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During their infective stages, hookworms release excretory-secretory (E-S) products,

small molecules, and proteins to help evade and suppress the host’s immune system.

Small molecules found in E-S products of mammalian hookworms include nematode

derived metabolites like ascarosides, which are composed of the sugar ascarylose linked

to a fatty acid side chain. The most abundant proteins found in hookworm E-S products

are members of the protein family known as Ancylostoma secreted protein (ASP). In

this study, two ascarosides and their fatty acid moieties were synthesized and tested

for in vitro binding to Na-ASP-2 using both a ligand competition assay and microscale

thermophoresis. The fatty acid moieties of both ascarosides tested and ascr#3, an

ascaroside found in rat hookworm E-S products, bind to Na-ASP-2’s palmitate binding

cavity. These molecules were confirmed to bind to the palmitate but not the sterol binding

sites. An ascaroside, oscr#10, which is not found in hookworm E-S products, does

not bind to Na-ASP-2. More studies are required to determine the structural basis of

ascarosides binding by Na-ASP-2 and to understand the physiological significance of

these observations.

Keywords: venom allergen-like (VAL), TAPs [testis specific proteins (Tpx)/antigen 5 (Ag5)/pathogenesis related-1

(PR-1)/Sc7], CAP [cysteine-rich secretory protein (CRISP)/antigen 5/pathogenesis related-1 (PR-1)], lipid binding,

sperm coating protein (SCP)

INTRODUCTION

Necator americanus and Ancylostoma duodenale are hookworms causing a disease burden of over
22 million disability-adjusted life years (de Silva et al., 2003; Hotez, 2007; Murray et al., 2013;
Diemert et al., 2018). The most abundant proteins secreted by third-stage infective larvae (L3) of
N. americanus upon host entry are N. americanus Ancylostoma secreted protein 1 (Na-ASP-1) and
N. americanus Ancylostoma secreted protein 2 (Na-ASP-2) (Hotez et al., 2003). These Ancylostoma
secreted proteins are the major protein components of the L3 excretory-secretory (E-S) products
that facilitate the evasion and suppression of the host’s immune system and have been found
in parasitic nematodes (Hawdon et al., 1995, 1996, 1999; Hawdon and Hotez, 1996; Gao et al.,
2001; Zhan et al., 2003; Asojo et al., 2018; Darwiche et al., 2018). ASPs belong to the SCP/TAPS
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(sperm-coating protein/Tpx/antigen 5/pathogenesis related-
1/Sc7) superfamily of proteins, NCBI domain cd00168 or Pfam
PF00188 (Gibbs et al., 2008). Members of the SCP/TAPS
superfamily are also implicated in other biological phenomena,
including cellular defense such as plant responses to pathogens,
sexual reproduction, and human brain tumor growth (Hawdon
et al., 1999; Ding et al., 2000; Gao et al., 2001; Zhan et al., 2003;
Gibbs et al., 2008, 2010).

SCP/TAPS proteins have either one or two∼15 kDa cysteine-
rich CAP domains (cysteine-rich secretory protein, antigen 5,
and pathogenesis-related 1) as typified by the structures of Na-
ASP-2 (one CAP domain) and Na-ASP-1 (two covalently linked
CAP domains). The CAP domain has multiple cavities and
verified ligand-binding regions, and the first to be identified was
a large central cavity that may contain a tetrad of residues, two
His and two Glu that bind divalent cations including Zn2+ and
Mg2+(Gibbs et al., 2008; Wang et al., 2010; Asojo et al., 2011,
2018; Mason et al., 2014; Darwiche et al., 2018). Distinct lipid-
binding sites verified in SCP/TAPS proteins include a caveolin-
binding motif (CBM) of the yeast CAP proteins required for in
vivo transport of cholesterol and a hydrophobic channel formed
by conserved central helices that bind fatty acids (Xu et al.,
2012; Kelleher et al., 2014; Darwiche et al., 2016, 2018; Asojo
et al., 2018). Sterols and fatty acid bind at these two different
and independent binding sites on the CAP domain of SCP/TAPS
proteins have been confirmed formultiple CAP proteins andwith
mutagenesis studies (Darwiche and Schneiter, 2017; Darwiche
et al., 2017a; Asojo et al., 2018).

We previously reported the crystal structure of Na-ASP-2 and
its sterol binding and transport properties (Asojo et al., 2005;
Darwiche et al., 2018). The impetus for this current study is to
investigate the fatty acid binding properties of Na-ASP-2. We
also investigate if the major small molecules in E-S products
(ascarosides) bind to Na-ASP-2, a major protein in the E-S.
This is of interest because ascarosides are composed of the
sugar ascarylose linked to a fatty acid moiety. Furthermore, we
investigated the binding of two structurally similar ascarosides
ascr#3 and oscr#10 and their fatty acid moieties. We chose these
ascarosides because a high relative abundance of ascr#3 was
detected in E-S products from both the infective juvenile and
adult stages of rat hookworm (Nippostrongylus brasilensis) by
HPLC-MS whereas oscr#10 was not present (Choe et al., 2012).
N. brasilensis is a murine model of human hookworm infection
and has a similar E-S proteins expression profile as the major
human hookworm N. americanus (Camberis et al., 2003; Sotillo
et al., 2014). We present the results of the binding studies as well
asmethods for the efficient synthesis of both ascarosides and their
fatty acid moieties.

MATERIALS AND METHODS

Synthesis of Ascarosides and Fatty Acids
Details about the synthesis of the ascarosides and fatty acids
moieties produced for our studies are described in supplementary
methods. Briefly, we synthesized the intact fatty acid sidemoieties
and coupled them directly to a protected ascarylose followed by
final deprotections.

Expression and Purification of Pry1 and
Na-ASP-2
Recombinant proteins were produced using both P. pastoris for
untagged protein and E. coli for hexa-histidine tagged protein.
Untagged protein was produced as previously reported (Asojo
et al., 2005; Darwiche et al., 2016). DNA encoding for Pry1
and Na-ASP-2 were amplified by PCR and cloned into NcoI
and XhoI restriction sites of pET22b vector (Novagen, Merck,
Darmstadt, Germany), which contains a pelB signal sequence
to direct the secretion of expressed protein into the periplasmic
space. Plasmids were transformed into Escherichia coli BL21
and proteins were expressed with a C-terminal polyhistidine-
tag. Protein expression was induced overnight with lactose at
24◦C. Cells were collected, lysed and incubated with nickel-
nitrilotriacetic acid beads (Ni2+-NTA) as per the manufacturer
instructions (Qiagen, Hilden, Germany). Beads were washed and
proteins were eluted in 60mM NaH2PO4, 300mM NaCl and
300mM imidazole, pH 8.0. Prior to microscale thermophoresis
experiments, proteins were applied to ZebaTM spin desalting
columns (Thermo scientific) and the buffer was exchanged to
60mM NaH2PO4, 300mM NaCl, pH 8.0.

In vitro Radioligand Lipid Binding Assay
The radioligand binding assay was performed as described
previously (Im et al., 2005; Choudhary and Schneiter, 2012).
Hundred pmol of purified untagged CAP protein (Na-ASP-2
or Pry1) in binding buffer (20mM Tris, pH 7.5, 30mM NaCl,
0.05% Triton X-100) was incubated for 1 h at 30 ◦C with different
concentrations of either [3H]-cholesterol or [3H]-palmitic acid.
Protein was removed from unbound ligand by adsorption to Q-
sepharose beads (GE Healthcare, USA), the beads were washed,
protein was eluted and the protein-bound radioligand was
quantified by scintillation counting. For competition binding
assays, specified concentrations of unlabeled cholesterol, palmitic
acid or ligands, were included in the binding reaction. Non-
specific binding was determined by performing the assays
without the addition of protein. Statistical significance of data
was analyzed by multiple t-test (GraphPad Prism, La Jolla, CA).

Microscale Thermophoresis
Microscale thermophoresis was performed using a Monolith
NT.115 from Nanotemper Technologies (Munich, Germany)
(Seidel et al., 2012; Shang et al., 2012; Zillner et al., 2012).
His-tagged protein (Pry1 or Na-ASP-2) was fluorescently
labeled using the RED-tris-NTA His-tag protein labeling kit
(Nanotemper Technologies). Labeled protein (Pry1 or Na-ASP-
2) was subsequently added to serial dilution of unlabeled
ligand (ascarosides or their fatty acid moieties) in binding
buffer (20mM Tris pH 7.5, 30mM NaCl, 0.05% Triton X-
100). Each sample was loaded into standard glass capillaries,
and measurements were performed at 60% laser power
setting. Dissociation constant Kd was obtained by plotting the
normalized fluorescence (Fnorm) against the logarithm of ligand
concentration. Experiments were performed in triplicates and the
Kd model of the MO Affinity Analysis software (Nanotemper
Technologies, Munich, Germany) was used for data fitting.
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RESULTS

Synthesis of Ascarosides and Fatty Acids
Since the ascarosides and fatty-acid moieties (Figure 1) required

for our studies were not readily available, we adapted existing

methods for their synthesis. Benzoyl protected ascarylose 8

was prepared as previously reported by Jeong et al. from
commercially available L-rhamnose 6 (Jeong et al., 2005) with

the exception of a modified final reduction. The previously
reported reduction of lactone 7 with disiamyl borane (Jeong
et al., 2005) proved irreproducible in our hands, resulting
in incomplete conversion and low overall yields (∼40%).
Thus, an alternative was identified involving reduction with
9-BBN to provide the desired lactol 7 in improved yield
(70%). With protected ascarylose 8 in hand, we next studied
glycosylation at C1 to append the fatty acid side chain

FIGURE 1 | Targeted ascarosides and their fatty acid moieties. The corresponding ascarosides are ascr#3 (1); oscr#10 (2) and their side chain moieties are 3-5.

Compound names are 3 = (R)-8-hydroxynonanoic acid, 4 = (R, E)-8-hydroxynon-2-enoic acid, and 5 = 9-hydroxynonanoic acid.

FIGURE 2 | Synthesis of ascarosides. The synthetic pathway designed for protected ascarylose 8, ascr#3 (1), oscr#10 (2) are illustrated. Detailed synthesis methods

are described in the supplementary methods.
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present in the targeted ascarosides. Previous synthetic strategies
to these targets involved glycosylation of secondary alcohols
bearing long alkyl chains with a terminal alkene which
was subsequently utilized for late stage cross metathesis or
oxidations (Jeong et al., 2005; Butcher et al., 2009; Martin
et al., 2009; Noguez et al., 2012; Srinivasan et al., 2012;
Hollister et al., 2013). Since we intended to study the binding
affinity of the natural ascarosides and their intact fatty acid
moieties independently, we synthesized the intact fatty acid
side moieties 9 and 11 and coupled them directly to protected

ascarylose 8 during the penultimate step of the synthetic
sequence. This strategy provided rapid access to ascarosides
1 and 2 along with fatty acid derivatives 3-5 for screening.
Lewis acid-mediated glycosylation with BF3•Et2O of fatty acid
9 (see Supplementary Material for synthesis details) and
commercially available acid 11 (Jeong et al., 2005) proceeded
as expected uneventfully and provided protected ascarosides 10
and 12 in 68 and 66% yield, respectively. Subsequent global
deprotection with lithium hydroxide gave ascr#3 (1) and oscr#10
(2), Figure 2.

FIGURE 3 | Na-ASP-2 binds both cholesterol and free palmitic acid. (A) Ligand binding of [3H]-cholesterol to Na-ASP-2. Purified Na-ASP-2 (100 pmol) was incubated

with increasing concentrations of [3H]-cholesterol (100–400 pmol), in absence and presence of 400 pmol of unlabeled cholesterol (chol). The protein was separated

from the unbound ligand by adsorption to an anion-exchange matrix and the protein-bound radioligand was quantified by scintillation counting. The background curve

shows values obtained in the absence of added protein. Data represent mean ± SD of 3 independent experiments. (B) Competitive binding of unlabeled cholesterol

(50 or 5,000 pmol) to Na-ASP-2. Binding of [3H]-cholesterol (50 pmol) to Na-ASP-2 (100 pmol) was assessed in the presence of the indicated concentrations of

unlabeled cholesterol (chol). Each data point is the average of duplicate assays and represents the amount of [3H]-cholesterol bound relative to a control containing no

unlabeled cholesterol. (C) Ligand binding of [3H]-palmitic acid to Na-ASP-2. Purified Na-ASP-2 (100 pmol) was incubated with increasing concentrations of

[3H]-palmitic acid (100–400 pmol), in absence and presence of 400 pmol of unlabeled palmitic acid (pal). (D) Competitive binding of unlabeled palmitic acid (50 or

5,000 pmol) to Na-ASP-2. Binding of [3H]-palmitic acid (50 pmol) to Na-ASP-2 (100 pmol) was assessed in the presence of the indicated concentration of unlabeled

palmitic acid (pal). Each data point is the average of duplicate assays and represents the amount of [3H]-palmitic acid bound relative to a control containing only

labeled palmitic acid. Data represent mean ± SD of three independent experiments. Asterisks denote statistical significance relative to the control containing only the

radiolabeled ligand and either purified Na-ASP-2 or Pry1. (**p < 0.001; *p < 0.01).
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FIGURE 4 | Binding of ligands to Na-ASP-2 and Pry1. (A) Free fatty acids and

ascarosides fail to compete with [3H]-cholesterol for binding to Na-ASP-2.

Binding of [3H]-cholesterol (50 pmol) to Na-ASP-2 (100 pmol) was assessed in

the presence of (50 pmol and 500 pmol) of unlabeled ascarosides or fatty acid

(Continued)

FIGURE 4 | moieties (1-5) (B) Fatty acids moieties and ascr#3 compete with

[3H]-palmitic acid for binding to Na-ASP-2. (C) Only fatty acids moieties

compete [3H]-palmitic acid for binding to Pry1. Competitive binding was

tested with either 50 or 500 pmol of the unlabeled ligands and 50 pmol of

[3H]-palmitic acid for binding to 100 pmol purified Na-ASP-2 or Pry1. The

ascarosides tested are (1) (ascr#3) and (2) (oscr#10) while the fatty acids are 3

[(R)-8-hydroxynonanoic acid], 4 [(R, E)-8-hydroxynon-2-enoic acid], and 5

(9-hydroxynonanoic acid). Data represent mean ± SD of 3 independent

experiments. Asterisks denote statistical significance relative to the control

containing only the radiolabeled ligand and either purified Na-ASP-2 or Pry1.

(**p < 0.001; *p < 0.01). n.s., not significant.

Na-ASP-2 Binds Cholesterol and Palmitic
Acid
Na-ASP-2 has distinct sterol and palmitate binding cavities and
can transport sterol in vivo (Darwiche et al., 2018). The in
vitro cholesterol-binding activity of Na-ASP-2 was examined
using increasing concentrations of radiolabeled [3H]-cholesterol
and a constant concentration of purified protein, Figure 3A.
Addition of equimolar or excess concentration of unlabeled
cholesterol reduced binding of the radioligand, indicating
that binding is specific, Figures 3A,B. Na-ASP-2 displayed
saturable binding of cholesterol with an apparent dissociation
constant Kd of 2.1µM. Na-ASP-2 has similar cholesterol binding
affinity as reported for other SCP/TAPS family members from
yeast, Saccharomyces cerevisiae (Pry1, 1.9µM), Brugia malayi
(Bm-VAL-1, 0.9µM), Heligmosomoides polygyrus (Hp-VAL-
4, 1.53µM), and Schistosoma mansoni (Sm-VAL-4, 2.4µM)
(Kelleher et al., 2014; Darwiche et al., 2016, 2018; Asojo et al.,
2018).

Tablysin-15, a horsefly SCP/TAPS protein was shown to bind
fatty acids via a hydrophobic pocket formed between two central
helices (Ma et al., 2011). This hydrophobic pocket is observed in
other SCP/TAPS proteins andwe previously confirmed the ability
of these proteins to bind palmitic acid in vitro (Kelleher et al.,
2014; Darwiche et al., 2016, 2018; Asojo et al., 2018). To examine
whether Na-ASP-2 can bind palmitic acid, we carried out direct
binding studies using [3H]-palmitic acid as radiolabeled ligand,
Figure 3C. For competition binding assays, binding of Na-ASP-2
to palmitic acid was reduced in the presence of unlabeled palmitic
acid, indicating that binding is specific, Figure 3D. Based on the
radioligand binding assay, Na-ASP-2 showed a saturable binding
for palmitic acid with an apparent Kd of 95µM, which is of
the same magnitude as previously measured for the SCP/TAPS
family members from yeast (Pry1, Kd = 112µM), Brugia malayi
(Bm-VAL-1, Kd = 83µM), and comparable to tablysin-15 (Kd =

94µM) (Kelleher et al., 2014; Darwiche et al., 2016, 2018; Asojo
et al., 2018). Taken together our results indicate that Na-ASP-2
binds both cholesterol and palmitic acid in vitro. It is important
to point out that the parasite proteins used for the competition
assay do not have a His-tag and was 99+% pure protein that was
previously used for crystallization studies. Tablysin-15 has a His-
tag and was produced in E. coli. Similar Kd was measured for
competition assays for Pry-1 using both hexa-histidine tagged or
untagged protein and with protein produced from E. coli or P.
pastoris and our previous studies indicate that the presence of the
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His-tag did not affect the ability to bind fatty acids and sterols
(Darwiche et al., 2016, 2017a).

Fatty Acids and Ascarosides Bind
Selectively to the Palmitate-Binding Cavity
Having confirmed the ability of Na-ASP-2 to bind cholesterol,
we carried out competitive binding studies of ascarosides and
their fatty acid moieties against radiolabeled cholesterol. At a
concentration of 50 pmol, the typical concentration for our
cholesterol binding assay, neither ascarosides [ascr#3 (1) and
oscr#10 (2)] nor fatty acids (3-5) competed with the radiolabelled
[3H]-cholesterol (50 pmol) for binding to Na-ASP-2, Figure 4A.
We also tested if the ascarosides or their fatty acid moieties
bind to the fatty acid binding cavity. Our studies showed that
the binding of [3H]-palmitic acid by Na-ASP-2 was competed
by the ascaroside, ascr#3 (1) and by all the fatty acid moieties
3-5 tested with the same order of magnitude, but not by the
ascaroside, oscr#10 (2), Figure 4B. We tested the ability of Pry1,
a SCP/TAPS protein from S. cerevisiae, an organism that does not
contain ascarosides, to bind to the same ligands. Our analysis
revealed that while the fatty acids (3-5) competed for palmitic
acid binding to Pry1, neither ascr#3 (1) nor oscr#10 (2) bound to
Pry1, Figure 4C. Furthermore, addition of excess ligands [fatty
acids (3-5)] competed with radioligand binding while binding
of [3H]-palmitic acid to Pry1 could not be competed for by the
addition of excess unlabeled ascr#3 (1) or oscr#10 (2), Figure 4C.
These competition studies reveal that Na-ASP-2 binds ascr#3 (1)
through its fatty-acid binding pocket.

We independently validated the direct binding of ligands
to Pry1 and Na-ASP-2 by microscale thermophoresis and
determined binding constants, Figure 5. Our analyses reveal that
Pry1 does not bind ascr#3 or oscr#10, but it binds all the fatty
acids tested including the moieties of both ascr#3 and oscr#10.
Na-ASP-2, binds ascr#3 with a Kd of 142µM but does not bind
oscr#10. The Kd is in the same order of magnitude as the binding
of palmitic acid and is consistent with the results obtained by the
ligand competition assays (Kelleher et al., 2014; Darwiche et al.,
2016, 2017a,b, 2018; Asojo et al., 2018).

DISCUSSION

We present here efficient methods to synthesize ascarosides
and their fatty acid moieties. We also present data revealing
that the fatty acid moieties of ascarosides compete for binding
to the palmitate-binding cavities of both Pry1 and Na-ASP-2
but do not bind to the sterol binding cavity. The micromolar
binding affinity of ascr#3 and free fatty acids are comparable
to that observed for palmitic acid binding by other SCP/TAPS
proteins (Kelleher et al., 2014; Darwiche et al., 2016, 2017a,b,
2018; Asojo et al., 2018). While it is unclear if ascr#3 binding is
physiologically relevant, the finding that ascr#3 binds Na-ASP-2
is interesting considering that a high relative abundance of ascr#3
was detected in E-S products from both the infective juvenile
and adult stages of rat hookworm (Nippostrongylus brasilensis)
by HPLC-MS (Choe et al., 2012). It is plausible that ascr#3
is present in human hookworms since there appears to be a

conservation of ascarosides production in families of nematodes
(Choe et al., 2012). A blast search of the Na-ASP-2 sequence
against the N. brasilensis proteins reveals several SCP/TAPs
proteins, which share over 45% sequence similarity withNa-ASP-
2. Evenmore remarkable, the residues and predicted structures of
the helical regions notably residues corresponding to (α1 and α3)
that form the fatty acid-binding cavity are partially conserved,
Figure 6A. This structural similarity suggests that these proteins
likely behave similarly to Na-ASP-2 as we observed previously
for the orthologs from B. malayi and H. polygyrus (Asojo et al.,
2018; Darwiche et al., 2018). Additionally, we observed that the
incorporation of the ascarylose sugar abrogated the ability of
these fatty acids to bind to Pry1. A comparison of the helices
bordering the palmitic acid binding cavities of Pry1 and Na-
ASP-2 reveals that Pry1 has shorter helices than Na-ASP-2,
which results in a smaller hydrophobic binding pocket in Pry1
compared toNa-ASP-2, Figure 6B. This smaller size may explain
the failure of Pry1 to accommodate ascarosides as opposed to free
fatty acids. The inability of Na-ASP-2 to bind oscr#10 cannot be
explained by the size difference of the cavities and suggests a new
hypothesis that we plan to test in future; that ascarosides binding
may be specific for certain SCP/TAPS proteins, indicating a
possible functional relationship between ascarosides and parasite
SCP/TAPS proteins.

The ability of Na-ASP-2 to bind cholesterol is intriguing given
the evidence that hookworm and other parasite infections induce
significant changes in lipid profile in patients suggesting that
there may be some factors and proteins that help the parasite
consume cholesterol (Bansal et al., 2005). As small soluble
parasite proteins that can bind sterols and lipids, Na-ASP-2
and other parasite ASPs may play multiple roles in important
processes that occur at the different life-stages during which
they are produced. Hookworm infective larvae penetrate the
skin in response to lipids during the transition from free-living
to infectious state (Haas et al., 2005a,b). These free fatty acids
were chemotactic stimuli for the skin penetration by hookworm
larvae (Haas et al., 2005a,b). Additionally, the infective larvae
of N. americanus, like other parasites, synthesize eicosanoids,
which may stimulate inflammation and be important for
immunomodulation and immune evasion (Salafsky and Siddiqui,
1990; Belley and Chadee, 1995). Previous studies have shown that
eicosanoids bind to the fatty-acid binding cavity, and reported
structures of tablysin-15 with either palmitate or an eicosanoid
reveal similar binding in the same cavity (Ma et al., 2011).
It is also possible that by binding to ascarosides and other
small molecules, Na-ASP-2 may have roles in immune evasion
or some other signaling cascade by infective N. americanus
larvae. Na-ASP-2 is immunomodulatory and recruits neutrophil
both in vivo and in vitro (Bower et al., 2008). Interestingly,
Na-ASP-2 induced neutrophil recruitment appeared to be a
mechanism of immune suppression by hookworm parasites
(Tribolet et al., 2015). Similarly, adult hookworms secrete many
proteins that have a potential immunomodulatory function,
and among these are many ASPs. These proteins function by
inhibiting the inflammatory reaction, promoting effector cells
apoptosis, or skewing immune responses to help hookworms
survive inside the host (Loukas and Prociv, 2001). Clarifying how
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FIGURE 5 | Na-ASP-2 selectively binds ascr#3 but not oscr#10. Binding of ascarosides and their fatty acid moieties by Pry1 and Na-ASP-2 as measured by

microscale thermophoresis. (A,G) Palmitic acid; (B,H) ascr#3; (C,I) oscr#10; (D,J) (R)-8-hydroxynonanoic acid; (E,K) (R, E)-8-hydroxynon-2-enoic acid; (F,L)

9-hydroxynonanoic acid. Pry1 binds palmitic acid and free hydroxylated nanonoic acids with similar affinities but binds neither the ascarosides ascr#3 and oscr#10.

Na-ASP-2 binds palmitic acid, ascr#3 and free hydroxylated nanonoic acids with similar affinities but not oscr#10. The Kd values are indicated in each figure with N/A

(not applicable) where there is no binding. Data represent mean ± SD of three independent experiments.

some of these proteins bind host and parasite small molecules
and proteins offers insights into host-parasite interactions.
Understanding how Na-ASP-2 interacts with host and parasite

molecules is also important because recombinant Na-ASP-2
remains an interesting hookworm vaccine candidate, especially
when modified to decrease its allergenicity or used as a
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FIGURE 6 | Comparison of fatty acid binding cavities of Na-ASP-2 and Pry1. (A) Structure based alignment of Na-ASP-2, Pry1, and three N. brasilensis SCP/TAPs

proteins (genbank codes VDL79275.1; VDL83979.1; and VDL79274.1). The sequences are aligned with ClustalW Omega and the secondary structural features are

illustrated with the coordinates of Hp-VAL-4 and Pry1 using ESPript (Gouet et al., 2003). The alpha helices (alpha 1 and alpha 3) that form the palmitate-binding cavity

have similar lengths for Na-ASP-2 and the N. brasilensis proteins whereas Pry1 has shorter helices. The secondary structure elements shown are alpha helices (α),

310-helices (h), beta strands (β), and beta turns (TT). Identical residues are shown in solid red, and conserved residues are in red. The locations of the cysteine

residues involved in disulfide bonds are numbered in green. (B) Both of the helices (α1 and α3) forming the palmitic acid binding cavity of Pry1 (cyan) are shorter than

those from Na-ASP-2 (gray). Also shown in magenta is the stick structure of palmitate superposed from the X-ray structure of the complex of tablysin-15 with

palmitate (Ma et al., 2011).

pediatric vaccine before the development of anti-hookworm IgE
(Zhan et al., 2012).

CONCLUSIONS

In summary, our results reveal that the fatty acid moieties of
ascarosides, ascr#3 and oscr#10 bind Na-ASP-2 and Pry1,
with the latter SCP/TAPS protein from Saccharomyces
cerevisiae serving as a control. As shown by the palmitic
acid competition assay, binding is through the fatty acid
binding cavity. Additionally, ascr#3 an ascaroside that is
present in mammalian hookworm E-S products binds to
Na-ASP-2. Oscr#10 which is not found in hookworm E-S
products does not bind to Na-ASP-2. Neither ascr#3 nor
oscr#10 bind Pry1. Future studies will identify how ascarosides
precisely interact with parasite SCP/TAPS protein and determine
the physiological relevance of the fatty acid-binding cavity
of Na-ASP-2.
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