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Diethyl malonate-based fluorescent probe NE-N2H4 was constructed for monitoring

hydrazine (N2H4). The novel probe NE-N2H4 exhibits good properties, such as large

Stokes shift (about 125 nm), good selectivity, and low cytotoxicity. This sensing probe

NE-N2H4 can be operated to detect hydrazine in living HeLa cells. Especially after

soaking in probe solution, the thin-layer chromatography (TLC) plate could detect the

vapor of hydrazine. Therefore, the probe NE-N2H4 might be used to monitor hydrazine

in biosamples and environmental problem.
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INTRODUCTION

Hydrazine (N2H4) and its substituted derivatives are usually applied in the aerospace industry
as rocket propellant due to the distinctive properties of flammability and explosion (Serov and
Kwak, 2010). This molecule N2H4 has also been employed as a catalyst, corrosion inhibitor,
and reducing agent in many different fields including pharmaceutical, agricultural, and applied
chemical industries (Kean et al., 2006; Khaled, 2006; Rosca and Koper, 2008). Due to its high
toxicity, it is also considered as a terrible pollutant to creatures and humans, which could make the
lungs, livers, and kidneys cancerous (Garrod et al., 2005). Hence, 10 ppb is the upper line (CDC,
1988). That is why it is important to develop goodmethods for sensing N2H4 in real-time detection
and environmental pollution.

In modern times, chromatography–mass spectrometry, titrimetric, and electrochemical
methods have been reported for monitoring N2H4 (Karimi-Maleh et al., 2014; McAdam et al.,
2015). During the past few years, molecular probes have been developed for biological imaging
with good properties of high sensitivity, large Stokes shift, good selectivity, good biocompatibility,
and real-time detection, etc., which were regarded as the most practical method (Lakowicz, 2006;
Li et al., 2014; Tang et al., 2015; Zhou X. et al., 2015).

During the last few decades, a series of turn-on probes were applied to detect N2H4 in living
biosamples (Cui et al., 2014; Goswami et al., 2014a,b, 2015; Liu et al., 2014, 2019; Qian et al., 2014;
Qu et al., 2014; Raju et al., 2014; Sun et al., 2014, 2015; Xiao et al., 2014; Jin et al., 2015; Nandi
et al., 2015; Yu et al., 2015; Zhang et al., 2015; Zhou J. et al., 2015; Dai et al., 2016; Reja et al., 2016;
Chen et al., 2017; Li et al., 2017, 2018, 2019; Ma et al., 2017; Mahapatra et al., 2017; Jung et al.,
2019; Paul et al., 2019; Shi et al., 2019; Xing et al., 2019; Fang et al., 2020; Han et al., 2020; Hou
et al., 2020; Vijay and Velmathi, 2020), a few of which were constructed by cleavage of C= C bond
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(Sun et al., 2014; Reja et al., 2016; Li et al., 2017, 2018, 2019; Liu
et al., 2019; Hou et al., 2020). Many examples were developed by
the deprotection group from the fluorescent group (Cui et al.,
2014; Goswami et al., 2014a, 2015; Liu et al., 2014; Qian et al.,
2014; Qu et al., 2014; Raju et al., 2014; Jin et al., 2015; Sun et al.,
2015; Yu et al., 2015; Zhang et al., 2015; Zhou J. et al., 2015; Chen
et al., 2017; Ma et al., 2017; Mahapatra et al., 2017; Shi et al., 2019;
Xing et al., 2019; Fang et al., 2020; Vijay and Velmathi, 2020).
Additionally, the rest of the fluorescent molecules were used to
monitor N2H4 using the property of special nucleophilicity of
N2H4 (Goswami et al., 2014b; Xiao et al., 2014; Nandi et al., 2015;
Dai et al., 2016; Jung et al., 2019; Paul et al., 2019; Han et al., 2020).
That is why it is necessary to construct a powerful molecule for
monitoring N2H4 by the way of cleavage of C= C bond.

In this report, a novel fluorescent probe, NE-N2H4, has
been constructed to monitor N2H4 with improved properties
including good selectivity, low cytotoxicity, and large Stokes shift
over other analytes by cleavage of C = C bond (Scheme 1). The
probe NE-N2H4 was applied to imaging N2H4 in living HeLa
cells. Besides, the probe NE-N2H4 could monitor vapor of N2H4

by way of thin-layer chromatography (TLC) plate after soaking
in solution of probe NE-N2H4. Therefore, this novel probe NE-
N2H4 could be regarded as a powerful pool for monitoring N2H4

in biosystems and environmental pollution.

EXPERIMENT

Synthesis of Probe NE-N2H4
Here, 6-hydroxy-2-naphthaldehyde (1.0 mmol, 172.0mg) and
diethyl malonate (1.2 mmol, 192.2mg) were added to EtOH
(5.0ml). Then, piperidine (1.2 mmol, 102.2mg) was added to
the above solution. After reacting at 25◦C for 12 h, distilled H2O

SCHEME 1 | The molecular structure of NE-N2H4 and the proposed sensing mechanism.

SCHEME 2 | Synthesis of the fluorescent probe NE-N2H4.

(10.0ml) was added to the above reaction, which was extracted
with dichloromethane (DCM) (50ml) 3 times. All the extracts
were washed with saturated aqueous sodium chloride solution
and dried over MgSO4. The solid residue was dealt with flash
column chromatography. The probe NE-N2H4 was obtained
(83% yield). 1H NMR (400 MHz, CDCl3): 7.86 (s, 1H), 7.81 (s,
1H), 7.64 (d, J = 8.8Hz, 1H), 7.52 (d, J = 8.8Hz, 1H), 7.40 (dd,
J1 = 2.0Hz, J2 = 8.8Hz, 1H), 7.09–7.04 (m, 2H), 4.41 (dd, J1 =
6.8, J2 = 14.0, 2H), 4.33 (dd, J1 = 7.2, J2 = 14.0, 2H), 1.37–1.32
(m, 6H); 13CNMR (100 MHz, CDCl3): 167.5, 164.5, 155.3, 142.7,

FIGURE 1 | Fluorescence spectra of NE-N2H4 (10µM) in pH 7.4 phosphate

buffered saline (PBS)/dimethyl sulfoxide (DMSO0 (v/v = 1/1) in the absence or

presence of N2H4.
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135.6, 131.2, 130.7, 128.3, 128.0, 127.0, 125.9, 124.4, 118.8, 109.5,
61.9, 61.7, 14.2, 14.0; high-resolutionmass spectrometry (HRMS)
[electrospray ionization (ESI)]m/z calcd for C18H18O5 (M+H)+:
315.1230; found 315.1228.

Vapor Gas Detection
TLC plates were soaked in the probeNE-N2H4 solution [0.1mM,
in dimethylsulfoxide (DMSO)]. After the NE-N2H4 probe-
loaded TLC plates were dried over air-blast drying box, the plates
were put onto a series of flasks with different concentrations of
N2H4 for 10min. Then, the color of probe-loaded TLC plates was
observed under UV light of 365 nm.

Cell Imaging
HeLa cells were grown in modified Eagle’s medium (MEM)
replenished with 10% fetal bovine serum (FBS) with the
atmosphere of 5% CO2 and 95% air at 37◦C for 24 h. The
HeLa cells were washed with phosphate buffered saline (PBS)
three times when used. HeLa cells were treated with NE-N2H4

(20.0µM) for 30min, then with N2H4 (200.0µM) for 30min
at 37◦C. The ideal fluorescence images were acquired with a
Nikon A1MP confocal microscopy with the equipment of a
CCD camera.

RESULTS AND DISCUSSION

Design and Synthesis of Probe NE-N2H4
As we all know, aldehyde group was easily reacted with
nucleophile to construct C=C bond. Therefore, the simple
compound of 6-hydroxy-2-naphthaldehyde was modified simply
as the fluorescent group. The turn-on probe NE-N2H4 was
developed by modifying a novel recognition site of diethyl

malonate with functional aldehyde group in Scheme 2. The
structure of the NE-N2H4 was characterized by 1H, 13C NMR,
and HRMS (Supplementary Figures 8–10).

The Spectral Property of Probe NE-N2H4
This developed probe NE-N2H4 was applied to measure
spectral properties with the addition of N2H4 including
absorption spectroscopy and fluorescence spectroscopy. The
probe NE-N2H4 exhibited no fluorescence under excitation at
320 nm without addition of N2H4 (Supplementary Figure 1,
Figure 1). In contrary, strong fluorescence emission appeared at
445 nm after adding N2H4 to the solution of NE-N2H4, with
a quantum yield of 0.35. When the addition of N2H4 was up
to 200 equivalent, the fluorescence enhancement emerged to
the high point (Figure 1). Therefore, the probe NE-N2H4 was
easy to respond to N2H4, which was suitable for sensing N2H4

as a powerful pool with a large Stokes shift. The pH effect
of PBS buffer was examined in Supplementary Figure 2. The
fluorescent intensity increased from acid to basic rapidly. The

FIGURE 3 | The fluorescence intensity of NE-N2H4 (10µM) in the presence of

various analytes (10 equiv) in phosphate buffered saline (PBS) buffer [pH 7.4

PBS/dimethylsulfoxide (DMSO) (v/v = 1/1)]. 1: None; 2: SO2−
3 ; 3: NO−

2 ; 4:

NO−

3 ; 5: I
−; 6: Br−; 7: Fe2+; 8: H2O2; 9: NO; 10: Li

+; 11: Zn2+; 12: Ni2+; 13:

Cys; 14: GSH; 15: S2−; 16: N2H4.

FIGURE 2 | Fluorescence spectra of NE-N2H4 (10µM) in pH 7.4 phosphate buffered saline (PBS)/dimethylsulfoxide (DMSO) (v/v = 1/1) in the absence or presence of

N2H4 (10 equiv). (A,B) were depicted in Response Rate and Selectivity of Probe NE-N2H4.
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main reason is that the nucleophilic substitution to the probe
NE-N2H4 reacted easily in alkaline conditions.

Mechanism
The sensing mechanism was examined by adding N2H4 to
the solution of probe NE-N2H4. The reaction solution was
detected by HRMS. When probe NE-N2H4 (20µM) was treated
with N2H4 (200µM), a peak at m/z 187.0879 emerged in
HRMS spectrum in accordance with the predicted NE-N2H4-
adduct (Supplementary Figure 4). The NE-N2H4-adduct was
constructed in one step easily characterized by 1H NMR
and HRMS (Supplementary Figures 5, 6). Additionally, the
absortion spectra ofNE-N2H4 (10µM) in absence or presence of
N2H4 (10 equiv) and the synthetic NE-N2H4-adduct in pH 7.4
PBS/DMSO (v/v = 1/1) were listed in Supplementary Figure 3,
which is consistent with the proposed mechanism (Scheme 1).

Response Rate and Selectivity of Probe
NE-N2H4
The time course of probe NE-N2H4 was measured after the
addition of N2H4 (10 equiv) (Figures 2A,B). Notably, the
fluorescence enhancement was increased obviously as time goes
on. That is to say, the sensing probe NE-N2H4 could be fit
for imaging N2H4 in living cells. Another important factor is
selectivity research of NE-N2H4 compared to other interfering
species. It is very crucial whether the sensing molecule NE-

N2H4 is suitable for cell imaging in the biosystem. The selectivity
research was performed in Figure 3 over other competitive
molecules. We find that fluorescence intensity showed almost no
change after adding N2H4, when the solution of probeNE-N2H4

was added with other competitive molecules including SO2−
3 ,

NO−

2 , NO
−

3 , I
−, Br−, Fe2+, H2O2, NO, Li

+, Zn2+, Ni2+, Cys,
GSH, S2−, and N2H4. In conclusion, the sensing probeNE-N2H4

FIGURE 4 | Photographs of thin-layer chromatography (TLC) plates, soaked in the solution of NE-N2H4, followed by addition of different amounts of hydrazine.

(a) Water, (b) 10% N2H4, (c) 20% N2H4, (d) 30% N2H4, (e) 40% N2H4, (f) 50% N2H4.

FIGURE 5 | (a) Brightfield image of living HeLa cells costained only with NE-N2H4. (b) Fluorescence images of (a) from blue channel. (c) Overlay of (a,b).

(d) Brightfield image of living HeLa cells costained with NE-N2H4 and N2H4. (e) Fluorescence image of (d) from blue channel. (f) Overlay of the brightfield image (d)

and blue channels (e).
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could be suitable for the response to N2H4 with good selectivity
over other interfering molecules in the biosamples.

Application in Gas Detection
According to the above research data, the application of gas
detection was operated. The free TLC plates were soaked in the
solution of NE-N2H4 (0.1mM, in DMF). The TLC plates loaded
with probe NE-N2H4 were prepared to discriminate N2H4 (gas)
in different concentrations after drying with a vacuum dryer.
Distinctive fluorescence color changes of plates were obtained
under UV 365 nm light (Figure 4) after exposing TLC plates to
the N2H4 (gas) for 10min. Obviously, no obvious change was
exhibited in the distilled water (Figure 4a). The experimental
result indicated that the sensing probe NE-N2H4 may be a
practical method to detect N2H4 in industrial pollution.

Cytotoxicity and Imaging
Encouraged by the good fluorescent properties of probe NE-

N2H4 including sensitive response, good selectivity, and large
Stokes shift, a laser confocal microscope was applied to test
the potential applications in cell imaging. The cytotoxicity of
probe NE-N2H4was tested for imaging MTT assays in living
cells. The living HeLa cells were operated for imaging fluorescent
experiments by means of confocal laser scanning microscopy.

MTT assays were operated on living HeLa cells incubated
with probe NE-N2H4 (see Supplementary Figure 4). The data
indicated that this probe NE-N2H4 at different concentrations

was almost nontoxic to the living cells [>90%HeLa cells survived
after 24 h with NE-N2H4 (10.0µM) incubation]. Therefore, this
probe is fit for imaging N2H4 in living HeLa cells.

The probe NE-N2H4 was operated to incubate living HeLa
cells for bioimaging of N2H4 due to the improved properties.
Firstly, the solution of probe NE-N2H4 was used for incubating
living HeLa cells for 30min. No obvious fluorescence emerged
in blue channel collected with Nikon A1MP confocal microscopy
with a CCD camera (Figures 5a–c). Then, probe NE-N2H4 was
used to incubate the living HeLa cells for 30min and treated with
N2H4 for another 30min, obvious fluorescence exhibited in blue
channel (Figures 5d–f). The experimental data indicated that the
probe NE-N2H4 was fit for imaging N2H4 in living HeLa cells.

CONCLUSION

In conclusion, an organic fluorescent probe has been constructed
using diethyl malonate as a recognition site for sensing N2H4

with good selectivity and large Stokes shift (125 nm). This novel
probe NE-N2H4 was developed for sensing N2H4 in living HeLa
cells. In addition, this probe NE-N2H4 was applied for gas
detection by probe-loaded TLC plate. The above results indicate
that the probe NE-N2H4 may be powerful for monitoring N2H4

in biosystems and environmental problem.
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