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The intracellular delivery of emerging biomacromolecular therapeutics, such as genes,

peptides, and proteins, remains a great challenge. Unlike small hydrophobic drugs, these

biotherapeutics are impermeable to the cell membrane, thus relying on the endocytic

pathways for cell entry. After endocytosis, they are entrapped in the endosomes

and finally degraded in lysosomes. To overcome these barriers, many carriers have

been developed to facilitate the endosomal escape of these biomacromolecules.

This mini-review focuses on the development of anionic pH-responsive amphiphilic

carboxylate polymers for endosomal escape applications, including the design and

synthesis of these polymers, the mechanistic insights of their endosomal escape

capability, the challenges in the field, and future opportunities.
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INTRODUCTION

Most successfully developed biotherapeutics up to date only target extracellular receptors, because
the intracellular delivery of biomacromolecules remains a key challenge (Stewart et al., 2018;
van Haasteren et al., 2020). Such challenge resides in the natural barrier of plasma membranes,
composed of a lipid bilayer and membrane proteins. The permeability of the plasma membrane
is specifically selective. Therefore, biomacromolecular therapeutics, such as proteins, peptides, and
genes, are blocked from free movement across the plasma membrane (Pei and Buyanova, 2019).
Instead, these biomacromolecules are mostly internalized by endocytosis. After internalization,
they are trapped in endosomes, and finally degraded within lysosomes. Thus, it is critical to develop
carriers to facilitate the endosomal escape and release the payloads in cytoplasm, to maximize their
therapeutic potential.

Polymer carriers for endosomal escape purposes have been developed for years. Specifically,
pH-responsive polymers have attracted significant attention (Cupic et al., 2019; Deirram et al.,
2019), because their endosomal escape property is activated by the pH differences between the
extracellular physiological environment (7.4) and the acidic endosomal environment (6.0–6.8
in early endosomes, 5.0–6.0 in late endosomes, and 4.5–5.0 in lysosomes)(Mukherjee et al.,
1997; Scott et al., 2014). According to the ionizable groups, there are two main pH-responsive
polymer categories: polycations and polyanions (Bazban-Shotorbani et al., 2017). Polycations have
weak basic functional groups, such as amines, imidazole, and pyridine, which become positively
charged when the pH drop below their pKa. These polymers [i.e., polyethylenimine, poly(L-lysine),
poly(amino ester), poly(2-(dimethylamino)ethyl methacrylate), and polyamidoamine] can
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buffer the endosomal acidification by protonation, and cause
osmotic swelling of endosomes, finally leading to endosomal
rupture. The polycation induced “proton sponge” effect has
long been studied, and reviewed recently (Bus et al., 2018;
Vermeulen et al., 2018). In addition to the endosomal
escape properties, polycations condensate genes by electrostatic
interactions effectively, and thus are widely used for gene therapy
(Chen et al., 2019).

Polyanions use a different strategy for endosomal escape.
Typically, these polymers are negatively charged at physiological
pH. The negative charges make them repulsive to the negatively
charged plasma membranes and show non-membrane lytic
property (Figure 1A). However, when pH drops below their
pKa in the endosomes, they lose the charge and become
hydrophobic. The pH-induced alterations in the overall charges,
amphiphilicity, and conformation lead to enhanced interaction
with endosomal membranes and finally cause membrane
disruption to release the payload into the cytoplasm (Figure 1A).
Compared with polycationic polymeric carriers, anionic pH-
responsive membrane permeabilizing polymers are less toxic,
because of the repulsive charges against plasma membranes

FIGURE 1 | (A) The scheme of pH-responsive membrane permeabilizing polymers and how they facilitate endosomal escape. Created by Biorender.com (B) The

general design of carboxylated polyanions for endosomal escape applications. (C) Chronological development of carboxylated polymers for endosomal escape

applications. The time plotted indicated the first application for pH-dependent membrane permeabilization, instead of the first reported synthesis of the polymer.

(Wang, 2018; Evans et al., 2019). Albeit less renowned, recent
studies show their emerging potentials for proteins, genes, and
vaccine delivery (Mukalel et al., 2018; Qiu et al., 2018; Evans et al.,
2019; Jacobson et al., 2019; Kopytynski et al., 2020).

Herein, this mini-review introduces the development of
polyanions with carboxylic acid pendant groups for endosomal
escape applications. These polymers usually have two units to
fulfill their function, carboxylic acid unit and hydrophobic unit
(Figure 1B). The carboxylic acid unit is for pH-responsiveness,
and the hydrophobic unit is for enhancing the interaction
with lipid membranes. These two units could be integrated in
one monomer (homopolymer), or distributed on two different
monomers (copolymer) (Figure 1B). Notable examples of
homopolymers include poly(ethylacrylic acid) (PEAA) and
poly(propylacrylic acid) (PPAA) (Figure 1C), which have been
developed for two decades for gene and protein delivery.
Copolymers could be developed by copolymerization of
methacrylic acid (MAA) or acrylic acid (AA) as the carboxylic
acid unit, and hydrophobic methacrylates (Figure 1C).
Alternatively, copolymers with different backbones, such
as polypeptides and pseudopeptides, could be developed
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by post-polymerization modification of hydrophobic units
(Figure 1C). In the following sections, the endosomal escape
capability of these polymers and their functionalized derivatives
in drug delivery applications are analyzed. Finally, the current
challenges of pH-responsive endosomal escape polyanions
development are discussed, as well as the future opportunities to
be exploited.

AMPHIPHILIC CARBOXYLATE POLYMERS:
HISTORY AND RECENT DEVELOPMENT

PEAA, PPAA, and Their Derivatives
Amphiphilic carboxylate polymers were first found to have pH-
dependent membrane permeabilizing capability on liposomal
membranes made of egg phosphatidylcholine (PC) lipids in the
1980s (Seki and Tirrell, 1984). This effect was initially studied
using PEAA, which showed significant membrane disruptive
activity at its pKa (6.5), without disrupting the membrane at
physiological pH (Thomas and Tirrell, 1992). The membrane
disruption was attributed to the pH-dependent coil-to-globule
conformational transition, evidenced by hydrodynamic size
variation and the desolvation of a hydrophobic fluorescent
probe pyrene (Eum et al., 1989). The uncharged polymer with
globule conformation could associate with the lipid membrane
and even lysed the membrane completely at high polymer/lipid
ratios (Thomas et al., 1994). Although these early studies
based on PEAA interaction with liposomes did not explore the
pH-dependent membrane permeabilizing effects on mammalian
cells for intracellular delivery purposes, such findings and
the coil-to-globule conformational transition mechanism
laid the foundation of membrane permeabilizing polyanions.
Furthermore, the research methods used by Tirrell et al. (such
as pyrene fluorescent probes, interactions with model liposomal
membranes, etc.) to evaluate the polymer conformation, critical
pH, and to quantify membrane permeability, have been widely
adopted in the following studies within the field.

PPAA (or PPAAc in some literature) has been developed in
the late 1990s (Murthy et al., 1999). Compared with PEAA, PPAA
has a slightly longer pendant alkyl group on the monomer, which
makes it more hydrophobic (Figure 1C). Murthy et al. used red
blood cells, instead of simple liposomes, to evaluate the pH-
dependent membrane permeability of PPAA. Compared with
liposomalmembranemodels, red blood cell membranes aremore
complicated, composed of not only lipids but also proteins and
polysaccharides. The hemolytic activity, thus, was considered to
better reflect the permeabilization capability toward biological
membranes (Evans et al., 2013). PPAA showed higher hemolytic
activity at acidic pH than PEAA without hemolytic activity at
physiological pH at equivalent concentrations. It was speculated
that PPAA could form pores on red blood cell membranes only at
acidic pH which caused hemolysis (Murthy et al., 1999).

PPAA has been explored on mammalian cells, to enhance
the gene transfection efficiency and to enhance the stability of
cationic lipid gene vectors in serum (Cheung et al., 2001). The
conjugation of PPAA on proteins, peptides, or antibodies by
biotin-streptavidin ligation facilitated the intracellular delivery

of these macromolecular cargos into the cytoplasm (Lackey
et al., 2002; Albarran et al., 2011; Berguig et al., 2012). Other
than chemical ligation, PPAA could form nano-polyplex by
simply mixing with positively charged peptide cargos in PBS
buffer (Evans et al., 2015a; Qiu et al., 2018). This approach was
applicable to larger cationic cargos, including nucleic acids, gene
editing ribonucleoproteins, and even nanoparticles (Evans et al.,
2019). PPAA could also be formulated as polymer blends with
poly(lactic-co-glycolic acid) (PLGA), to deliver antigens for T cell
activation (Yang et al., 2017; Fernando et al., 2018). A detailed
summary of PPAA related bioapplications is listed in Table 1.

The mechanism of PPAA mediated endosomal escape
is closely associated with endosomal acidification since the
escape process was prone to H+-ATPase inhibition on the
endosomal membrane (Jones et al., 2003; Evans et al., 2015a).
Without endosomal acidification, the carboxylic acid groups
of PPAA kept deprotonated, making the polymer negatively
charged and non-lytic to endosomal membranes. This means
the endosomal escape property of PPAA is dependent on
the pH-induced membrane permeabilization. Further studies
by real-time imaging showed the intracellular delivery was
correlated with galectin-8 (Gal8) recruitment, which confirms
endosomal membrane damage by PPAA (Kilchrist et al., 2016).
The damaged endosomes were subsequently autophaged by
a “self-repaired” mechanism to avoid cell death caused by
accidental endosomolytic reagents (Skowyra et al., 2018). This
Gal8-mediated endosomal autophage suggests although PPAA
caused damage to endosomal membranes to release the cargos
intracellularly, the damage could be repaired by cells using an
existing toolset.

PPAA functional derivatives, either by co-polymerization with
other monomers or by changing the polymer architecture via
end-to-end chemical ligations, have been widely reported for
different intracellular delivery applications (Table 1). One of the
most studied PPAA derivatives is the co-polymer of propylacrylic
acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and
butyl methacrylate (BMA). DMAEMA has a tertiary amine
group, which is cationic at physiological pH (Agarwal et al.,
2012). Therefore, it allows for binding with negatively charged
DNA or RNA by electrostatic interaction. BMA has a butyl
pendent group, which could enhance the hydrophobicity and
membrane permeabilization capability at acidic pH (El-Sayed
et al., 2005). A systematic investigation of the ratio of BMA in
the final polymer suggested BMA-rich polymer not only showed
higher hemolytic activity at pH 5.8 but also elevated the gene
delivery efficiency (Convertine et al., 2009). Further studies used
DMAEMA and BMA copolymerized PAA for vaccine deliveries,
by covalently conjugating antigen on a thiol-reactive pyridyl
disulfide monomer (PDSEMA) (Wilson et al., 2013; Knight et al.,
2019). Even without adjuvant, this carrier can promote antigen
presenting on dendritic cells, and enhanced antigen-specific
cytotoxic T cell responses (Keller et al., 2014).

Another common type of derivatives involves the
incorporation of hydrophilic blocks in the copolymer,
such as poly(N-(2-hydroxypropyl) methacrylamide)
(HPMA), polyethylene glycol (PEG also named as PEO),
or poly(oxyalkylene amine) (Jeffamine). The PEG block could
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TABLE 1 | Bioapplications of PPAA and its derivatives.

Polymer Therapeutic payloads Loading method Bioapplications References

PPAA DNA plasmids, antisense DNA Mixture with cationic lipids

via electrostatic interaction

Gene transfection in vitro

and in vivo

Cheung et al., 2001;

Kyriakides et al., 2002;

Jones et al., 2003; Lee

et al., 2006

PPAA Antibodies and peptides Chemical ligation via

biotin-streptavidin

Protein and peptide

intracellular delivery in vitro

Lackey et al., 2002;

Albarran et al., 2011;

Berguig et al., 2012

PPAA Cationic MAPKAP kinase 2

inhibitor peptide

Electrostatic interaction Inhibit pathological

vasoconstriction in vitro and

in vivo

Evans et al., 2015a,b

PPAA Peptide antigens with

oligolysine tails

Electrostatic interaction Induce cellular immunity as

cancer vaccines in vivo

Qiu et al., 2018

PPAA Ovalbumin Blend with PLGA, double

emulsion

Induce cellular immunity in

vitro

Yang et al., 2017

PPAA Cationic peptides,

recombinant proteins,

morpholinos, and

nanoparticles

Electrostatic interaction Intracellular delivery in vitro Evans et al., 2019

Co-polymer of PAA, BMA,

DMAEMA

siRNA Electrostatic interaction Gene knockdown in vitro Convertine et al., 2009,

2010; Palanca-Wessels

et al., 2011

Co-polymer of PAA, BMA,

DMAEMA

Ovalbumin Blend with PLGA, double

emulsion

Induce humoral and cellular

immunity in vivo

Tran et al., 2014; Zhan and

Shen, 2015

Co-polymer of PAA, and

PDSEMA

Ovalbumin Disulfide linkage with

PDSEMA

Induce humoral and cellular

immunity in vivo

Foster et al., 2010

Co-polymer of PAA, BMA,

PDSEMA, HPMA

siRNA or ovalbumin Disulfide linkage with

PDSEMA

Gene knockdown or induce

cellular immunity in vivo

Lundy et al., 2013; Keller

et al., 2014

Co-polymer of PAA, BMA,

PDSEMA, DMAEMA

CpG oligonucleotide (ODN) as

adjuvants and ovalbumin

CpG ODN via electrostatic

interaction and ovalbumin

via disulfide linkage

Induce humoral and cellular

immunity in vivo

Wilson et al., 2013; Knight

et al., 2019

PEG or Jeffamine

conjungated PPAA

ODNs Mixture with cationic lipids

via electrostatic interaction

Gene knockdown in vitro

and in vivo

Peddada et al., 2009, 2014

enhance polymer solubility by forming micelles and increase the
resistance to serum proteins (Peddada et al., 2014; Porfiryeva
et al., 2020). However, both PEG and Jeffamine conjugated PPAA
showed reduced the pH-dependent membrane-lytic activity
(Peddada et al., 2009). This means the endosomal membrane
disruption of these PEG and Jeffamine modified derivative
polymers is less than PPAA itself. In the in vivo study, Jeffamine
conjugated PPAA showed better overall gene delivery efficiency
than PPAA, probably due to the enhanced serum stability
(Peddada et al., 2014). These results suggest that selecting the
polymer with the best endosomal escape capability does not
always end up with the most optimal delivery performance
in vivo. Instead, balancing the endosomal escape and serum
stability in the PPAA derivative polymer is important to the
delivery system.

Besides linear PPAA, hyperbranched and brush-like PPAA
derivatives have been developed to study the effect of polymer
architecture on pH-dependent membrane permeabilizing
activity. Introducing multivinyl branching monomer
poly(ethylene glycol diacrylate) in the polymerization with
PAA monomer generated hyperbranched PPAA, which showed
lower hemolytic activity than linear PPAA at endosomal

pH conditions (Tai et al., 2012). This is probably due to the
limitation of conformational changes from the branching points,
which weakened the membrane interaction. Brush-like PPAA,
synthesized by a “graft-to” strategy after polymerization by click
chemistry, showed similar pH-dependent hemolytic activity at
the same mass concentration (Crownover et al., 2011).

Copolymers of MAA or AA With
Hydrophobic Moieties
Similar to PPAA, the amphiphilic copolymers of MAA (or
AA) with hydrophobic methacrylates have the coil-to-globule
conformational transition, when the pH decreases from neutral
to acidic ranges (Kusonwiriyawong et al., 2003; Yessine et al.,
2003). These polymers have pH-responsive carboxylate pendant
groups from MAA, and hydrophobicity from non-ionizable
methacrylates, such as BMA, dodecyl methacrylate (DMA),
lauryl methacrylate (LMA), and cholesteryl methacrylate (CMA).
Previous studies found that incorporating a small portion of
hydrophobic monomers (i.e., 1% DMA, 2% CMA or 10% LMA)
in PMAA copolymers could enhance the interaction with lipid
membranes significantly, compared with PMAA homopolymer
(Cho et al., 2016; Sevimli et al., 2017; Wannasarit et al., 2019).
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However, a further increase of the hydrophobic moieties (i.e.,
8% CMA and 40% LMA) in the copolymer led to decreased
solubility and enhanced supermolecular assembly in aqueous
solutions, which in turn decreased the interaction between
polymer and lipid membranes (Sevimli et al., 2012; Wannasarit
et al., 2019). Therefore, it is critical to find the balance between
the hydrophobic and hydrophilic monomers in the copolymer,
to maximize the membrane association.

Regarding the applications of these MAA or AA-containing
amphiphilic copolymers, a common approach is to decorate
these polymers on the surface of liposomes and boost the
delivery efficiency by enhancing the endosomal escape (Yessine
et al., 2006; Yamazaki et al., 2017). Due to the anionic nature
of these polymers, it is difficult to condensate DNA or RNA
directly, but adding a cationic polymer in the formulation such
as polylysine solves the problem by forming tertiary polyplexes
via electrostatic interactions (Sevimli et al., 2013). A recent study
indicated that these polymers can modify cell membranes by
hydrophobic interactions and facilitate the delivery of cationic
peptides (Dailing et al., 2020).

Amphiphilic Carboxylated Polypeptides
and Pseudopeptides
Apart from acrylic and acrylate polymers, there are also
amphiphilic carboxylated polypeptides reported for pH-
responsive membrane permeabilizing applications. These
polypeptides are considered to be more biocompatible and
biodegradable than their vinyl polymer counterparts (Akagi
et al., 2006; Liu et al., 2019). A systematically investigated
example is poly(γ-glutamic acid) (γPGA) and its derivatives
grafted by different amino acids as pedant groups (Shima
et al., 2014a). The protonation/deprotonation of glutamic
acid units of PGA enabled the pH-dependent conformation
changes, while the hydrophobic amino acids (e.g., leucine,
methionine, phenylalanine, valine, and tryptophan) enhanced
the hydrophobicity and interaction with membranes. Unlike
PPAA, γPGA with sufficient hydrophobic amino acid group
grafting (53% phenylalanine, 71% tryptophan, and 87% leucine)
formed stable nanoparticle in PBS buffer, and the nanoparticles
maintained pH-responsive hemolytic activity similar to
polymers (Akagi et al., 2010; Shima et al., 2014a). Furthermore,
phenylalanine modified γPGA could encapsulate protein during
its self-assembly and delivered protein payload to antigen
presenting cells efficiently both in vitro and in vivo (Yoshikawa
et al., 2008; Akagi et al., 2011). As a natural polymer derived from
Bacillus, γPGA itself acted as an adjuvant for both innate and
adaptive immunity activation and showed promising potentials
for vaccine development (Uto et al., 2011). Interestingly, it was
found that both the hemolytic activity at endosomal pH, and
the activation potential of antigen presenting cells increased
proportionally to the hydrophobicity of the nanoparticles (Shima
et al., 2013, 2014b).

A similar series of studies, using amphiphilic synthetic
pseudopeptides namely poly (L-lysine isophthalamide) (PLP),
also confirm that pH-dependent membrane-permeabilizing
capability could be adjusted by grafting amino acids with

different hydrophobicity or alkyl chains (Eccleston et al., 2000;
Chen et al., 2009, 2017). Increasing the hydrophobicity moieties
or changing the polymer structure from linear to branched
could increase the interaction with lipid membranes (Wang
and Chen, 2017; Chen et al., 2020). Mechanistic insights
suggest that phenylalanine modified PLP induced red blood cell
membrane thinning of 35–40% normal thickness at endosomal
pH, thus facilitating the transport of membrane-impermeable
small molecular cargos (Lynch et al., 2011). Further real-time
imaging showed that even large molecules such as FITC-labeled
dextran of different molecular weights (10–500 kDa) and green
fluorescence protein could be delivered to different mammalian
cells after co-incubation with phenylalanine modified PLP at pH
6.5 (Kopytynski et al., 2020). Such a convenient and flexible
method provides a versatile platform for cell engineering ex vivo.

DISCUSSIONS AND FUTURE
OPPORTUNITIES

Since the pioneering studies of PEAA with artificial lipid
membranes, there have been almost 40 years of investigation
into amphiphilic carboxylate polymers for endosomal escape
applications. During these years, we have witnessed significant
achievements in polymer synthesis and functionalization, which
enables more control over the polymer structure. One of the
biggest achievements is the development of controlled radical
polymerization, especially reversible addition-fragmentation
chain transfer (RAFT) polymerization (Fairbanks et al., 2015;
Perrier, 2017). Because RAFT polymerization is compatible with
carboxylate monomers and suitable at various conditions (such
as in aqueous solutions or at ambient temperature), it has
been widely adopted in the amphiphilic carboxylate polymers
synthesis, including PPAA derivatives and copolymers of MAA
or AAmentioned in the previous section (Convertine et al., 2009;
Tai et al., 2012; Sevimli et al., 2013; Wannasarit et al., 2019;
Dailing et al., 2020; Wang et al., 2020).

Meanwhile, the mechanism of polymer-mediated endosomal
escape has been intensively explored, along with the advances
in the basic understanding of the endocytosis process itself
(Skowyra et al., 2018; Vermeulen et al., 2018; Brock et al., 2019;
Patel et al., 2019; Pei and Buyanova, 2019). Molecular dynamics
simulation and biophysical characterizations are commonly used
to provide mechanistic insights into the interaction between
polymers and artificial membranes at the molecular level
(Scoppola and Schneck, 2018; Sen et al., 2018), while live imaging
by fluorescence microscopy captures the endosomal escape on
mammalian cells (Deprey et al., 2019). The imaging gives a
direct visual presentation of the polymer and the endosomes
labeled by fluorescent probes with a temporal-spatial resolution.
Furthermore, incorporating different endocytosis inhibitors can
help to investigate which endocytosis pathway the polymers
utilize and whether endosomal acidification is required for the
escape (Guo et al., 2015).

Notwithstanding the great achievements in both polymer
synthesis tools and endosomal escape mechanism investigation,
many fundamental issues remain to be addressed in this field.
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For example, the fate of the amphiphilic carboxylate polymers
within the cells after the endosomal escape is rarely covered
in the previous publications. It is not known whether the
polymer carrier itself undergoes degradation in the cell, or
gets expelled from the cell somehow. This issue is critical
for biomedical applications, because of the long-term biosafety
concerns. Further investigations are expected to result in an
improved understanding of the degradative pathways of these
polymers within the cells.

In summary, carboxylated amphiphilic polymers with pH-
responsive endosomolytic activities demonstrate promising
potentials for the intracellular delivery of macromolecules. From
a retrospective view, this field has continuously progressed
with the application of new synthetic techniques, mechanistic
understanding of endocytic trafficking, and better methods
for endosomal escape characterization. Up to date, various
designs have been made to adapt these polymers for biomedical
applications, i.e., the delivery of antigens, genes, and therapeutic
peptides. Nevertheless, it is still early to expect clinical
translations, due to the lack of biodegradability and long-
term biosafety concerns. It would require joint efforts from
polymer chemists, biologists, and pharmaceutical scientists to

understand how polymers interact with endosomal membranes
at the molecular level; how the endosomal escape happens at
the cellular level; and finally the delivery in the complicated in
vivo environment.
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