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Raman spectroscopy has emerged as a promising tool in biomedical analysis and clinical
diagnosis. The development of surface-enhanced Raman scattering spectroscopy (SERS)
improved the detection limit with ultrahigh sensitivity and simplicity. More and more Raman
spectroscopy clinical trials (R-PCT) have been conducted recently. However, there is a lack
of an up-to-date review summarizing the current status of Raman clinical trials performed
until now. Hence, the clinical trials for Raman were retrieved from the International Clinical
Trials Registration Platform. We summarized the clinical characteristics of 55 registered
Raman spectroscopy clinical trials (R-RSCTs) and 44 published Raman spectroscopy
clinical trials (P-RSCTs). This review could assist researchers and clinicians to understand
the current status of Raman spectroscopy clinical research and perhaps could benefit the
reasonable and accurate design of future SERS studies.
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INTRODUCTION

After the discovery of inelastic scattering of light by CV Raman in 1928, the phenomenon was
reported in biomedical application for the first time in 1970 (Raman and Krishnan, 1928; Lord and
Yu, 1970). In the progress of light scattering, most photons maintain the same energy and
wavelength after interacting with matter (Raman and Krishnan, 1928; Auner et al., 2018). But a
very small portion of photons is linearly inelastically scattered, resulting in loss of energy, and
a longer wavelength (Raman and Krishnan, 1928; Wang et al., 2018). The shift of the wavelength
is called Raman shift, which is inversely proportional to the change in the photons’ wavelength
(Jones et al., 2019). The intensity of the Raman spectrum against Raman shift was expressed
in wavenumbers with the units of cm−1 (Raman and Krishnan, 1928; Pilot et al., 2019).
The Raman spectrum gives a directly objective picture of the molecular composition (Sahu
et al., 2013).

The measurement of Raman spectroscopy is a fast, label-free, and noninvasive progress. Hence, it
has many advantages in biomedical applications. The harmfulness of laser used in Raman
spectroscopy can be reduced by selecting the right wavelength and power, and Raman signals
provide the molecular information of tissue and cells directly (Lee et al., 2019; Chaiken and Peterson,
2021). But the natural intensity of the Raman signal was low, which resulted in low signal-to-noise
ratios (Pence and Mahadevan-Jansen, 2016). In recent years, different types of Raman spectroscopy
were developed to improve the sensitivity and specificity of Raman scattering, including resonance
Raman spectroscopy (RRS), surface-enhanced Raman spectroscopy (SERS), and tip-enhanced
Raman spectroscopy (TERS) (Bailo and Deckert, 2008; Stiles et al., 2008; Robert, 2009). The
enhancement of Raman signal for RRS, SERS, and TERS was reported by a factor of 102 to 106, 105 to
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1010, and 1010, respectively (Auner et al., 2018). The enhancement
of Raman spectroscopy attracted attention in clinics because of its
high sensitivity (Cialla-May et al., 2017).

SERS is particularly interesting because the Raman signal can
be controlled by modifying a designated probe on the surface to
detect the specific analytes (Stiles et al., 2008). Raman signals of
molecules adsorbed on the metal surface were amplified by
generating a localized surface plasmon resonance under an
incident electromagnetic field (Lee and Tseng, 2018; Pilot
et al., 2019). Based on the knowledge of molecular interaction
in vivo, such as the antibody–antigen and complementary
sequences of DNA and RNA, SERS is employed to quantify
drugs and biomolecules in complex systems such as blood and

tissue due to its high sensitivity and specificity (Henry et al., 2016;
Xue et al., 2018). SERS was also developed to be applied in
surgical margin guidance such as ovarian cancer and brain tumor
(Jiang et al., 2019). SERS preferred liquid samples, for example,
biofluids and cells, due to the additive metallic nanoparticles and
the limited detection distance (less than tens of nanometers)
between analytes and metallic surfaces (Pence and Mahadevan-
Jansen, 2016). To develop SERS and Raman spectroscopy better,
it is necessary to understand the current status of their clinical
trials.

Raman spectroscopy has been in clinical phases since 2003
(U.S. National Library of Medicine, 2003). Until now, there has
been no review to characterize the clinical status of Raman

FIGURE 1 | (A) Flowchart of Raman spectroscopy clinical trial selection, (B) characterization of study types of registered Raman spectroscopy clinical trials
(R-RSCTs), (C) phase distribution of R-RSCTs, (D) disease classification of R-RSCTs according to physiological systems, and (E) the Sankey diagram of physiological
systems, in vivo/in vitro, and sample types in R-RSCTs.
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spectroscopy clinical trials. In this review, we retrieved the
registered Raman spectroscopy clinical trials (R-RSCTs) in
trial registries of ICTRP with standardized process
requirements for the first time. We summarized basic clinical
characteristics, disease classification, and sample classification in
ongoing and completed clinical trials to update the current status.
Published Raman spectroscopy clinical trials (P-PSCTs) were also
retrieved and summarized due to the lack of updated results of the
R-RSCTs. Moreover, the current SERS clinical application was
summarized, and its future prospect was discussed based on the
above results. This could benefit the reasonable and accurate
designs of future SERS studies.

THE CURRENT STATUS OF RAMAN
SPECTROSCOPY CLINICAL TRIALS: THE
METHODS
Search Strategy
The preparation for the data of registered Raman spectroscopy
clinical trials (R-RSCTs) was conducted (Figure 1): the
registration database of WHO registries through the
International Clinical Trials Registry Platform (ICTRP) Search
Portal (http://apps.who.int/trialsearch) was used to get
registration items concerning R-RSCTs by searching for the
key word “Raman.” The records of non-related ones will be
excluded one by one.

The preparation for the data of published Raman spectroscopy
clinical trials (P-RSCTs) was conducted: the search term used was
“Raman” in PubMed with the article type restriction as “Clinical
trials.” The clinical studies were retrieved and followed PRISMA
guidelines.

Data Selection and Extraction
Trials Selection and Data Extraction
The retrieved records from the database of WHO registries were
exported to Microsoft Excel. The titles, abstracts, and full texts
were screened by the first author (XX) to exclude the non-related
Raman spectroscopy records. The following data of Raman
spectroscopy clinical trials were extracted: a combination of
title, abstract, and full-text screen was performed by the first
author (XX) to exclude any record that was not a Raman trial or
repeated ones. The following data for trial records were extracted:
trial identifier, study title, date of registration, register source, trial
phase, recruitment status, anticipated enrolment sample size,
condition studied, study type, sample type, in vitro/vivo, and
the number of evaluation factors (Fan et al., 2020). However, the
information of R-RSCTs in ICTRP was not updated on time,
which did not reflect the present research status of completed
RSCTs (Al-Durra et al., 2020).

The retrieved articles from PubMed were thoroughly screened
by the first author (XX), and the following information of
published Raman spectroscopy clinical trials was extracted: the
Raman type, date of publication, sample type, sample size,
condition studied, in vitro/vivo, the number of evaluation
factors, sensitivity, and specificity.

Discrepancies
Data extraction was performed by two authors (XX and CL). Any
discrepancies were resolved between the two authors.

Data Analysis
Descriptive statistics were used to characterize the trials extracted
from the ICTRP Search Portal. All statistical analyses were
performed using Microsoft Excel. Missing values were
excluded from the analysis unless indicated.

Data Visualization
The flowchart was drawn with Adobe Illustrator. The pie chart
was drawn with Microsoft Excel 8.0 (Microsoft, Radmond,
United States). Sankey diagrams were generated with
SankeyMATIC for data visualization. The illustration figure
was drawn with BioRender.

THE CURRENT STATUS OF RAMAN
SPECTROSCOPY CLINICAL TRIALS: THE
RESULTS
Characterization of Registered Raman
Spectroscopy Clinical Trials
We retrieved 82 records from the ICTRP database, of which 25
records were excluded because their interventions were not
Raman spectroscopy (Figure 1A). Two records were excluded
after full-text screening since they were the repeated ones. A total
of 55 records in the ICTRP were analyzed for basic trial
characteristics (Figure 1A). In Table 1, we found that 55 trials
were registered in the following seven registries: Australian
New Zealand Clinical Trials Registry (ANZCTR) (1),
ClinicalTrials.gov (24), Chinese Clinical Trials Registry
(ChiCTR) (8), Clinical Trials Registry-India (CTRI) (4),
International Standard Randomized Controlled Trial Number
(ISRCTN) (2), Japan Primary Registries Network (JRPN) (11),
and German Clinical Trials Register (5). For the recruitment
status of these trials, 20 (36.36%) are actively recruiting subjects,
and most (64%) of the remaining trials have not yet started to
recruit participants. As shown in Figure 1B, the study type of 30
(54.5%) R-RSCTs was for “Observational,” followed by
“Interventional” (18, 32.7%), “Diagnostic test” (5, 9.1%),
“relevant factors research” (1, 1.8%), and “meta-analysis” (1,
1.8%). An “Observational study” aims to observe patients or
measure certain outcomes without any specific intervention, and
patients will not be assigned into different groups. An
“Interventional study” aims to evaluate one or more particular
interventions on participants, and participants will be created
into different groups. The “Diagnostic test” is a study design to
evaluate diagnostic accuracy. “Relative factor research” is a study
to investigate multiple factors during disease diagnosis,
prognosis, and treatment efficacy evaluations. “Meta-analysis”
is a statistical process that combines the findings from individual
studies.

For the phase distribution, most of the trials were under the
phase “Not Applicable” in Figure 1C. The main reason may be
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the failure of recruitment. One trial (No. CTRI/2018/01/011139)
was under the post-market phase to analyze the physicochemical
interactions of the dentin–resin interface (Girija, 2018). One trial
(No. NCT00060580) was under Phase 1 tomeasure the amount of
the pigment lutein in the retina (U.S. National Library of
Medicine, 2003). Three trials (No. NCT02033512, No.
NCT02621853, and No. CTRI/2009/091/000851) were under
Phase 2 to detect hormones, fat, and saliva, respectively (U.S.
National Library of Medicine, 2014; U.S. National Library of
Medicine, 2015; Vedang, 2009). One trial (No.
ChiCTR1800016644) was in Phase 3 to monitor dermatitis
degree in treatment of asthma by acupoint sticking therapy
(Liu, 2018). Two trials (No. ChiCTR-RDC-17012611 and No.
ChiCTR1800015711) were categorized to diagnostic new
technique clinical study (Qiu, 2017; Qian, 2018). The sample
size is mostly distributed in the middle and small sample size, and
83.6% is less than 200 subjects. Of these R-RSCTs, nearly 85% of
evaluation factors were multiple. Only eight trials were evaluated
by the single factor. In total, 31 trials were conducted in vitro and
24 trials in vivo. These characteristics above and others of the
R-RSCTs are summarized in Table 1.

In Figure 1D, 47 diseases of R-RSCTs were classified into nine
types according to the physiological systems. The digestive system
(nine diseases) had the most number of diseases, followed by the
endocrine system (seven diseases), circulatory system (six
diseases), and respiratory system (six diseases). It should be
noticed that no diseases from the immune system were chosen

as the condition in R-RSCTs. In Figure 1E, the samples
corresponded to in vitro/in vivo, and the physiological systems
were shown as the Sankey diagram. The clinical trials conducted
in vitro have nine types of samples. Blood, saliva, and tissue were
taken in most of the trials.

Characterization of Published Raman
Spectroscopy Clinical Trials
The majority of the above registrars still need to be completed,
and the completed clinical trials did not update their results in
real time. Therefore, we collected 44 results of the published
Raman spectroscopy clinical trials in PubMed to obtain the
current status. There are ten types of Raman spectra which
have been studied in the clinic, as shown in Table 2:
“Confocal Raman” (11), “Probe Raman” (10), conventional
Raman spectrometer (6), “Raman microscope” (4), “Resonance
Raman” (4), “Micro-Raman” (3), “Transcutaneous Raman” (2),
SERS (2), “FT-Raman” (1), and “Kerr-gated Raman” (1). 22
conditions including healthy and 21 diseases are summarized
in Table 2. The published articles showed that Raman
spectroscopy was widely used in vivo and in vitro. “Confocal
Raman,” “Resonance Raman,” and “Transcutaneous Raman”
were only conducted in vivo. Transcutaneous Raman and
Confocal Raman were both approved to meet the clinical
accuracy requirement in the noninvasive detection of glucose
in vivo. Confocal Raman, Probe Raman, and conventional Raman

TABLE 1 | Characteristics of registered Raman spectroscopy clinical trials.

Characteristic Category Number Percentage

Source register ANZCTR 1 1.82
Clinicaltrials.gov 24 43.64
ChiCTR 8 14.55
CTRI 4 7.27
ISRCTN 2 3.64
JPRN 11 20.00
German clinical trial register 5 9.09

Recruitment status Not recruiting 35 63.64
Recruiting 20 36.36

Target size &50 27 49.09
51–100 10 18.18
101–200 9 16.36
201–500 4 7.27
501–1,000 3 5.45
1,001–10,000 2 3.64

In vitro/in vivo In vitro 31 56.36
In vivo 24 43.64

Evaluation factors Single 8 14.55
Multiple (image and fingerprint) 47 85.45

Study type Observational 30 54.55
Diagnostic test 5 9.09
Interventional 18 32.73
Relative factors research 1 1.82
Meta-analysis 1 1.82

Phase Phase 1 1 1.82
Phase 2 3 5.45
Phase 3 1 1.82
Post-market 1 1.82
Not applicable 47 85.45
Diagnostic new technique clinical study 2 3.64
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were applied to evaluate skin and components of skin under
healthy and dermatitis conditions. Probe Raman, Raman
microscope, conventional Raman, Kerr-gated Raman, and
SERS were used in the diagnosis of 11 types of cancer. FT-
Raman and Transcutaneous Raman could provide the
fingerprints of bone in vivo and teeth in vitro. The sample size
of most studies was less than 100, which accounted for 90.9% of
P-RSCTs. P-RSCTs were all single-site studies, and no
multicenter clinical trials were published. Multicenter studies
were widely recognized to eliminate the bias in a single-site
study and generate more convincible evidence by large

numbers of hospitals and patients (Zheng and Zelen, 2008).
Hence, the published results indicated the primary evaluation
of Raman spectroscopy in the clinic.

We summarized the present situation of 55 R-RSCTs and
44 P-RSCTs in this review. Only three studies were published
before 2008. From 2003 to 2017, both R-RCTS and P-RCTs
gradually increased. From 2018 to 2020, R-RCTs raised up
rapidly to around 10 clinical trials each year. No published
results were obtained in PubMed since 2018. Collectively, the
results are shown in Figure 2. We look forward to the release of
these registered clinical trials in the next 5 years.

TABLE 2 | Characteristics of published Raman spectroscopy clinical trials.

Raman type Number Sample type In vivo/
vitro

Condition/disease References

Confocal Raman 11 Ibuprofen In vivo Healthy
Skin Atopic dermatitis Chrit et al. (2005); Chrit et al. (2006); Richters et al. (2017)

Healthy
Dermal water Dermatitis Nakagawa et al. (2010)
Retinyl acetate Healthy Lee et al. (2015); Dos Santos et al. (2017)
Hormone Climacteric symptom Botelho et al. (2014)
Oil Healthy Choe et al. (2015)
Glucose Diabetes Chaiken et al. (2005)
Trans-urocanic acid Healthy Egawa and Iwaki, (2008)

Probe Raman 10 Tissue In vitro Brain tumor Koljenovic et al. (2005)
In vivo Soft tissue sarcomas Kanter et al. (2009); Huang et al. (2010); Bergholt et al. (2016); Nguyen

et al. (2016); Lin et al. (2017)Nasopharyngeal
carcinoma
Gastric cancer
Colorectal cancer
Cervical dysplasia
Dermatitis

Skin Skin cancer Schleusener et al. (2015)
Filaggrin Atopic dermatitis González et al. (2011)

Raman microscope 4 Serum In vitro Oral caner Sahu et al. (2013)
Hydroxyethyl starch Ex vivo Renal graft Vuiblet et al. (2016)
Salivary gland In vivo Sjogren’s syndrome Xue et al. (2014)
Beta-tricalcium
phosphate

Osseointegration Pascaretti-Grizon et al. (2017)
Sinus lift
Bone graft

Micro-Raman 3 Luting agents In vitro Healthy Lohbauer et al. (2010); Navarra et al. (2012)
Natural cavities in teeth

Tissue In vivo Periodontal inflammation Camerlingo et al. (2014)
Resonance Raman 4 Carotenoids In vivo Healthy Hesterberg et al. (2009)

Macular pigment Tanito et al. (2012)
Lycopene and ß-
carotene

Blume-Peytavi et al. (2009)

Human molar Healthy/aging Ager et al. (2006)
Transcutaneous
Raman

2 Glucose In vivo Healthy Enejder et al. (2005)
Bone Matousek et al. (2006)

Raman spectrometer 6 Serum In vitro Healthy Rohleder et al. (2005)
Diabetes

Tissue Ovarian cancer Crow et al. (2003); Maheedhar et al. (2008)
Prostate cancer

In vivo Skin cancer Sigurdsson et al. (2004); Moncada et al. (2016)
Melasma

Urea Healthy Egawa and Sato, (2015)
FT-Raman 1 Tooth In vitro Healthy Paula et al. (2010)
Kerr-gated Raman 1 Tissue In vitro Prostate cancer Prieto et al. (2005)

Bladder cancer
SERS 2 Tissue In vitro Colon cancer Zavaleta et al. (2013)

Serum Oral squamous cell
carcinoma

Tan et al. (2017)
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THE CURRENT STATUS OF SERS
CLINICAL TRIALS: THE RESULTS

There are six registered clinical trials (Table 3) related to SERS and
two published clinical trials. The illustration of samples and collected
outcomes from these trials are shown in Figure 3. The study type of
five registered trials was “Observational” and one trial was
“Diagnostic test.” The interventional/observational models were
“Factorial,” “Cohort,” and “Case–control.” A “Factorial” study
aims to evaluate two interventions in the same trial and their
interactions between two interventions. A “Cohort” study aims to
measure the effect of a suspected risk factor in both groups of people
who have a certain condition and who have no condition. A
“Case–control” study aims to determine factors associated with a
certain condition. Two trials were registered in 2019 and four trials in
2020. Only two trials are actively recruiting subjects. The sample size
of four trials was distributed in middle and small sizes. All the trials
were under the phase “Not applicable.”The sample types were blood,
urine, saliva, and tears. All the trials were conducted in vitro.
According to the published results of two studies, SERS had a
sensitivity of 80.7% and a specificity of 84.1% in the diagnosis of
oral squamous cell carcinoma by analyzing the fingerprints of blood
and sensitivity of 326-fM SERS nanoparticles in colon tumor tissue
(Zavaleta et al., 2013; Tan et al., 2017). According to the trials, it
indicated that SERS preferred the sample type of biofluids and
depended on metal nanoparticles to magnify signals.

DISCUSSION AND PERSPECTIVE OF
FUTURE SERS CLINICAL APPLICATION

This review provides an overview of the current status of Raman
spectroscopy clinical registration information and published
articles. It is a new and extensive survey of R-RSCTs and
P-RSCTs. Most R-RSCTs are registered on platforms from the
United States, Japan, China, and Germany. Compared with
preclinical studies, the ongoing R-RSCTs are very rare, and
most researchers focused on developing new technology in
cellular and animal models. As we mentioned above, the

completed R-RSCTs in the WHO platform did not update
their results in real time. Moreover, the clinical protocol of
some studies in the publication was different from the
registered one. It is difficult to analyze the results of R-RSCTs.
Many researchers only registered a trial about Raman
spectroscopy without recruiting any participants. In the
summary of P-RSCTs, we found that P-RSCTs were subjected
to a single-center study with a sample size of fewer than 100
subjects. Although Raman spectroscopy had many advantages,
some types of Raman spectroscopy failed to continue to be
developed in the clinic such as the instrument of Kerr-gated
Raman, which was filled in two rooms (Prieto et al., 2005). Hence,
we suggest that the researchers from universities and research
centers may collaborate more with clinicians and industry
sponsors to conduct large-scale, high-quality, and multicenter
R-RSCTs and publish their results in the corresponding
registration platforms. SERS also has the same problems
above, and it is in the early stage of clinical development.
Most clinicians are familiar with the technologies such as
computed tomography (CT) and nuclear magnetic resonance
(NMR), but unfamiliar with SERS, and other Raman spectra. This
resulted in the slow development of R-RSCTs and P-RSCTs.

SERS depends on the metal surface but is also limited by the
interaction surface in the clinic. Most clinical trials chose the
wavelength of laser at 785 nm to excite the light scattering and
collect the Raman signals, which proved efficiency and safety of
the laser (Sigurdsson et al., 2004). But the penetration distance in
vivo of the laser was limited to less than 10 mm (Nakagawa et al.,
2010; Egawa and Sato, 2015). Hence, SERS can only be used
in vitro and ex vivo to make metallic surfaces and samples close
enough. There are two methods to use SERS in biomedical
research. One is to add nanoparticles without SERS reporter in
the samples and amplify the intrinsic Raman signals. Another one
is to administrate the nanoparticles with SERS reporter directly
to detect the reporter signals. Fingerprints require complex
interpretation and the concern of reproducibility. The fluorescent
background of samples also brings a low signal-to-noise ratio (SNR).
The secondmethodmay be a better choice in clinical application due
to its higher specificity and higher SNR.

FIGURE 2 | Number of registered and published Raman spectroscopy clinical trials from 2003 to 2020.
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TABLE 3 | Characteristic of registered SERS clinical trials.

Register
number

Title Date
registration

Condition/
disease

Sample
type

Study
type

Recruitment
status

Target
size

In vivo/
in vitro

Phase Interventional/
observational

model

References

ChiCTR2000037082 Construction of artificial
intelligence–assisted prostate tumor
early diagnosis system based on
surface-enhanced Raman
spectroscopy

August 26,
2020

Prostate tumor Blood Diagnostic
test

Recruiting 2000 In vitro N/A Factorial Wang, (2020)

NCT04239105 Detection and analysis of circulating
tumor cells (CTCs) in patients with
breast cancer using a novel
microfluidic and Raman spectrum
device

December
31, 2019

Breast
neoplasms
(circulating
tumor cells)

Blood Observational Not recruiting 120 In vitro N/A Cohort U.S. National
Library of
Medicine.
(2020a)

NCT04311684 Development and validation of hybrid
Brillouin–Raman spectroscopy for
noninvasive assessment of
mechanochemical properties of urine
proteins as biomarkers of kidney
diseases

March 14,
2020

Nephrotic
syndrome

Urine
protein

Observational Recruiting 80 In vitro N/A Cohort U.S. National
Library of
Medicine.
(2020b)

NCT04628962 Raman analysis of saliva as a
biomarker of COPD

November
09, 2020

Chronic
obstructive
pulmonary
disease

Saliva Observational Recruiting 250 In vitro N/A Case–control U.S. National
Library of
Medicine.
(2020c)

CTRI/2019/06/
019890

Human tear sample studies using
high-performance liquid
chromatography with laser-induced
fluorescence (HPLC-LIF) and
surface-enhanced Raman
spectroscopy (SERS) techniques

27–06-2019 Glaucoma Tears Observational Not recruiting 35 In vitro N/A N/A Adigal et al.
(2019)

CTRI/2020/07/
026418

Design and development of an
optical setup for cell membrane-
targeted surface-enhanced Raman
spectroscopy using vortex beams

07–07-2020 Healthy Blood Observational Not recruiting 30 In vitro N/A N/A Ghana Shyam,
(2020)
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Importantly, several critical issues need to be concerned with the
following. First, there is the selection of reliable biomarkers in
biofluids: oncology is still the “Gold standard” of diagnosis.
Applying biomarkers in diagnosis calls for researchers from basic
medicine, optical spectroscopy, and clinicians from hospitals to
collaborate. Second, there are multicenter and large-scale clinical
trials: large-scale trials should be conducted under standard
protocols to prove the advantages of SERS in the clinic compared
to other techniques. Third, there is the artificial intelligence of SERS
spectra: although SERS signalsmay have several sharp peaks, it is still
difficult to analyze the intensity and the shifts of wavelength directly.
Diagnosis models of diseases are necessary to be built by artificial
intelligence to transform SERS spectra to a readable clinical standard
immediately. Three AI-related Raman spectroscopy clinical trials
were registered in 2021. Overall, we look forward to breakthrough
developments of SERS in the clinic in the next 5 years.
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