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Biological membranes are barriers to polar molecules, so membrane embedded proteins
control the transfers between cellular compartments. Protein controlled transport moves
substrates and activates cellular signaling cascades. In addition, the electrochemical
gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of
stored cellular energy. This is generated by electron, proton and ion transfers through
proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the
mechanisms by which protons move into the buried active sites of Photosystem II (PSII),
bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I
and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton
transfer paths. The proton pumps, that move protons uphill from low to high concentration
compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload
protons and gates, which block backflow of protons. PLS and gates should be
synchronized so PLS proton affinity is high when the gate opens to the side with few
protons and low when the path is open to the high concentration side. Proton transfer
paths in the proteins we describe have different design features. Linear paths are seen with
a unique entry and exit and a relatively straight path between them. Alternatively, paths can
be complex with a tangle of possible routes. Likewise, PLS can be a single residue that
changes protonation state or a cluster of residues with multiple charge and tautomer
states.

Keywords: proton transfer pathways, bacteriorhodopsin, photosystem II, bacterial reaction center, complex I,
cytochrome c oxidase, Grotthuss mechanism

INTRODUCTION

Protons serve as substrate or product in many chemical and biological reactions. In proteins, protons
often travel 10 Å or more from the surface to reach an active site. Proton gradients across the
membranes of bacteria, mitochondria and chloroplasts contribute to the electrochemical
gradients, ΔΨ, used to store cellular energy (Mitchell, 1961; Rich, 2008; Nicholls, 2010;
Gunner et al., 2013). The proton gradient can be generated by vectorial electron transfer,
where reactants are oxidized and reduced on different sides of the membrane. Here the
electrons cross the membrane, but the protons only move to or from the separated redox
sites. In contrast, proton pumps transfer protons through the transmembrane proteins,
requiring mechanisms to avoid downhill proton transfer.
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Regardless of the mechanism a protein uses, it takes energy to
build a proton gradient. The input energy is light in
photosynthetic proteins (Cardona et al., 2012; Ge and Gunner,
2016; Cardona and Rutherford, 2019), redox reactions in the
electron transfer chain (Kaila and Hummer, 2011), ATP
hydrolysis (Vasanthakumar and Rubinstein, 2020) or the
dissipation of the gradient of another ion (Fowler et al., 2015;
Brandt, 2019). The protons flow down the electrochemical
gradient then fuel processes such as ATP synthesis in F1/F0
ATPase (Walker et al., 1991; Futai et al., 2012; Yanagisawa
and Frasch, 2017) and the active transport of ions and
metabolites (Accardi and Picollo, 2010; Gunner et al., 2013).

To build the gradient, protons are transferred from the more
negative, N-side of the membrane, where they are at lower
concentration (higher pH) to the positive, P-side where they
are at higher concentration (lower pH). The P-side is in the
periplasm of bacteria, the outer membrane space of mitochondria
and in the lumen on the inside of the chloroplast thylakoid
membrane. The N-side is toward the bacterial cytoplasm, the
mitochondrial matrix and the chloroplast stroma. The
electrochemical gradient, ΔΨ, is made up of the gradient of
protons (the ΔpH) but also has contributions from other ions,
adding to a voltage change, ΔV, across the membrane (Decoursey,
2003). The ΔΨ across a given membrane determines the energy
needed to push a proton uphill in the protein pumps described
here or the energy liberated when protons run from P- to N-side
as used for ATP synthesis.

Although we refer to “protons”, H+ does not travel alone.
Rather it is associated with a water (hydronium, H3O

+) or two
water molecules as a Zundel cation (H5O2

+) or as a larger, Eigen
complex (H9O4

+) (Agmon, 1995; Wraight, 2006; Farahvash and
Stuchebrukhov, 2018). In proteins, the proton can also be bound
to redox cofactors, to acidic or basic residues or trapped as a
stabilized hydronium (Xu and Voth, 2006; Freier et al., 2011;
Ikeda et al., 2017).

Protons move through a chain of oriented molecules by a
Grotthuss proton transfer mechanism (Agmon, 1995;
Cukierman, 2006; de Grotthuss, 2006; DeCoursey and Hosler,
2014). An active group in the middle of the chain is: 1) a hydrogen
bond donor to the next group in the direction of proton transfer
and 2) has a lone pair of electrons that is a hydrogen bond
acceptor from the neighbor toward the proton input side. In the
Grotthuss mechanism no proton moves more than one bond, as
the proton acceptor takes ownership from the neighboring
proton donor. However, overall the coupled transfers lead to a
proton rapidly leaving the input side and appearing at the end of
the chain. There are many reviews of the chemistry of proton
transfer reactions as well as of proton transfer reactions in
proteins (Hammes-Schiffer, 2001; Pomès and Roux, 2002;
Blomberg and Siegbahn, 2006; Swanson et al., 2007; Knight
and Voth, 2012; Ishikita and Saito, 2014; Miyake and Rolandi,
2015; Wikström et al., 2015; Sakashita et al., 2020).

Two requirements create barriers for Grotthuss proton
transfers. First, the chain of hydrogen bonds between proton
donors and acceptors needs to be pre-organized. Then, once the
proton has transferred, the hydrogen bonds are arranged to
return the proton back to the origin, not to move another

proton in the same direction. The hydrogen bonded chain
needs to fully reorient for the next proton to transfer, so
overall proton flux is limited by this slow “hop and turn”
process (Nagle and Morowitz, 1978).

Vectorial proton coupled electron transfer. Proteins such as
PSII, cytochromes bc1 and b6f use vectorial electron transfer
reactions where oxidation and reduction reactions are spatially
separated to add to the proton gradient. Thus, oxidation occurs
on the P-side, where protons are released because the loss of an
electron lowers the oxidized product pKa below the pH of the
nearby compartment. Reduction occurs on the N-side, where
reduction shifts the product pKa to be higher than the
compartment pH (Rich, 2008; Nicholls, 2010; Gunner et al.,
2013; Gunner and Koder, 2017). Within the protein, a
sequence of electron tunneling reactions pass the electrons
30 Å or more between the terminal electron donor and
acceptor (Gray and Winkler, 2003; Moser et al., 2006). The
interior electron transfer reactions are not coupled to gain or
loss of protons. Thus, a proton gradient is generated without
moving protons through the membrane by a redox loop
mechanism as suggested by Mitchell (Mitchell, 1977). The
intra-membrane, middle of these proteins are mostly non-
polar side chains with few associated water molecules, so
discourage proton transfer. However, as will be seen in the
discussion of PSII and bRCs, the sites of final, proton coupled
oxidation or reduction can be 10 Å or more from the surface,
requiring long-range proton transfer to move the protons to the
active site.

Proton pumps. The proton pumps include the well-studied,
light-driven Bacteriorhodopsin (Balashov, 2000; Luecke, 2000),
Complex I (Mathiesen and Hägerhäll, 2002; Hirst, 2013; Sazanov,
2014) and the heme copper oxidase (HuCuOx) family (Kaila
et al., 2010; Lee and Ädelroth, 2013). To ensure protons move in
the correct direction pumps require three elements. These are
proton transfer paths, as found in vectorial electron transfer
proteins. However, pumps need Proton Loading Sites, PLS,
placed along the proton transfer path, and gates. PLS
transiently change their proton affinity to load a proton when
the gate is open to the N-side and releases it when it is open to the
P-side. Pathway gating and proton loading must be synchronized
to guard against energy dissipating proton transfer from P- to
N-side.

This review will compare and contrast the residues that make
up the proton transfer elements in three light activated proteins:
Bacteriorhodopsin (bR) and the photosynthetic proteins,
Photosystem II (PSII) and the purple non-sulfur
photosynthetic bacterial reactions centers (bRCs) and in the
proton pumps Complex I and Cytochrome c oxidase, which
are the first and last protein in the erobic electron transfer chain.

Overview of Proton Transfer Paths
The role of the different residues in proton transfer paths. The
review will describe the residues found along proton transfer
paths. Water is the quintessential Grotthuss competent molecule
so water filled channels through protein structures often trace the
proton transfer paths. However, some side chains can be a part of
a proton transfer chain. Hydroxyl residues are well established in
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proton transfer paths, such as in Green Fluorescent Protein, GFP,
which has a Ser on the short proton transfer path (Brejc et al.,
1997; Donati et al., 2018). A neutral His has a proton on Nε with a
lone pair on Nδ (or the proton/lone pair swap positions). It can
accept a proton from one side of the imidazole and donate a
proton from the other side. His plays this role in proton transfer
in the M2 proton channel (Wang et al., 1995) and in carbonic
anhydrase (Tu et al., 1989). Histidine analogs have been used in
synthetic electron coupled proton transfer chains that lead to the
Grotthuss transfer of a proton over long distances (Odella et al.,
2018; Odella et al., 2019). Ionized side chains cannot be both a
hydrogen bond donor and acceptor as required for Grotthuss
proton transfer (Ge and Gunner, 2016; Lazaridis and Hummer,
2017; Duster and Lin, 2019). Thus, deprotonated Asp- and Glu-

are hydrogen bond acceptors but have no proton to donate, while
protonated His+, Lys+ or Arg+ have no lone pairs to accept a
proton. This review will show examples where acidic and basic
residues are found as PLS in the proton transfer chain, serving as
meta-stable intermediates that can cycle between loaded
(protonated) and unloaded states. Polar residues such as Asn,
Gln and Trp are found to anchor the hydrogen bond chain, but
are unlikely be active elements in Grotthuss proton transfer
chains (Hammes-Schiffer, 2001; Goings et al., 2020), while
non-polar residue are insulators stopping water penetration
and proton leaks.

Linear vs. complex proton transfer paths. As proton transfers
have been investigated in different proteins, we have found they
can take place via linear or complex paths. Linear paths, as
defined here, have a single entry and exit and a well-defined
road between them. There are limited branches, which never
deviate far from the main path. Linear paths can often be
identified in a protein structure that includes well resolved
water molecules (Sharpe and Ferguson-Miller, 2008; Sazanov,
2015). Mutation of a single entry or exit residue can block proton
transfer.

However, representative structures will be shown to reveal
interior regions with tangled webs of polar and protonatable
groups and many water molecules (Krammer et al., 2009; Cai
et al., 2020; Khaniya et al., 2020). These complex proton transfer
paths provide multiple choices for protons to follow. Here
mutations of individual residue may lead to partial loss of
activity, generating ambiguous results that neither fully
confirm nor deny their role. The proteins reviewed here use
linear and complex paths in different regions of the overall
transfer of protons through the membrane.

Proton Loading Sites
Type of Residues That Can Serve as PLS
A successful pump takes a proton through the protein from the
N-side to the P-side, even though it is thermodynamically
unfavorable. A PLS must transiently hold protons with gates
open to the N-side and to be released to the P-side, synchronized
with a turnover time of microseconds to milliseconds (Balashov,
2000; Kaila et al., 2010). The PLS is thus a residue or cluster of
residues whose proton affinity changes dramatically between
different reaction intermediates (Supplementary Material S2).
The carboxylic acids, Asp, Glu and heme propionic acids are the

most common PLS components in the proteins described here.
They are found as single site PLS as well as PLS clusters. His and
Lys are more often found coupled to acidic residues in clusters.
H3O

+, trapped between several acidic residues has been suggested
to be part of PLS clusters (Freier et al., 2011; Kovalevsky et al.,
2011; Supekar et al., 2016). However, the pKa for Arg

+ to lose a
proton is as high as that of water or a hydroxyl side chain (Fitch
et al., 2015). Thus, the protonated Arg can help stabilize the
negative charge but is unlikely to lose a proton in a PLS.

PLS clusters. The PLS and complex proton transfer paths often
have regions with many interacting, buried ionizable and polar
residues (Lancaster et al., 1996; Kannt et al., 1998). For a PLS
cluster with n protonatable residues there are n+1 charge states
and 2n microstates, which identify the number and distribution of
protons (Gunner et al., 2020). The charge ranges from -Nacids (the
number of acids) (assuming all bases are neutral) to +Nbases

(number of bases) (assuming all acids are neutral). Tautomers are
protonation microstates with the same charge but different
proton locations. With m protons distributed over n binding
sites in a PLS there are:

n!
m!(n −m)! (1)

tautomers. The relative energies of the different tautomers
determine the proton positions within the loaded and
unloaded clusters. This review will describe examples of
mechanisms by which PLS can change their protein affinity to
load and unload protons.

FIGURE 1 | Residues are prearranged for Grotthuss proton transfer in
GFP. Blue thick arrows show direction of proton transfer from chromophore
(CRO) to E222 via water (W316) and S205. The surrounding H148 and N146
can help to anchor the active proton transfer path. The coordinates for
Equorea victoria GFP are from PDB ID: 1EMA (Ormö et al., 1996).
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MODEL SYSTEMS

Green Fluorescent Protein (GFP). GFP provides a simple example
of the role of side chains in and around the proton transfer path
(Figure 1). It also shows how fast protons can transfer via a pre-
organized Grotthuss competent chain (Brejc et al., 1997; Zimmer,
2009; Donati et al., 2018). GFP is well studied as it has
revolutionized cell biology. When introduced into a genome it
is co-expressed with a specific protein of interest and its
characteristic florescence allows the targeted protein to be
localized within a living cell. The chromophore in GFP is a
photoacid that absorbs light in the near UV and emits in the green
(Zhou and Han, 2018). The large Stokes shift results from the
ground state absorption and excited state emission occurring
from molecules with different charges. Thus, in the ground state
the chromophore is the PLS, while Glu 222 is the proton acceptor
when the chromophore proton affinity is diminished by
excitation. In this system the path for rapid proton release
must be ready to carry the proton away prior to relaxation of
the chromophore (Chattoraj et al., 1996).

The proton is transferred through bound water and Ser 205 to
Glu 222. A nearby His 148, Thr 203 and Asn 146 are on the
outskirts of the proton transfer wire (Stoner-Ma et al., 2005; Di
Donato et al., 2011). These provide a polar residue fence to pre-
orient the hydrogen bond network. As the protein is light
activated experiments can synchronize the protein for kinetic
measurements to follow changes in the hydrogen bonding
network. The proton arrives on the Glu in less than 10 ps
(Donati et al., 2018). Vibrational spectroscopy shows that
there are rapid changes in hydrogen bond orientation that
precede proton transfer, presumably to fine tune the hydrogen
bond connections for Grotthuss proton transfer. The kinetic
transients are distinguished as rearrangements, which do not
have a kinetic isotope effect, and proton transfers, which do (Di
Donato et al., 2011).

Gramicidin (gA). The gA channel is a proton and cation
conducting channel that has been used to study proton
transfer through a linear water wire, with no intervening side
chains. gA is made of two short ß-strand peptides, capped on N-
and C-terminal ends. The N-termini meet in the center of the
membrane. In the ß-helix the side chains are to the outside, with
sufficient space to hold a linear chain of ≈8 water molecules in the
middle of the helix. gA is an antibiotic, allowing protons and
other cations to cross, depolarizing the cell’s electrochemical
gradient (Kelkar and Chattopadhyay, 2007; Li et al., 2016).
The simplicity of this system has made it ideal for the
experimental (Dorman and Jordan, 2004; Ryu et al., 2015;
Paulino et al., 2020) and computational (Roux, 2002; Allen
et al., 2004; Till et al., 2008; Lazaridis and Hummer, 2017;
Zhang et al., 2020) studies of the Grotthuss proton transfer
mechanism.

The water molecules in gA form hydrogen bonds with the two
neighboring water molecules and with the amides of the
surrounding peptides. The balance of the water-water and
water-amide interactions determines the stability of the water
wire, the stability of an excess proton within the wire and the
barrier for flipping the wire orientation once a proton has

translocated to transport another proton via the hop and turn
mechanism. The rate determining step for transfer can be initially
orienting the water molecules or flipping the oriented water
dipoles to the correct direction (Pomès and Roux, 2002;
Agmon et al., 2016; Bozdaganyan et al., 2019).

Recent computer simulations showed a rather substantial
sensitivity of the water wire orientation to the force field and
simulation method (Zhang et al., 2020). In molecular dynamics
simulations, with a classical force field the water molecules are
fully aligned within the channel with rare flips from one
orientation to the other. In contrast, MD with a the Drude
polarizable force field shows more disorganized water
molecules. Monte Carlo sampling with a Continuum
Electrostatic force field also show relatively disorganized water
chain. Thus, the balance of the forces that determine the
orientation of the water molecules are such that different
simulation conditions induce different behavior.

Experiments have also supported a range of structures for
water in the channel. The experimentally derived rate of proton
translocation through the channel under a transmembrane

FIGURE 2 | Key residues for proton transfer in bacteriorhodopsin. Three
separated PLS are: the isolated D96; the central cluster D85, D212, and retinal
Schiff base (RSB); and the exit cluster E194 and E204. Movement of R82
stabilizes unloading the central or exit clusters. Blue thick arrows show
direction of proton transfer from N- to P-side by water mediated proton
transfer paths. The coordinates for Halobacterium salinarum bR are from PDB
ID: 5ZIM (Hasegawa et al., 2018).
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voltage gradient appears to be diffusion limited (≈2 × 109 s−1)
even at pH 0 (Cukierman, 2000; Decoursey, 2003). The
reorientation of the water chain is likely to be the rate
determining step in Grotthuss proton transfer (Pomès and
Roux, 1998). In the MD simulations with a classical force field
the water chain flips its direction at ≈4 × 108 s−1 and this process
is faster with the Drude force field. Thus, the simulations are in
general agreement with the measured rate of proton transfer.
However, recent solid-state NMR studies show a well-organized
water-wire with flip rates on the millisecond time scale, which
would suggest very slow turnover for proton transfers. The NMR
studies point to hydrogen bonds between water molecules and
amides near the first and last turns of each ß-helix leading to this
stability. Thus, despite the simplicity of its structure, gA remains a
protein where our understanding of the channel water structure
and the mechanism of proton transport remains incomplete.

BACTERIORHODOPSIN

bR is the simplest and best studied proton pump (Balashov, 2000;
Baudry et al., 2001; Gunner et al., 2006; Lanyi, 2006; Lórenz-
Fonfría et al., 2008; Clemens et al., 2011). The bacteriorhodopsin
family uses retinal not chlorophyll based photoactivation to fuel
proton or ion pumping (Figure 2). Absorption of a 568 nm
photon initiates a reaction cycle that removes a proton from the
cell interior (N-side) and releases one to the outside (P-side)
adding to the proton gradient. The overall reaction is simply:

H+
N−side + hv → H+

P−side

The proton transfers are driven by the light induced
conformational changes of the retinal from all trans to 13-cis,
which is coupled to small changes in the helical packing in the
protein core. There are three PLS in bR that illustrate different
mechanisms to control PLS protonation and the connection to
the proton transfer path.

Characterization of proton transfer intermediates. In light
activated proteins such as GFP, bR, PSII and bRCs
experiments can follow the sequential reaction mechanism
since the flash of light used to start the reaction synchronizes
the population. Time resolved visible and IR spectroscopy,
combined with site directed mutations allow assignment of
kinetic features to individual residues. bR intermediates were
identified with the proton resting on acidic amino acids making
up three well separated PLSs, each with metastable intermediates
with different ionization states (Balashov, 2000; Lórenz-Fonfría
and Kandori, 2009; Lórenz-Fonfría et al., 2011; Lórenz-Fonfría
and Heberle, 2014). These intermediates clearly demonstrate the
role of transient resting places for protons. Changes occur in
times ranging from the picosecond transitions that trap the
photon’s energy in the isomerized retinal to the milliseconds
required to complete the full photocycle.

In bR, it is possible to crystallize protein trapped in different
intermediates by a combination of mutation and temperature
changes (Edmonds and Luecke, 2004; Hirai et al., 2009;
Wickstrand et al., 2015). Simulations using these structures
have shown that the calculated equilibrium proton distribution

changes between intermediates as expected (Bashford and
Gerwert, 1992; Spassov et al., 2001; Onufriev et al., 2003; Song
et al., 2003; Song and Gunner, 2014). More recent time resolved
crystal structures have been obtained using X-ray free electron
lasers (XFEL) (Nogly et al., 2018; Wickstrand et al., 2019). These
structures show many of the motions of water molecules and side
chains and helices seen in earlier trapped structures. However, as
the XFEL structures are not in deeply trapped intermediates, the
dynamic structures provide additional information. However, as
the transitions between photocycle intermediates are not all well
separated in time, the XFEL structures each contain a mixture of
states.

bR Demonstrates the Character of Simple
and Cluster PLS
The central cluster tautomer shift. The central cluster consists of
three residues: the retinal Schiff base (RSB), Asp 85 and Asp 212,
which binds one proton on the RSB in the ground state (RSBH+:
Asp 85-: Asp 212-). Light absorption leads to isomerization of the
retinal, which rotates the RSB from facing the P-side to the
N-side, leaving the proton on Asp 85 (M state: RSB: Asp85H: Asp
212-). This transition demonstrates a feature of a cluster PLS, as it
moves between states with different proton distributions
(tautomers) while retaining the same number of protons. The
redistribution of the proton coupled to the retinal isomerization
serves as a gate as it changes the direction of proton access. Thus,
a proton will be passed from the trans-RSB to Asp85 toward the
P-side, while later a proton is bound to the 13-cis RSB from the
N-side (Bondar et al., 2007; Clemens et al., 2011; Wolter et al.,
2013). The retinal returns to the P-side facing trans isomer only
after it has bound the proton (Balashov, 2000).

A complex PLS can trap a proton on multiple sites. The
complex exit cluster PLS, with Glu 194 and 204, has multiple
tautomers for the proton loaded state. IR spectroscopy (Daldrop
et al., 2018) and simulations (Bashford and Gerwert, 1992;
Spassov et al., 2001; Phatak et al., 2008) support a protonated
water stabilized by the two anionic glutamic acids, while the
proton can also be trapped by a hydrogen bonded pair with one
acid protonated and a water nearby (Song et al., 2003; Phatak
et al., 2008). An advantage of using a cluster PLS is that it can use
the multiple ways to store the proton to be less sensitive to
mutation. If one of the Glu is mutated to an Asp the cluster is no
longer properly positioned to trap a hydronium so the water
cation IR signature is lost. The proton is now trapped on an acid,
thereby retaining PLS function (Balashov, 2000; Gerwert et al.,
2014).

An isolated acidic PLS requires hydration to lose its proton.Asp
96 on the N-side of bR plays a key role in proton transport (Miller
and Oesterhelt, 1990). Asp 96 is an isolated PLS, as it is not in a
cluster with other protonatable residues and has few hydrogen
bonding opportunities to residues beyond Thr46 in the
neighborhood. In the neutral, unloaded structure, there are
few nearby water molecules and the acid is very stable in its
neutral, loaded state (Gerwert et al., 2014; Wolf et al., 2014). A
combination of time resolved IR and MD simulations show that
isomerization of the retinal, 10 Å from Asp96, and the transfer of
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the proton from RSBH+ to the nearby Asp 85 leads to formation
of a linear water chain on the N-side (Freier et al., 2011). The
water molecules provide a proton transfer path, and also stabilize
the negative charge on Asp 96 so that it can release a proton to the
RSB near the end of the photocycle. Thus, a single site PLS cannot
change its proton affinity by small movements of the polar and
charged groups. Here flooding the site with water is required to
both stabilize the charged Asp- and to open the gate for proton
release by connecting it to the proton transfer path.

PHOTOSYSTEM II

PSII (Umena et al., 2011) is a multi-subunit protein pigment
complex present in the thylakoid membrane of plants and
cyanobacteria (Cox et al., 2013; Vinyard and Brudvig, 2017;
Pantazis, 2018). The reaction is initiated by chlorophyll
excitation with a 680 nm photon. Water is the primary
electron donor and plastoquinone, PQ, is the final electron
acceptor (Figure 3) (McEvoy and Brudvig, 2006). The overall
reaction is:

2H2O + 4hv + 2PQ + 4 H+
stroma → O2 + 2PQH2 + 4 H+

lumen

The Oxygen Evolving Complex (OEC), an inorganic
Mn4CaO5 cluster, catalyzes water oxidation following four
sequential oxidations of the cluster (through five S-states)
releasing O2 (Suga et al., 2019). The OEC is ≈20 Å from the

surface, requiring paths for water entry and O2 and proton
release. The region around the OEC is filled with water
molecules that separate into three discrete water-filled
channels moving to the lumen (Figures 4A,B) (Vassiliev et al.,
2012; Vogt et al., 2015). On the electron acceptor side, QB in PSII
is quite close to the stroma requiring only a short proton transfer
path to bring in protons (Saito et al., 2013).

Proton Paths to the P-Side Near the OEC in
PSII
Three water filled paths. Proton transfer paths combine Grotthuss
competent water molecules and residues with protonatable
groups to serve as transient proton loading sites. The proton
release paths in PSII are dominated by water molecules, requiring
minimal assistance from residues. There are three identified water
filled channels leading from the OEC to the lumen (Figure 4A)
(Vassiliev et al., 2012; Vogt et al., 2015). The narrow channel
originates from one side of the Mn4 water ligands and extends
through the PsbU/PsbO subunits (Figure 4B). The broad channel
originates from the other side of Mn4, extending to the PsbO
subunit, while the large channel originates from the OEC Ca
water ligands leading to the PsbV subunit (Vassiliev et al., 2012;
Vogt et al., 2015). These channels can provide paths for the
transfer of the four product protons and O2 to the lumen and
entry of the two substrate water molecules.

Which path does the proton take? With so many choices, an
open question is which channel is best suited for proton transfer
to the surface. Various simulation techniques have explored the
nature of the water channels. Molecular dynamics investigations
(Vassiliev et al., 2012) and quantum chemical studies (Retegan
et al., 2016) favored the narrow channel for substrate water
delivery. QM/MM studies (Saito et al., 2015) supported proton
transport through the narrow channel. Continuum electrostatics
calculations considered the proton affinity of residues lining the
broad channel, finding increasing proton affinity, lowering the
barrier for proton transfer, nearer the channel exit (Ishikita et al.,
2006). Steered MD calculations (Vassiliev et al., 2012) found the
large channel favorable for O2 transport and the narrow channel
for substrate water delivery. However, other experimental and
computational studies favored the large channel for proton
transport (Chrysina et al., 2011; Nakamura et al., 2014;
Sakamoto et al., 2017) or for substrate water delivery (McEvoy
and Brudvig, 2004; Isobe et al., 2015; Shoji et al., 2015; Ugur et al.,
2016; Kim and Debus, 2017). Thus, despite experimental and
computational studies, a consensus for the role of each channel is
yet to be established (Pantazis, 2018).

While earlier studies focused on individual linear paths,
network analysis provides a somewhat different view of the
connectivity of the water networks near the OEC (Kaur et al.,
2021). These studies indicate that beyond ≈10–12 Å from the
cofactor the three paths do become well separated as indicated by
inspection of the structures. However, closer to the OEC all water
molecules are highly interconnected. A proton from any of the
Mn terminal water ligands or any of the oxygens that bridge the
OEC Mn (except O2 and O3) can find its way to any of the three
channels (Figure 4B) (Kaur et al., 2021). Comparing the proton

FIGURE 3 | Cofactors in PSII: QA, QB are plastoquinones, Pheo is
Pheophytin; Chl is Chlorophyll. D1 and D2 are the protein subunit that binds
each cofactor. Red arrows show electron transfer from the OEC to QA and QB

while blue lines show proton uptake from the stroma to QB and release
from the OEC to the lumen. The coordinates for cyanobacteria
Thermosynechococcus vulcanus are obtained from PDB ID: 3ARC.
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affinity of H3O
+ placed on individual water molecules in the three

separated paths shows the broad channel as being more
hospitable to the positive charge as suggested earlier (Ishikita
et al., 2006; Bondar and Dau, 2012).

Mutations and time resolved IR difference spectroscopy support
a complex proton transfer path near the OEC. The question is how
to characterize a highly interconnected proton transfer path
dominated by water molecules. FTIR-difference spectra
followed through the cycle of reactions that lead to oxygen
evolution shows changes in an extensive hydrogen bonding

network around the cofactor. For example, FTIR-difference
spectra shows a carboxylate peak (near 1,747 cm−1) whose
proton affinity decreases in the step in the OEC oxidation
cycle where a proton is not released to the lumen (S1 to S2)
(Debus, 2015). This feature is lost when mutations are made of
residues separated by ≈20 Å including D1-Asp61Ala, D1-
Glu65Ala, D2-Glu312Ala, D1-Arg334Ala, D1-Glu329Gln
(Figure 4). Mutation of each of these residues disrupts the
hydrogen bond network and blocks or slows O2 evolution
(Service et al., 2010; Debus, 2014). All of these residues are
found in the network analysis that reveled the connections of
all water molecules near the OEC (Kaur et al., 2021).

PLS used for proton coupled electron transfer near the OEC.
PSII provides an example of the use of a PLS to stabilize the redox
reactions of an intermediate on a longer electron transfer chain.
Through the S-state cycle the redox active Tyr161, Yz, is the
electron donor to the oxidized chlorophyll, P680

•+. Yz
•+ is then

reduced by the OEC (Figure 5) (Lavergne and Junge, 1993). The
pKa of an oxidized Tyr is -2 (Tommos and Babcock, 2000), so
Yz

•+ will lose its proton. D1-His 190 serves as a PLS, trapping the
proton for the microseconds to several milliseconds that Yz is
oxidized (Figure 5) (Rappaport et al., 1994). This His has a low
enough proton affinity that it is neutral in the ground state, yet its
proton affinity is higher than the oxidized Yz

•. The protein must
block the proton from being lost to the lumen from the His. A
tight hydrogen bond between the Tyr and the His helps as does
the presence of polar, but non-proton conducting residues such
as D1-Asn 298 surrounding the pair (Saito et al., 2011). The
proton is shuttled between the Tyr cofactor and its adjacent PLS,
never moving in or out of the protein, while the electron is passed
from the OEC to P680 via YZ (Figure 5) (Saito et al., 2011; Ishikita
and Saito, 2014).

FIGURE 4 | (A,B). (A)Water channels around the Oxygen Evolving Complex (OEC) of PSII. Water spheres (red) and amino acid residues highlighting the directions
toward the large, broad and narrow channels (Vassiliev et al., 2012; Vogt et al., 2015). The notation for each residue is subunit-residue type, number. Residues in large
channel: YZ, D1-H190, N298, E329, D342 (OEC primary ligand), CP43-E413. Narrow channel: D1-S169, N338. Broad channel: D1-D61, E65, D2-E312. (B) Waters
extending from the OEC to the N-side lumen. Red spheres show highly interconnected water molecules extending ≈10 Å from the OEC. The structure then resolves
to form three separated water filled channels: large (orange), narrow (magenta) and broad (green). Large channel extends from O1 of OEC to PsbV, narrow channel
extends from O4 to PsbU/PsbO while broad channel extends from O5 to PsbO. See Supplementary Figure S1 for a more detailed view of the OEC. Coordinates from
one MD snapshot initiated from Thermosynechococcus vulcanus PDB ID: 4UB6.

FIGURE 5 | D1-His 190 is an example of a PLS supporting transient
redox cycling of YZ (D1-Tyr 161), which is an intermediate electron donor/
acceptor in the PSII electron transfer chain. Red arrows show electron
transfers. YZ is an electron donor to the oxidized P680

•+ (≈11 Å away)
and acceptor from the OEC (≈5 Å away). The pKa of the oxidized Tyr is <0,
while it is 9.8 when it is reduced. His 190 ensures that the proton is captured
when the Tyr is oxidized and returned when the Tyr is reduced. As YZ and His
190 are hydrogen bonded together, the proton simply moves between the
two residues and does not escape (Ishikita and Saito, 2014).
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Gates in proton transfer pathways in proteins that are not
pumps. A gate along proton transfer path guards against
unwanted proton transfers. An inhibitory gate can be
identified in PSII, where a chloride ion helps to keep the
entrance to the broad channel open by preventing a salt
bridge between D1-Asp 61 and D2-Lys 317. Experiments show
chloride depletion blocks the advancement of S-state transition
beyond S2 (Ono et al., 1986; Pokhrel and Brudvig, 2014).
Simulations show depletion of chloride leads to formation of a
salt bridge between D1-Asp 61 and D2-Lys 317 hindering proton
loss (Rivalta et al., 2011; Amin et al., 2016; Kaur et al., 2019).

Fences support a proton path. The sides of the water filled
channels contain residues such as Asn and Arg (e.g., D1-Asn 87
and CP43-Arg 357). These cannot participate in Grotthuss
proton transfers, nor are their pKa in a range that would let
them be PLS. Rather, these residues can anchor, the hydrogen
bond connections, orienting the water molecules. One example
that has been investigated is D1-Asn 298 near the OEC. Mutating
this residue influences oxygen evolution (Kuroda et al., 2014) and
the FTIR spectrum of the OEC network (Nagao et al., 2017;
Chrysina et al., 2019). Simulations show the Asn changes the
orientation of its side chain amide dipole in the transition from S2
to S3 leading to rearrangement of the hydrogen bond network
(Chrysina et al., 2019).

BACTERIAL REACTION CENTER

The reaction center, bRC, of the purple non-sulfur bacteria is the
first membrane protein whose structure was solved at atomic
resolution (Deisenhofer et al., 1985). RCs are light activated
proteins so as with GFP, bR and PSII, time resolved
measurements allow individual steps in the series of electron
and/or proton transfer reactions to be monitored by time-
resolved spectroscopy, showing the individual steps in the
reactions (Okamura et al., 2000; Wraight, 2006).

bRCs and PSII are Type II reaction centers where a fully
reduced, QH2 is the final product. The quinol dissociates into the
membrane to serve as the substrate of the b6f complex in oxygenic
photosynthesis and the bc1 complex in bacteria (Cardona et al.,
2012; Cardona and Rutherford, 2019). The D1 and D2 subunits of
PSII are related to the L and M subunits in bRCs (Raymond and
Blankenship, 2004). The bacterial systems use a photon, in the
range of 860–960 nm. Thus, they do not have enough energy to
carry out the PSII reaction, which uses a 680 nm photon to fuel
the uphill transfer of electrons from water to quinone (Heathcote
et al., 2002). The primary electron donor in bRCs is periplasmic
(P-side) cytochrome c. The redox reactions of cytochrome c are
not coupled to proton binding/release. The overall reaction is:

2cyt c2+P−side + 2hv + UQ + 2H+
N−side → 2cyt c3+P−side + 2UQH2

In contrast to PSII, which has a very short distance to the
N-side, bRCs have an H subunit, capping the N-side of the
protein, requiring a much longer path for the protons to reach
the QB site (Figure 6).

Quinones as a model redox coupled proton transfer reactant.
Electrons move one at a time between cofactors in proteins
generating free radical intermediates. While some cofactors
such as chlorophylls, hemes, iron sulfur clusters and Tyr are
stable one electron redox cofactors, unpaired electrons are often
sources of toxic reactive oxygen intermediates (Weisz et al., 2017).
Quinones function as single electron donors/acceptors within
proteins, but accumulate two electrons and protons (Paddock
et al., 2003; Müh et al., 2012). These lipid soluble cofactors thus
transport electrons frommany proteins including PSII, bRCs and
complex I described here to the bc1 complex in mitochondria and
bacteria or b6f complexes in chloroplasts as electrons move down
the electron transfer chains.

As quinones cycle between oxidized quinone (Q),
semiquinone (Q•-) and fully reduced quinol (QH2) their
proton affinity changes. The quinone pKa is <0, it is <5 for
the semiquinone (Zhu and Gunner, 2005; Gunner et al., 2008;
Hasegawa et al., 2017). Hence, the anionic semiquinone is often
the stable state within the protein. However, the generation of Q•-

can trigger proton binding to nearby residues (Graige et al., 1996;
Abresch et al., 1998; Alexov and Gunner, 1999; Paddock et al.,
2003). The pKas for the fully reduced quinol is >10 so the second
QB reduction is coupled to binding two protons to the cofactor.
The difference in the hydrogen bonding pattern for the two
quinone carbonyls and two quinol hydroxyls promote quinone
dissociation in PSII (Shevela et al., 2012; Saito et al., 2013). As will
be described below, in Complex I quinone reduction leads to a

FIGURE 6 | Structure of bacterial photosynthetic reaction centers of
Rhodobacter sphaeroides. L and M subunits in green, H subunit in cyan. Red
arrows follow the electron transfer path, and the blue arrow is the path protons
travel from the N-side to QB. Water molecules in the structure are shown
as red balls. The region between the two dashed lines has few water
molecules or polar residues, which discourages proton transfer across the
protein. The two quinones are still within the lipid membrane, but in a region of
the protein with multiple polar residues and water molecules to transport
protons. Coordinates are from PDB ID: 1AIG.
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large conformational change that trigger proton pumping
through distant pathways (Gupta et al., 2020; Gutiérrez-
Fernández et al., 2020; Kampjut and Sazanov, 2020).

The quinone electrochemistry is modified within the protein,
but the underlying proton affinity of each redox state in the
isolated compound strongly influences the order in which
protons are bound. The sequence of reactions in bRCs (Graige
et al., 1996) and likely in PSII is: 1) QB is first reduced to the
anionic semiquinone. The negative potential causes protons to be
bound to nearby amino acids (Okamura and Feher, 1992;
Wraight, 2006; Gunner et al., 2008); 2) uphill protonation of
the semiquinone is the rate-determining step preceding the
second reduction; 3) reduction is followed by binding a second
proton and release of the quinol.

Proton transfer pathways to QB in bRCs. The proton transfer
paths to QB have been well studied (Abresch et al., 1998;
Okamura et al., 2000). These are different than those
described above near the OEC, as residues play a much larger
role in the network. However, they are similar in that there is a
tangled complex of proton transfer paths. There is a large number
of acidic and basic residues buried in the protein near QB that
influence the electrochemistry of the quinone and provide paths
for proton transfer (Figure 7) (Sebban et al., 1995; Lancaster et al.,
1996; Abresch et al., 1998; Alexov and Gunner, 1999; Rabenstein

et al., 2000). FTIR difference spectra obtained on QA and QB

reduction shows broad features characteristic of a polarized,
interconnected hydrogen bonded network of water molecules
and amino acids around the two quinones (Breton and Nabedryk,
1998). L-Asp 210 and Asp 213 may share a proton in the ground
state, serving as a PLS. Protonating one of the acids removes a
negative charge, stabilizing the semiquinone QB

•- and keeping a
proton available for passage to the quinone itself (Lancaster et al.,
1996; Alexov and Gunner, 1999; Ishikita et al., 2003). The
mutants L-Asp213Asn and L-Ser223Ala slow the rate of this
reaction, with the mutation of L-Asp 213 having a bigger impact
(Paddock et al., 1994; Paddock et al., 1995). In the absence of
L-Asp 213, H-Glu 173 may provide an alternative location for the
proton in this extended PLS (Paddock et al., 2003). Thus, this web
of acidic residues combines the functions of a cluster PLS and
complex proton transfer path.

L-Glu 212, which is a protonated PLS in the ground state,
provides the second proton to QB (Wraight, 2004). The pKa of the
Glu is ≈10, trapping a proton near the quinone in the ground state
ready when needed (Kleinfeld et al., 1984; Okamura and Feher,
1992). The mutant L-Glu212Gln does not affect the delivery of
the first proton, supporting this site being neutral in the presence
of QB

-. However, the transfer of the second proton is totally
blocked, indicating L-Glu 212 is a unique single site PLS
(Paddock et al., 1989; Shinkarev et al., 1993; P. H.; McPherson
et al., 1994; Okamura et al., 2000; Wraight, 2004).

Three possible paths. The complex web of acidic and other
polar residues near QB leads to the question of what is the route
for proton transfer from the N-side surface to the quinone
binding site. The crystal structures reveal three likely paths
(Figure 7) (Abresch et al., 1998). The longest path, P1, is
≈20 Å long. It enters the protein near H-Asp 224 or M-Asp
240 and passes to L-Glu 212, which provides the second proton to
QB. P2, also ≈20 Å long, starts near M-Tyr 3 andmoves via H-Glu
173 to L-Asp 213, which donates the first proton to QB. P3 is the
shortest path, with only ≈7 Å between L-Asp 213 and the surface
M-Asp 17 with one water molecule in the middle (Abresch et al.,
1998).

Surface PLS as a proton collection site. RCs also have a well
characterized external cluster near the entrance to P3 made up of
H-Asp 124, H-His 126, H-His 128. The cluster is a proposed
proton collection site (Utschig et al., 1998; Paddock et al., 1999;
Okamura et al., 2000) (Figure 7). Zn2+ or Cd2+ bind here and
slow proton transfer to QB. Clusters of protonatable groups near
the surface of proton transfer paths are found in other proteins. A
similar proton accumulation site is found in the D-channel (Cai
et al., 2018). The broad channel in PSII exits to a cluster of surface
acidic residues that can trap the released proton (Bondar and
Dau, 2012; Kaur et al., 2021).

P3 appears to carry protons in wild-type bRCs. Mutation of
L-Asp 210 and M-Asp 17, have a larger impact when Zn2+ or
Cd2+ are present, showing an additive effect of multiple changes
to this pathway. However even with P3 blocked, protons still
enter to QB, indicating that other routes can serve as pathways,
but with slower transfer rates (Okamura et al., 2000). Thus, in the
tangled potential proton transfer network, multiple paths are
possible, but some are preferred.

FIGURE 7 | Three proposed paths for the two protons from the surface
to the QB site (Abresch et al., 1998), showing key residues on each path
including H-His 126, H-His 128, H-Asp 124, L-Asp 210, M-Asp 17, H-Glu
173, L-Asp 213, L-Ser 223 and L-Glu 212 (Okamura et al., 2000;
Paddock et al., 2003; Wraight, 2004). Coordinates from Rb. sphaeroides
bRCs PDB ID: 1AIG.
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FIGURE 8 | (A,B) Structure of the full membrane domain of complex I and only the Nqo4 subunit of the periplasmic domain from T. thermophilus [PDB ID: 4HEA
(Baradaran et al., 2013)] highlighting proton transfer paths. (A)Residues that have been proposed to be important for proton pumping are shown as sticks and labeled as
subunit number (one letter amino acid designation-residue number). Quinone is yellow and N2 of each Iron Sulfur cluster is green. Approximate locations of putative
proton transfer paths are blue arrows and dashed lines show alternative, proposed paths. (B) Residues that are included in the conservation analysis. Purple sticks:
E channel cluster in the center of the protein [Cluster 4 in (Khaniya et al., 2020)]; Sticks colored by atom type: antiporter residues (Baradaran et al., 2013; Di Luca et al.,
2017; Haapanen and Sharma, 2017; Gutiérrez-Fernández et al., 2020). (C,D) Conservation analysis shown as Weblogo (Crooks, 2004) representation of multiple
sequence alignment of 1,000 complex I sequences (Johnson et al., 2008; Sievers et al., 2011). (C) Residues in the three linear antiporter pathways in Nqo12 (Top),
Nqo13 (Middle) and Nqo14 (Bottom) subunits. (D) Residues in the E-channel cluster 4. Residues from Nqo8 (Top), Nqo7 (Middle) and Nqo10 (Bottom).
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NADH-UBIQUINONE OXIDOREDUCTASE
(COMPLEX I)

Complex I is the first and the largest protein in the erobic
respiratory electron transfer chain of bacteria and
mitochondria (Brandt et al., 2003; Hirst, 2013; Sazanov, 2015;
Kaila, 2018). Within the protein electrons are transferred from
NADH to a flavin and through a series of Iron Sulfur (FeS)
complexes to a quinone (Verkhovskaya et al., 2008; Efremov et al.,
2010; Hirst, 2013; Zickermann et al., 2015). The overall
reaction is:

NADH + H+ + Q + 4H+
N →NAD+ +QH2 + 4H+

P

The quinone, Q, is often ubiquinone but can be menaquinone
in bacteria such as Thermus thermophilus, the source of the
protein for the first complete crystal structure (Baradaran
et al., 2013). The transfer of the two electrons, which occurs in
the N-side peripheral arm, leads to the pumping of four protons
from the N- to P-side of the membrane embedded portion of the
protein (Figure 8).

Complex I combines elements of two disparate proteins. The
long, peripheral arm is likely derived from a soluble hydrogenase
and three of the proton channels are related to Mrp Na-H
antiporters (denoted antiporter channels), however, the fourth,
E-channel, is unique to Complex I and its close relatives (Efremov
and Sazanov, 2012; Brandt, 2019). Complex I is remarkable, as the
tightly coupled electron transfer and proton pumping elements
are separated by as much as 300 Å from the NADH binding site,
at the end of the peripheral arm, to the distal proton pumping
subunit (Baradaran et al., 2013; Kaila, 2018). Quinone binding
and reduction lead to a rotation of the soluble arm that connects
the redox reactions to proton pumping in some way (Gupta et al.,
2020; Gutiérrez-Fernández et al., 2020; Kampjut and Sazanov,
2020).

Antiporter: simple pathway. Complex I provides examples of
both simple and complex proton transfer pathways. There are
four proton paths, three through the antiporter subunits and one
through the E-channel (Hirst, 2013; Ripple et al., 2013; Sazanov,
2015; Di Luca et al., 2017; Haapanen and Sharma, 2018; Saura and
Kaila, 2019). The crystal structures show likely, linear paths
through each antiporter subunit (Efremov and Sazanov, 2011;
Baradaran et al., 2013; Zickermann et al., 2015) which have chain
of well conserved acidic and basic residues in the center running
parallel to the membrane (Figures 8A,B) (Fearnley and Walker,
1992; Torres-Bacete et al., 2007; Efremov and Sazanov, 2012).
Recognizable water chains leading to the N- and P-sides are seen
in computational studies (Kaila et al., 2014; Di Luca et al., 2017;
Haapanen and Sharma, 2017; Röpke et al., 2020). Moving along
each pathway from the N-side is a Glu/Lys pair then a central Lys
followed by either a Lys or Glu (Baradaran et al., 2013; Kaila,
2018). Their protonation states change as the proton is handed
from one ionizable residue to the next. Thus, the antiporter
channels are simple linear proton transfer paths.

With a linear proton transfer path, it is often possible to
identify a unique gating element. Simulations have been carried
out to investigate the behavior of Complex I with different
protonation states for these residues (Kaila et al., 2014; Di

Luca et al., 2017; Haapanen and Sharma, 2017). Increasing the
net charge in the interior leads to water molecules being brought
into the protein inMD trajectories and they are expelled when the
charges are neutralized (Kaila et al., 2014; Hummer and
Wikström, 2016; Di Luca et al., 2017). These hydration/
dehydration changes will gate proton transfer through the
channels, similar to that described above for Asp96 in bR.
They can be validated by seeing waters in different locations
in structures trapped in different intermediates or by
interpretation of IR spectroscopy (Lórenz-Fonfría et al., 2008).
However, a buried charge will attract water in MD simulations so
it is important that the residue protonation states be correctly
assigned in the simulation (Hummer and Wikström, 2016).

Comparison of the structures of Complex I from different
organisms shows conservation of the P-side proton release paths
in the antiporter subunits. However, on the N-side MD studies
(Kaila et al., 2014; Di Luca et al., 2017; Haapanen and Sharma, 2017)
found a pathway similar to one identified in the crystal structure of
Y. lipolytica (Zickermann et al., 2015) Complex I but different from
the one proposed from the T. thermophilus (Sazanov, 2015) crystal
structure. Thus, it is not known if the exit path is conserved. Similar
changes in pathways through evolution are also found comparing A-
and B-type CcO as will be described below.

E-channel: A complex proton transfer path. In contrast to the
linear proton transfer path seen through the three antiporter
subunits, the fourth proton travels through a path directly
under the periplasmic arm denoted the E-channel. This region
has a web of water molecules and polar and protonatable residues
characteristic of a complex proton transfer path with several PLS
clusters (Di Luca et al., 2017; Saura and Kaila, 2019; Gutiérrez-
Fernández et al., 2020; Khaniya et al., 2020). There are several
competing proposals for the proton transfer path through the
E-channel. It has been suggested to use subunits Nqo10 andNqo11
(Efremov and Sazanov, 2011; Zickermann et al., 2015) or subunit
Nqo8 (Baradaran et al., 2013). Various computational studies also
provide different answers (Kaila et al., 2014; Di Luca et al., 2017;
Haapanen and Sharma, 2017). This uncertainty about the route is
characteristic of complex proton transfer paths. There is a growing
consensus that residues in subunits Nqo7, 8 10 and 11 are
important for E-channel function (Figure 8A). Network
analysis, which can accommodate complexity, has proposed a
complete path through subunit Nqo4 and Nqo8 at the N-side
entry, moving through subunit Nqo8 and Nqo7 in the center, and
exiting through subunit Nqo10 and Nqo11 (Khaniya et al., 2020).

Role of quinone in Complex I as a gate. Complex I is able to
couple the energy releasing redox reactions in the peripheral arm
to the energy requiring proton pumping through four, distant
well separated pumping sites (Baradaran et al., 2013; Kaila, 2018).
The quinone binding site in complex I is ≈25–30 Å above the
membrane surface, which is different from its location in any
other quinone dependent membrane protein (Baradaran et al.,
2013; Zickermann et al., 2015). Quinone binding leads to the
rotation and tilt of the peripheral arm (Gutiérrez-Fernández et al.,
2020). MD simulations (Gamiz-Hernandez et al., 2017; Warnau
et al., 2018; Gupta et al., 2020) and Monte Carlo sampling
(Khaniya et al., 2020) find changes in the connectivity of the
hydrogen bond network that depend on the presence and redox
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state of the quinone.Movement of subunit Nqo4 andNqo8 leads to
changes in the E-channel hydrogen bond network that propagate
into the first antiporter channel by a distortion near Nqo10 (Tyr
59) (Gutiérrez-Fernández et al., 2020). The shifts in hydrogen bond
network and residue protonation initiated by the quinone reactions
thus yield changes in the interaction between the key Glu/Lys
residues in the very distant antiporter channels (Efremov and
Sazanov, 2011; Kampjut and Sazanov, 2020). This web of long-
range communication is not needed in smaller proteins such as
CcO, described below, where the change in electrostatic potential
due to the redox reactions can directly modify PLS proton affinity
coupled to proton pumping.

MD trajectories show quinone binding influences the E-channel
by enriching the number of hydrogen bonds near theN-side, which
are proposed to open the channel for proton uptake (Gupta et al.,
2020; Khaniya et al., 2020). However, when QH2 is bound the
charge of conserved residues change leading to modification of the
water wires in the proton transfer channels (Gamiz-Hernandez
et al., 2017; Kaila, 2018). The E-channel central region has
extended clusters of protonatable residues including Nqo7 (Asp
72), 8 (Glu 130), 8 (Glu 163), 8 (Glu 213) (Khaniya et al., 2020) [the
nomenclature uses residue numbering from the T. thermophilus
complex I in the form as Nqo subunit (residues)].

Beyond the central cluster of polar residues there is a
hydrophobic barrier that blocks the proton transfer to the
P-side in the E-channel. Thus, while there have been several
studies of the proton entry, connections are rarely drawn from
the center to the P-side (Baradaran et al., 2013; Kaila et al., 2014;
Zickermann et al., 2015; Di Luca et al., 2017; Haapanen and
Sharma, 2017). Network analysis of the hydrogen bonds made
in MD trajectories suggests several paths that rely on transient
wetting events (Khaniya et al., 2020). One lies near Nqo7 (Tyr 7)
and 8 (Tyr 124). Another possibility is from Nqo8 (Glu 130) to 10
(Tyr 59) (Gutiérrez-Fernández et al., 2020; Steiner and Sazanov,
2020). However, these proposed bridging residues are not well
conserved. Thus, what permits the proton to cross the hydrophobic
barrier, and whether it conserved through Complex I evolution, is
still an open question. A similar hydrophobic barrier is also seen in
the voltage-sensing domain (VSD) of voltage-gated ion channels.
Here mutations of the hydrophobic residues make the system
leaky, showing the importance of non-polar residues to block
uncontrolled proton transfers (Banh et al., 2019).

Residue conservation. The conservation and sensitivity of residues
to mutation can provide evidence that there is a unique pathway for
protons. The multisequence alignment of the residues in the linear
paths through the three antiporter subunits (Baradaran et al., 2013; Di
Luca et al., 2017; Haapanen and Sharma, 2017; Gutiérrez-Fernández
et al., 2020) were compared with that found for the central cluster in
the complex E-channel pathway (cluster 4 residues) (Khaniya et al.,
2020). TheWebLogo (Crooks, 2004) provides a graphical comparison
of the results (Figures 8C,D). The residues along the linear antiporter
paths are highly conserved. In contrast, the E-channel central cluster
shows much weaker conservation, suggesting that, while the cluster as
a whole must function, individual residues may not be uniquely
important.

Mutation The sensitivity to mutation may also distinguish
linear from complex proton transfer paths. Thus, mutation of

residues along a linear path should severely impair activity. In
contrast, a complex path may be less sensitive as there are
multiple routes for the proton, though as shown above for
bRCs, not all need be equally favorable. Many of the residues
in the well-defined antiporter channels have been subjected to
site-directed mutations. Mutation of the residues shown in
(Figure 8A) severely reduce quinone oxidoreductase activity
that is tightly coupled to proton transfer since there is no
alternative paths for proton transport (Torres-Bacete et al.,
2007; Euro et al., 2008; Michel et al., 2011). However, the
E-channel is more complex and there is less consensus about
the path. Mutations of proposed E-channel residues often modify
but do not kill activity (Taylor et al., 2002; Yang et al., 2009).

CYTOCHROME C OXIDASE

CcO is a proton pump belonging to the heme-copper oxidase
superfamily (Kaila et al., 2010; Liang et al., 2017; Kaur et al.,
2019). The energy for proton pumping comes from electrons
from cytochrome c (Cyt c) reducing O2 to water in the binuclear
(Heme & Cu) center (BNC), located in the protein center
(Figure 9). The BNC is reduced stepwise, one at a time to

FIGURE 9 | Residues of importance for proton pumping in CcO.
Residues D132, K362, D286, B(E101) are shown; heme a and a3 are green
sticks; CuA and CuB, are green spheres. Blue spheres: D-channel; red: P-side
cluster PLS; yellow: K-channel; Brown: P-exit path; Purple: P-exit
surface cluster. Solid blue lines: path of protons used for chemistry in the BNC
(heme a2 and CuB), dashed blue line: path for pumped protons; orange line:
electron transfer path. Structure of Rb. sphaeroides CcO from PDB ID:1M56.
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store four electrons. O2 reduction takes place in one step in the
fully reduced BNC (Kaila et al., 2010; Cai et al., 2020). O2

production likewise takes place in one step in the fully
oxidized OEC of PSII. This mechanism protects against the
release of toxic reactive oxygen intermediates. The overall
reaction is:

4cyt c3+P + O2 + (4 + m)H+
N → 4cyt c2+P + 2H2O

+ (4 + m)H+
P

Four electrons come from the cytochrome c on the P-side, and
four protons from the N-side to the BNC for chemistry. m is the
number of protons pumped across the membrane. There are
several related classes of CcO, denoted A, B and C. The A-type
CcO is found from bacteria to mammals, while B- and C-type are
found in bacteria that live at low O2 levels. In the A-type CcO, m
� 4. B- and C- type CcOs differ in the types of heme used and in
the number of protons pumped/electron, with m generally less
than four (Lee et al., 2012). CcO provides examples of simple and
complex proton transfer paths and simple and cluster PLS as well
as a gate generated by hydration/dehydration changes.

Proton transfer paths through CcO. In the A-type CcO two linear
water filled channels (D- and K-channels) are seen. Each has an
essential ionizable residue at the entry on theN-side and at the endnear
the BNC, but none within the channels. TheD-channel has Asp 132 at
the entry and the essential, isolatedGlu 286 as the PLS (Wikströmet al.,
2000; Brändén et al., 2001). The K channel has Lys 362 near the BNC
and B-Glu 101 near the entry (Ma et al., 1999; Brändén et al., 2002).
The buried Glu and Lys are both isolated in hydrophobic parts of the
protein. In the ground states, their proton affinity has shifted so both
are neutral (Rb. sphaeroides CcO numbering used here).

The D-channel carries six of the eight protons in the A-type CcO
reaction cycle, while the K-channel carries two. At the center of CcO is
heme a and heme a3 and CuB of the active site BNC. As the retinal
does in bR, the large cofactors may help to block proton transfer
through the protein. The protons from the K channel exit into the
BNC to be added to the reduced product water, while the D channel
exits between the two hemes. The importance of these linear pathways
were demonstrated by mutation of the residues at the beginning and
end of the channels leading to loss of activity (Jünemann et al., 1997;
Qian et al., 1997; Mills and Ferguson-Miller, 2002). Oddly, the
D-channel is missing in B- and C-type CcOs, with only a
K-channel remaining (Lee et al., 2012). Thus, as suggested in
complex I, proton transfer paths may shift through evolution. In
the B- and C- type CcOs it remains unclear how the pumped protons
move around the active site to be delivered to the P-side.

Complex proton transfer pathways. The P-side of all CcOs has a
tangled cluster of strongly interacting polar and protonatable residues
that do not provide an obvious single exit path, although linear paths
have been suggested (Popović and Stuchebrukhov, 2005; Björck et al.,
2019). The hydrogen bond network on the P-side of A- and B-type
CcO, was analyzed usingMonte Carlo sampling and network analysis
(Cai et al., 2018; Cai et al., 2020). Calculations were initiated with
experimental crystal structures as well as with snapshots from MD
trajectories carried out in different redox states of the hemes and
protonation states of key residues. This analysis recognized a linear
proton transfer path through theD-channel in theA-typeCcO.A very

large cluster of interconnected residues was identified as the P-side
PLS (Figure 9). This cluster exits through several paths to a region
near the cytochrome c binding site. Thus, there is an exit region not a
unique exit for protons in this complex path.

Single residue PLS in CcO. Glu 286 is located at the top of the
D-channel of A-type CcO (Kaila et al., 2010). It is isolated from other
protonatable residues so forms a simple PLS. It plays an essential role,
releasing a proton to the BNC for chemistry and to a P-side PLS cluster
for pumping. The X-ray crystal structures show it is in a dry region and
all simulation techniques give it a high proton affinity as there is
nothing in the structure to stabilize an anionic residue (Hummer and
Wikström, 2016). Measurements found a pKa of ≈10 for turnover that
is assigned to Glu286 (Namslauer et al., 2003). However, MD
simulations showed protonation of a propionic acid in the P-side
PLS breaks a hydrogen bond and opens a cavity which then fills with
water (Goyal et al., 2013; Son et al., 2017).

The hydration of the water cavity near Glu 286 also serves as a
gate for the proton transfer pathway. In the crystal structures and
in protein equilibrated in MD trajectories without the water cavity

FIGURE 10 |Complex PLS on the P-side of the B-type CcO. The proton
moves between Prop A [trapped unloaded (tU), with very low proton affinity] to
D372 [dynamic unloaded (dU)] where electron transfer to Heme A3 or CuB in
the BNC active site 15 Å distant will lead to proton loading into the cluster
(Cai et al., 2020). In the loaded state one proton is on D372. If the second
proton is on PropA the system is dynamic (dL), so addition of a proton to the
product water trapped in the BNC leads to the PLS unloading. If the second
proton is on H386 the cluster proton affinity is too high to lose a proton (tL).
The intra-cluster distances determine the relative energy of the loaded and
unloaded tautomers. The crystal structure is likely trapped in the loaded state.
Structure of Th. thermophilus CcO from PDB ID:3S8F.
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there is no exit found from the D-channel to the P-side PLS. Thus,
the closed cavity blocks the backflow of protons (Cai et al., 2018).
However, when the cavity is hydrated Glu 286 becomes well
connected to the extensive PLS cluster on the P-side. Changes
in hydration also help control the proton transfer from Glu 286 to
the BNC (Wikström et al., 2003) Thus, hydration tunes the proton
affinity of an isolated residue and serves as a gate in the proton
transfer pathway, a pattern described for Asp 96 in bR and for the
antiport subunits in complex I.

The role of tautomer shifts in a complex PLS. A proton pump
must regulate the thermodynamics of PLS loading and unloading,
and then change proton affinity when the reaction progresses. This
requires tuning the free energy difference between the loaded and
unloaded states at the pH of interest as well as the shift in this value
as the protein goes through the reaction cycle (See fuller
description in Supplementary Material S1). The PLS must
remain in the appropriate loaded/unloaded state until the
reaction has progressed and the accessibility of N- and P-side is
modified by the gates opening/closing (Kim et al., 2007; Kim et al.,
2009; Kim and Hummer, 2012; Stuchebrukhov, 2018;
Stuchebrukhov, 2019). The challenge is to find the changes that
can trap, hold and then release the proton. An analysis of the
proton distribution in the PLS cluster in B-type CcO provides some
insight into the atomic details of one mechanism.

On the P-side of the B-typeCcO, an extended cluster of six residues
was found to behave as a PLS (Figure 10) (Cai et al., 2020). The
unloaded PLS has one proton bound (net charge -4) while the loaded
cluster has two protons. The protein surrounding the PLS provides
sufficient long-range positive potential to stabilize the cluster negative
charge. There are six tautomers with one proton and 12 with two
protons distributed over the six residues (Eq. 1). By investigating the
proton affinity of different tautomers in snapshots derived from MD
trajectories it was found that a shift in the hydrogen bond pattern
changes the tautomer selected. This resulted in dynamic states where a
loaded and unloaded state are close in energy so changes at the active
site lead to proton binding or release. However, the BNC is ≈15 Å
from the PLS and the change in the BNC do not shift the PLS proton
affinity enough to fully load a proton to the PLS cluster. This behavior
is seen Supplementary Figures S2A,Bwhen there is only a small shift
in proton affinity in a group with a pKa near the pH (Supplementary
Figure S2C, middle titration). The problem of incomplete loading/
unloading appears to be solved by moving the bound protons and
rearranging the hydrogen bonding pattern, which is described as a
tautomer trap. This leads to the PLS being trapped loaded or unloaded
because the cluster proton affinity is either too high or too low
(Supplementary Figure S2C, right-most titration) or unloaded
(Supplementary Figure S2C, left-most titration).

The proton shift in the CcO complex PLS shows how a tautomer
trap can solve the problem that a PLS, which is sensitive to changes in
the protein,maynot strongly trap the proton. Thus, in active structures,
the change in proton affinity due to the BNCwill lead to some changes
in the PLS protonation state. But this shift in free energy is insufficient
to reliably move the PLS between being fully loaded and unloaded
(Supplementary Figure S2). Then a tautomer shift moves the PLS
from the dynamic configuration (where the proton was bound or lost)
to the stable, fully loaded or unloaded locked configuration. This
mechanism may be similar to activation and inactivation process in

voltage gated ion channels, where conformational changes occur when
the channels are an active open state, then block the channel and transit
to inactive state (Aldrich, 2001). A tautomer trap is only available to a
PLS cluster, it is not possible in a single residue PLS.

CONCLUSION

The structure of multiple proton transfer paths in several proteins
that add to the transmembrane electrochemical gradient show a
range of motifs. Thus, they can be simple linear paths as found in the
D- andK- channels of CcO and the antiporter subunits of complex I.
They can also be complex paths as seen on the P-side of CcO and the
E-channel of complex I. Paths can be filled with water so that a
proton never needs to use a side chain as found around the OEC in
PSII or to be handed through a mixture of side chains and water
molecules as found inGFP and in bRCs.With simple, single site PLS,
as at the exit from the D-channel and the N-side of bR, changes far
from the PLS trigger water influx that leads to proton release and
production of a water chain to ferry protons. A similar mechanism is
used in the antiporter subunits of complex I. In contrast, in the PLS
cluster on the proton release side of bR and CcO, small, local
rearrangements of a cluster of strongly interacting residues leads to
large changes in proton affinity to cause the PLS to load and unload.

Thus, the framework that proteins will have proton transfer
paths, Proton Loading Sites (PLS) and gates allows the analysis of
each of these proteins. However, the motifs vary in the residues
that make up the needed elements and in their complexity. Each
proton pump reviewed here use structures with different
complexity for different parts of the proton transfer paths. The
advantages of different motifs remain to be determined.
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