)
where pn(ω) are orthonormal polynomials with respect to
the measure dωJβ (ω). Thanks to the three term recurrence
relations associated with all orthonormal polynomials pn(ω),
only one of these new modes, n = 1, will be coupled to the
system, while all other chain modes will be coupled only to their
nearest neighbors (Chin et al., 2010). Our interaction and bath
Hamiltonians thus become

Hchain
I = κAS(c1 + c†1),

Hchain
E =

∞
∑

n=1

ωnc
†
ncn +

∞
∑

n=1

(tnc
†
ncn+1 + h.c).

(12)

The chain coefficients appearing in Equation (12) are related
to the three-term recurrence parameters of the orthonormal
polynomials and can be computed using standard numerical
techniques (Chin et al., 2010). The full derivation of the above
Hamiltonian is given in the Appendix. Since the initial state
of the bath was the vacuum state, it is unaffected by the
chain transformation.

We have thus arrived at a formulation of the problem
of finite-temperature open systems in which the many-
body environmental state is initialized as a pure product of
trivial ground states, whilst the effects of thermal fluctuations
and populations are encoded in the Hamiltonian chain
parameters and system-chain coupling. These parameters must
be determined once for each temperature but—in principle—the
actual simulation of the many body dynamics is now no more
complex than a zero-temperature simulations. This thus opens
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FIGURE 2 | (A) The extended proxy environment of Figure 1A is described by an effective, temperature-dependent spectral density Jβ (ω). Once the effective Jβ (ω)

has been specified, new oscillator modes can be found that provide a unitary transformation to a linear chain representation of the environment with nearest neighbor

interactions. The non-perturbative wave function dynamics for such a many-body 1D system can be very efficiently simulated with MPS methods. (B) Jβ (ω) for a

physical Ohmic environment at three representative temperatures. At very low temperature (ωcβ≫ 1) there is essentially no coupling to the negative frequency modes,

as excitation of these modes leads to an effective absorption of heat from the environment. At higher temperatures, Jβ (ω) becomes increasingly symmetric for the

positive and negative modes.

up the use of powerful T = 0K wave function methods for open
systems, such as those based on MPS, numerical renormalization
group and ML-MCTDH (Lubich, 2015; Wang and Shao, 2019).
However, while this seems remarkable—and we believe this
mapping to be a major advance—there must be a price to
be paid elsewhere. We shall now demonstrate with numerical
examples where some of the computational costs for including
finite-T effects may appear and discuss how they might effect
the feasibility and precision of simulations. We also propose a
number of ways to mitigate these potential problems within the
framework of tensor network approaches.

3. NUMERICAL TESTS AND
COMPUTATIONAL EFFICIENCY

All numerical results in the following sections are obtained by
representing the many body system-environment wave function
as a MPS and evolving it using time-dependent variational
methods. All results have been converged w.r.t. the parameters
of MPS wave functions (bond dimensions, local Hilbert space
dimensions, integrator time steps), meaning that the results

and discussion should—unless explicitly stated—pertain to the
essential properties of the T-TEDOPA mapping itself. Extensive
computational details and background theory can be founds in
Orus (2014), Schollwock (2011), Lubich et al. (2015), Paeckel
et al. (2019), and Haegeman et al. (2016).

3.1. Chain Dynamics and Chain-Length
Truncation
Before looking at the influence of thermal bath effects on a
quantum system, we first investigate the effects of the changing
chain parameters that appear due to the inclusion of temperature
in the effective spectral density Jβ (ω). As a consequence of the
nearest-neighbor nature of Equation (12) (see Figure 2), the
chain mapping establishes a kind of causality among the bath
modes which is extremely convenient for simulation. Starting
from t = 0 the system will interact first with the chain mode n =
1 which, as well as acting back on the system, will in turn excite
the next mode along the chain and so on. The dynamics thus
have a well-defined light-cone structure in which a perturbation
travels outwards from the system along the chain to infinity. This
means that we may truncate the chain at any distant mode n = N

Frontiers in Chemistry | www.frontiersin.org 5 January 2021 | Volume 8 | Article 600731

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Dunnett and Chin Finite Temperature Quantum Vibronic Dynamics

FIGURE 3 | Chain mode occupations 〈c†ncn〉 at time ωct = 45 for baths of several temperatures. The system, which in this case is the Ohmic SBM, with ω0 = 0.2ωc
and α = 0.1, is attached at site n = 1 of the chain.

without causing an error in the system or bath observables up
to a certain time TLC(N) which is the time it takes for the edge
of the light-cone to reach the Nth chain mode. Beyond TLC(N)
there will be reflections off the end of the chain leading to error
in the bath observables, however these reflections will not cause
error in the system observables until the time t ≈ 2TLC(N).
Figure 3 shows a snapshot of the chain mode occupations for
the Ohmic spin-boson model considered in the next section.
One can see that the velocity of the wave-front that travels
outward from the system depends on temperature, with hotter
baths leading to faster propagation and thus requiring somewhat
longer chains.

To enable simulation we are also required to truncate
the infinite Fock space dimension of each chain mode to a
finite dimension d, introducing an error for which there exist
rigorously derived bounds (Woods et al., 2015). The initial
state |9(0)〉SE = |ψ(0)〉S ⊗ |0〉E (here we specialize to the
case where the system is initially in a pure state) can then be
encoded in an MPS and evolved under one of the many time-
evolution methods for MPS. We choose to use the one-site Time-
Dependent-Variational-Principle (1TDVP) as it has been shown
to be a efficient method for tracking long-time thermalization
dynamics and has previously been shown to give numerically
exact results for the zero-temperature spin-boson model in the
highly challenging regime of quantum criticality (Schröder and
Chin, 2016). In our implementation of 1TDVP the edge of the
light-cone is automatically estimated throughout the simulation
by calculating the overlap of the wave-function |9(t)〉SE with
its initial value |9(0)〉SE at each chain site. This allows us
expand the MPS dynamically to track to expanding light-cone,
providing roughly a 2-fold speed-up compared to using a fixed
length MPS.

3.2. Two-Level System Dynamics:
Dephasing and Divergence of Chain
Occupations Due to Energy Exchange
To confirm the accuracy of this approach in terms of
reduced system dynamics we now explore the effects of a
dissipative environment on a quantum two-level system. First,
we compare the numerical results against the analytically solvable
Independent-Boson-Model (IBM) (Mahan, 2000; Breuer and
Petruccione, 2002). This is a model of pure dephasing, defined
by HS = ω0

2 σz and AS = σz , where {σx, σy, σz} are the standard
Pauli matrices. We take an Ohmic spectral density with a hard
cut-off J(ω) = 2αω2(ω − ωc) and choose a coupling strength
of α = 0.1 and a gap of ω0 = 0.2ωc for the two level system
(TLS). The initial state of the system is a positive superposition
of the spin-up and spin-down states, and we monitor the decay
of the TLS coherence, which is quantified by 〈σx(t)〉. All results
were converged using a Fock space dimension of d = 6 for the
chainmodes andmaximumMPS bond-dimensionDmax = 4.We
find that the results obtained using the T-TEDOPAmethod agree
very well with the exact solution (see Figure 4) and correctly
reproduce the transition from under-damped to over-damped
decay as the temperature is increased (Mahan, 2000; Breuer and
Petruccione, 2002).

As a second numerical example we take the Spin-Boson-
Model (SBM), identical to the IBM considered above except that
now the TLS couples to the bath via AS = σx. Unlike the
previous case, the bath can now drive transitions within the TLS,
so that energy is now dynamically exchanged between the TLS
and its environment. Indeed, as AS no longer commutes with
HS, no exact solution for this model is known (Weiss, 2012).
It has thus become an important testing ground for numerical
approaches to non-perturbative simulations of open systems and
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FIGURE 4 | Comparison of T-TEDOPA (Black crosses) with the exact solution for the Independent-Boson-Model at β = 100 (Red), β = 10 (Blue), and β = 1 (Green).

HS = ω0
2 σz, AS = σz, J(ω) = 2αωc(

ω
ωc

)s2(ω − ωc)), α = 0.1, s = 1, ω0 = 0.2ωc.

has been widely applied to the physics of decoherence, energy
relaxation and thermalization in diverse physical, chemical and
biological systems—see Weiss, 2012; De Vega and Alonso, 2017
for extensive references. In our example, we prepare the spin
in the upper spin state (〈σz〉 = +1) and allow the bath to
thermalize by environmental energy exchange (see Figure 1A).
Here, instead of presenting the spin dynamics for this model
we will here interest ourselves in the observables of the bath as
these will provided insight into the manner in which a finite
temperature bath is being mimicked by an initially empty tight-
binding chain. In Figure 5, we plot the bath mode occupations
〈a†
ωaω〉 for several temperatures. Each observation was taken

after the spin had decayed into its thermal steady state and thus
provides a kind of absorption spectrum for the system. We note
that these data refer to the modes of the extended environment
of Equation (9) rather than the original bosonic bath and thus
the mode energies run from−ωc to ωc.

We find that for zero temperature (β = ∞) the bath
absorption spectrum contains a single peak at a frequency around
ωp = 0.17ωc, suggesting that the spin emits into the bath at
a re-normalized frequency that is lower than the bare gap of
the TLS (ω0 = 0.2ωc). This agrees well with the renormalized

gap ωr
0 = ω0(ω0/ωc)

α
1−α predicted by the non-perturbative

variational polaron theory of Silbey and Harris (1984), which for
the parameters used here gives ωr

0 = 0.167ωc.
Moving to non-zero temperature we see that a peak begins to

form at a corresponding negative frequency, which we interpret
as being due the spin absorbing thermal energy from the bath by
the emission (creation) of negative energy quanta. In accordance
with detailed balance, the ratio between the positive and negative
frequency peaks approaches unity as temperature is increased
and by βωc = 2 the two peaks have merged to form a

single, almost symmetric, distribution, reflecting the dominance
of thermal absorption and emission over spontaneous emission at
high temperature. Indeed, as shown in the right inset of Figure 5
the ratio of the peak heights we extract obeys 〈nω〉+1

〈n−ω〉 = eǫβ

with ǫ = 0.118. Thus we see that the chain is composed of two
independent vacuum reservoirs of positive and negative energy
which the system emits into at rates which effectively reproduce
the emission and absorption dynamics that would be induced by
a thermal bath.

However, the introduction of positive and negative modes has
an interesting and important consequence for the computational
resources required for simulation. Shown in the left inset of
Figure 5 is the total mode occupation as a function of time for
some of the different temperatures simulated. One sees that for
β = ∞ (zero temperature) the total occupation of the bath
modes increases initially and then plateaus at a certain steady
state value corresponding to the total number of excitations
created in the bath by the TLS during its decay. In contrast,
for finite temperature, the total mode occupation increases
indefinitely at a rate which grows with temperature. This is
despite the fact that for the finite temperature baths the total
excitation number will also reach a steady state once the TLS
has decayed. The reason for this is clear. The thermal occupation
of the physical bath mode with frequency ω is obtained by
subtracting its negative, from its positive energy counterpart in
the extended mode basis, i.e., 〈nω〉β = 〈nω〉|0〉E − 〈n−ω〉|0〉E .
While 〈nω〉β will reach a steady state, the components 〈nω〉|0〉E
and 〈n−ω〉|0〉E will be forever increasing, reflecting the fact that
the TLS reaches a dynamic equilibrium with the bath in which
energy is continuously being absorbed from and emitted into
the bath at equal rates, thus filling up the positive and negative
reservoirs. Since, it is themodes of the extended environment that
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FIGURE 5 | Bath mode occupations 〈nω〉 = 〈a†ωaω〉 for the extended environment after the TLS has decayed. The TLS is governed by a Hamiltonian HS = ω0
2 σz where

ω0 = 0.2ωc and is coupled to an Ohmic bath with a hard cut-off via AS = σx . The coupling strength is α = 0.1. Left inset: total mode occupation as a function of time

〈n〉tot =
∫ ∞
−∞ dω〈nω〉. Right inset shows

〈nωp 〉+1

〈nωn 〉
plotted on a log scale against the inverse temperature, demonstrating the detailed balance of the absorption and

emission rates.

appear in the numerical simulation, one will always encounter
potentially large errors once the filling of the modes exceeds their
capacity set by the truncation to d Fock states per oscillator. The
rate at which this filling occurs increases with temperature and
is linear in time. However, as the relaxation time of the system
is also broadly proportional to temperature for βωc ≪ 1, this
may not be a problem, if one is only interested in the short-
time transient dynamics. Where this may pose problems is for
the extraction of converged properties of relaxed, i.e., locally
thermalized excited states, such as their (resonance) fluorescence
spectra, or multidimensional optical spectra (Mukamel, 1995).
While these ever-growing computational resources must—as
argued above—be present in any simulation approach, we note
that one possible way to combat the growth of local dimensions
could be to use the dynamical version of Guo’s Optimized Boson
Basis (OBB) which was introduced into 1TDVP for open systems
by Schroeder et al. (Guo et al., 2012; Schröder and Chin, 2016).

4. ELECTRON TRANSFER

Having established that the T-TEDOPA mapping allows efficient
computational access to finite temperature open dynamics, we
now study the chemically relevant problem of tunneling electron
transfer. Electron transfer is a fundamental problem in chemical
dynamics and plays an essential role in a vast variety of crucial

processes including the ultra-fast primary electron transfer step
in photosynthetic reaction centers and the electron transport
that powers biological respiration (Devault, 1980; Marcus, 1993;
May and Kühn, 2008). The problem of modeling electron
transfer between molecules comes down to accurately treating
the coupling between the electronic states and environmental
vibrational modes, and often involves the use of first principle
techniques to parameterize the total spectral functions of the
vibrational and outer solvent, or protein environment (Mendive-
Tapia et al., 2018; Schröder et al., 2019; Zuehlsdorff et al.,
2019). In many molecular systems—and particularly biological
systems where the transfer between electronic states is affected
by coupling to chromophore and protein modes—the system-
bath physics is highly non-perturbative and J(ω) has very sharp
frequency-dependence (May and Kühn, 2008; Womick et al.,
2011; Kolli et al., 2012; Chin et al., 2013). Until recently, and
even at zero temperature, a fully quantummechanical description
of the coupling to a continuum of environmental vibrations
was challenging due to the exponential scaling of the vibronic
wave functions. However, with advances in numerical approaches
driven by developments in Tensor-Networks and ML-MCTDH,
the exact quantum simulation of continuum environment
models can now be explored very precisely at zero temperature.
Given this, we now explore how the T-TEDOPA mapping can
extend this capability to finite temperature quantum tunneling.
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FIGURE 6 | (A) Potential energy surfaces (Marcus parabolas) for ǫ = 0 as a function of the reaction coordinate x. We consider only the case of zero bias, i.e., when

the minima of the two wells are at the same energy. (B) Turning the electronic coupling ǫ leads to an avoided crossing and thus an energy barrier Eb for the reaction.

Note that this is a simplified picture in which we treat the bath as being represented by a single mode of frequency ω and coupling strength g whereas in the actual

model we simulate there is a similar surface for all bath modes.

Here, we will again adapt the spin-boson model to analyse
a typical donor-acceptor electron transfer system, as shown in
Figure 6. In this model the electron transfer process is modeled
using two states representing the reactant and product states
which we take to be the eigenstates of σx with |↓〉 representing the
reactant and |↑〉 the product. We take our systemHamiltonian to
beHS = ǫ

2σz +λR
1+σx
2 , and the coupling operator as AS = 1+σx

2 ,
where λR is the reorganization energy which for an Ohmic bath
is λR = 2αωc. The electron tunnels from the environmentally
relaxed reactant state to the product state by moving through a
multi-dimensional potential energy landscape along a collective
reaction coordinate which is composed of the displacements of
the ensemble of bath modes (this is effectively the coordinate
associated with the mode that is directly coupled to the system
in the chain representation of the environment). Figure 6A

shows two potential energy surfaces—Marcus parabolas—of
the electronic system for ǫ = 0. Although in the actual
model we simulate the reaction coordinate is composed of the
displacements of an infinite number of modes, in Figure 6 we
present a simplified picture in which the electron moves along
a single reaction coordinate, x. The potential minimum of the
reactant state corresponds to the bath in its undisplaced, vacuum
state, whereas at the potential minimum of the product state
each bath mode is displaced by an amount depending on its
frequency and the strength of its coupling to the TLS

√
J(ω)/ω.

The presence of the reorganization energy in HS ensures that
these two minima are degenerate in energy and thus detailed
balance will ensure an equal forward and backward rate.

Turning on the coupling ǫ between the two levels leads to
an avoided crossing in the two energy surfaces in an adiabatic
representation of the vibronic tunneling system, leading to two
potential wells. In such a semi-classical (Born-Oppeheimer)
picture, we see that the electron must overcome a kind of
effective energy barrier Eb that scales with the total reorganization
energy of the entire environment λR in order for the reaction

to progress. We thus might well expect to see thermally
activated (exponential) behavior whereby the tunneling rate ∝
exp(−βEb). However, at low temperatures this behavior should
be dramatically quenched and dissipative quantum tunneling
should become dominant and strongly dependent on the spectral
function of the environment (Weiss, 2012).

4.1. Numerical Results
For our numerical investigation we take an Ohmic spectral
density with α = 0.8 for which the dynamics are expected
to be incoherent at all temperatures, i.e., the energy surfaces
of Figure 6B are well-separated and friction is such that there
will be no oscillatory tunneling dynamics between reactant and
product. In Figure 7, we present results for this model at several
temperatures using the T-TEDOPA mapping and 1TDVP. The
expectation of σx can be taken to be a measure of the progress
of the reaction, starting at the value of −1 when the system is
entirely in the reactant state, and approaching 0 as the electron
tunnels through the barrier and the populations thermalize. We
find that as the temperature is increased the dynamics tend to an
exponential decay to the steady state, whereas non-exponential
behavior is observed for lower temperatures. In Figure 7B, we
show the expectation of σy, which is the conjugate coordinate
to the σx and which may thus be interpreted as a kind of
momentum associated with the tunneling. We find that there is a
sharp initial spike in 〈σy〉 which decays with oscillations which
are increasingly damped at higher temperatures. As we might
have predicted, these transient dynamics occur on a timescale of
τ ≈ ω−1

c , which the fastest response time of an environment
with an upper cut-off frequency of ωc. This is approximately
the timescale over which the environment will adjust to the
sudden presence of the electron, and essentially sets the timescale
for the formation of the adiabatic landscape (or, alternatively,
for the formation of the dressed polaron states), after which
the tunneling dynamics proceed. This period is related to the
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FIGURE 7 | (A) 〈σx (t)〉 for several temperatures, which represents the progress of the reaction. The decay to the steady state is exponential at high temperature.

(B) 〈σy (t)〉, representing the momentum along the reaction coordinate. We encounter some noise beyond about ωct = 50 in the β = 2 data. This is as a result of the

truncation of the local Hilbert spaces of the bath modes (cf. section 3). The inset shows an enlarged view of the initial fast dynamics which appear to be broadly

independent of temperature.

slippage of initial conditions that is sometimes used to fix issues
of density matrix positivity in perturbative Redfield Theory
(Gaspard and Nagaoka, 1999), although here the establishment
of these conditions is described exactly and in real-time. We also
see that the crossover to the tunneling regime happens faster
as the temperature increases, meaning that the effective initial
conditions—particularly 〈σy(t)〉—are temperature dependent.

We extract approximate reaction rates from the TLS dynamics
by fitting each 〈σx(t)〉 to an exponential decay −e−Ŵt on

timescales t > τ . We thus obtain the rates Ŵ(ǫ,β) for the various
values of β and ǫ simulated. The values of ǫ were chosen to
be small compared to the characteristic vibrational frequency of
the bath, ǫ ≪ ωc and to the reorganization energy, ǫ ≪ λR and
thus lie in the non-adiabatic regime which is the relevant regime
for electron transfer. One may then perform a perturbative
expansion in ǫ, otherwise known as the “Golden Rule” approach
which, for an Ohmic bath, yields the following formulas for the
high and low temperature limits corresponding respectively to
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FIGURE 8 | Log plot of the rates, Ŵ, extracted from 〈σx (t)〉 for ǫ = 0.2 (Red), ǫ = 0.3 (Blue), and ǫ = 0.4 (Red) as a function of β. (Dashed lines) High temperature

(T ≫ ωc), classical, limit of Golden Rule formula. (Dotted lines) Low temperature (T ≪ ωc), quantum, limit of Golden Rule formula.

the classical and quantum regimes (Weiss, 2012).

Ŵ(β) =







√
π

4
√
α
ǫ2( π

βωc
)2α−1,βωc ≫ 1

e2

4

√

πβωc
2α exp(−αβωc

2 ),βωc ≪ 1
. (13)

The golden rule result is based on second-order perturbation
in the tunneling coupling ǫ, but it is exact to all orders in
the system-environment coupling α. Additionally, the Ohmic
form of the spectral function generates a non-trivial power-
law dependence of the tunneling rate on the temperature for
βωc ≫ 1 in which the rate may either decrease or increase as
the temperature is lowered, depending on the value of α. We
plot these formulas along with the numerically evaluated rates
in Figure 8. There is a good agreement in the high and low
temperature limits between the Golden Rule expressions and the
T-TEDOPA results, and one clearly sees that the temperature
dependence of the rate is non-monotonic with a transition from
power law growth (quantum, 2α − 1 > 0) to power-law decay
(classical, ∝ √

β) as the temperature increases from T = 0. We
note that for the parameters we present here, the intermediate
regime where thermally activated behavior is predicted βωc ∼ 1
is not observed for the Ohmic environment, and one essentially
switches from tunneling limited by the effect of friction on the
attempt frequency to the low-temperature polaronic tunneling of
Equation (13).

5. CONCLUSION

In this article we have shown how the combination of
the Tamasceli’s remarkable T-TEDOPA mapping and

non-perturbative variational Tensor-Network dynamics
can be applied to chemical and photophysical systems under
laboratory conditions. Through numerical experiments we have
carefully investigated how the T-TEDOPA mapping allows the
effects of finite temperatures to be obtained efficiently without
any need for costly sampling of the thermal environment state,
or the explicit use of density matrices. However, analysis of
these environmental dynamics reveals how incorporating finite
temperatures can lead to more expensive simulations, due to
the filling-up of the chain modes and the longer chains that are
needed to prevent recurrence dynamics. Yet, we believe that
this method, and others like it, based on the exact quantum
many-body treatment of vibrational modes (Somoza et al.,
2019), could present an attractive complementary approach
to the Multi-Layer Multi-Configurational Time-Dependent
Hartree Method (MLMCTDH) commonly used in chemical
dynamics. One possible direction for this would be to consider
a problem in which a (discretized) potential surface for a
reaction is contained within the system Hamiltonian, while
the environment bath provides the nuclear thermal and
quantum fluctuations that ultimately determine both real-time
kinetics and thermodynamical yields for the process, as is
currently captured in methods such as Ring Polymer Molecular
Dynamics (Craig and Manolopoulos, 2004). Furthermore,
the Tensor-Network structures are not limited to the simple
chain geometries we consider here but can in fact adopt a tree
structure, thus enabling the treatment of complex coupling to
multiple independent baths (Schröder et al., 2019). Such trees
tensor networks have recently been interfaced with ab initio
methods to explore ultra-fast photophysics of real molecules
and their pump-probe spectra (Schnedermann et al., 2019),
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but such efforts have so far been limited to zero temperature.
Finally, the cooperative, antagonistic or sequential actions
of different types of environments, i.e., light and vibrations
(Wertnik et al., 2018), or even the creation of new excitations,
such as polaritons (Memmi et al., 2017; Del Pino et al.,
2018; Herrera and Owrutsky, 2020), could play a key role in
sophisticated new materials for energy transduction, catalysis
or regulation (feedback) of reactions, and T-TDEPODA-based
tensor networks are currently being used to explore these
developing areas.
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APPENDIX

The chain mapping used in section 2 is based on the theory of
orthogonal polynomials. A polynomial of degree n is defined by

pn(x) =
n

∑

m=0

amx
m. (A1)

The space of polynomials of degree n is denotedPn and is a subset
of the space of all polynomials Pn ⊂ P. Given a measure dµ(x)
which has finite moments of all orders on some interval [a, b], we
may define the inner product of two polynomials

〈p, q〉µ =
∫ b

a
dµ(x)p(x)q(x). (A2)

This inner product gives rise to a unique set of orthonormal
polynomials {p̃n ∈ Pn, n = 0, 1, 2, . . . } which all satisfy

〈p̃n, p̃m〉 = δn,m. (A3)

This set forms a complete basis for P, and more specifically the
set {p̃n ∈ Pn, n = 0, 1, 2, . . .m} is a complete basis for

⋃m
r=1 Pr .

It is often useful to express the orthonormal polynomials in
terms of the orthogonal monic polynomials πn(x) which are the
unnormalized scalar multiples of p̃n(x) whose leading coefficient
is 1 (an = 1)

p̃n(x) =
πn(x)

||πn||
. (A4)

The key property of orthogonal polynomials for the construction
of the chain mapping is that they satisfy a three term
recurrence relation

πk+1(x) = (x− αk)πk(x)− βkπk−1(x), (A5)

where it can be easily shown that

αk =
〈xπk,πk〉
〈πk,πk〉

,βk =
〈πk,πk〉

〈πk−1,πk−1〉
. (A6)

Now that we have defined the orthogonal polynomials we may
use them to construct the unitary transformation that will
convert the star Hamiltonian of Equation (9) with

Hext
I = AS ⊗

∫ ∞

−∞
dω

√

Jβ (ω)(aω + a†
ω),H

ext
E =

∫ ∞

−∞
dωωa†

ωaω ,

(A7)
into the chain Hamiltonian of Equation (12). The transformation
is given by

c(†)n =
∫ ∞

−∞
Un(ω)a

(†)
ω , (A8)

where

Un(ω) =
√

Jβ (ω)p̃n(ω) =
√

Jβ (ω)
πn(ω)

||πn||
, (A9)

and the polynomials p̃n(ω) are orthonormal with respect to the
measure dωJβ (ω). The unitarity of Un(ω) follows immediately
from the orthonormality of the polynomials.

Applying the above transformation to the interaction
Hamiltonian we have

Hext
I = AS ⊗

∞
∑

n=0

∫ ∞

−∞
dωJβ (ω)

πn(ω)

||πn||
(c†n + cn) (A10)

For the zeroth order monic polynomial we have π0 = 1 and so
we may insert this into the above expression

Hext
I = AS ⊗

∞
∑

n=0

∫ ∞

−∞
dωJβ (ω)

πn(ω)π0
||πn||

(c†n + cn). (A11)

Recognizing the inner product in the above expression and
making use of the orthogonality of the polynomials we have

Hext
I = AS⊗

∞
∑

n=0

||πn||δn,0(c†n+cn) = AS⊗||π0||(c†0+c0), (A12)

and thus, in the new basis, only one mode now couples to
the system.

Now for the environment part of the Hamiltonian we have

Hext
E =

∞
∑

n,m=0

∫ ∞

−∞
dωJβ (ω)ω

πn(ω)πm(ω)

||πn||||πm||
c†ncm. (A13)

Substituting for ωπn(ω) from the three term recurrence relation
of Equation (A5) yields

Hext
E =

∞
∑

n,m=0

∫ ∞

−∞
dω

Jβ (ω)

||πn||||πm||
[

πn+1(ω)+ αnπn(ω)

+βnπn−1(ω)
]

πm(ω)c
†
ncm. (A14)

Again, evaluating the inner products we have

Hext
E =

∞
∑

n,m=0

1

||πn||
[

||πm||δn+1,m + αn||πm||δn,m

+ βn||πm||δn−1,m

]

c†ncm

=
∞
∑

n=0

√

βn+1c
†
ncn+1 + αnc†ncn +

√

βn+1c
†
ncn−1,

(A15)

where in the second line we have used the fact that

||πn+1||
||πn||

=
√

βn+1. (A16)

We thus arrive at the nearest-neighbor coupling Hamiltonian of
Equation (12) and are able to identify the chain coefficients as

κ = ||π0||,
ωn+1 = αn,

tn =
√

βn.

(A17)
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Note that in Equation (12) the chain sites are labeled
starting from n = 1 and not n = 0 as in Equation
(A15). All that remains now to calculate the chain
coefficients for a particular spectral density Jβ (ω) is to

compute the recurrence coefficients, αn and βn, and this
may done iteratively using Equations (A5) and (A6) and
numerically evaluating the inner product integrals using a
quadrature rule.
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