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A 3D supermolecular structure [Co3(L)2 (2,2′-bipy)2](DMF)3(H2O)3 1) (H3L � 4,4′,4″-
nitrilotribenzoic acid) has been constructed based on H3L, and 2,2′-bipy ligands under
solvothermal conditions. Compound 1 can be described as a (3, 6)-connected kgd
topology with a Schläfli symbol (43)2(4

6.66.83) formed by [Co3(CO2)6] secondary
building units. The adsorption properties of the activated sample 1a has been studied;
the result shows that 1a has a high adsorption ability: the CO2 uptakes were 74 cm3·g−1 at
273 K, 50 cm3·g−1 at 298 K, the isosteric heat of adsorption (Qst) is 25.5 kJ mol−1 at zero
loading, and the N2 adsorption at 77 K, 1 bar is 307 cm3 g−1. Magnetic measurements
showed the existence of an antiferromagnetic exchange interaction in compound 1,
besides compound 1 exhibits effective luminescent performance for Fe3+/Cr3+ and TNP.
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INTRODUCTION

Nowadays, the rapid detection of toxic organic and heavy metal ion pollutants has attracted more
and more attention due to their harmful effects on the environment and human life (Rasheed and
Nabeel, 2019; Haldar et al., 2020). For instance, nitroaromatic explosives (NACs), which include
nitrobenzene, 2,4,6-trinitrophenol (TNP), 2-nitrotoluene, 2,4-dinitrotoluene, nitrobenzene, 4-
nitrotoluene and 3-nitrotoluene, have many application in the chemical industry and can cause
terrorism and environmental issues. Among NACs, TNP is highly toxic, it harms the
microorganisms and the human body (Wollin and Dieter, 2005). Likewise, heavy metal
pollutants are not degradable and tend to accumulate in ecosystems, imposing a threat to
human beings because of their toxicity and carcinogenicity (Jia et al., 2017; Peng et al., 2018;
Ashraf et al., 2019; Cai et al., 2019). Fe3+ is an abundant and essential transition metal for biological
organisms, and plays an important role in biological processes, such as enzymatic reactions, nitrogen
fixation in nitrogenases, and oxygen transport. It is also well known that inadequate or excess iron
concentration can induce serious health problems including anemia, Alzheimer’s disease, liver and
kidney damage, diabetes and heart disease, mitochondrial DNA damage (Harigae, 2018;
VanderMeulen and Sholzberg, 2018; Wallace et al., 2018; Sahoo and Crisponi, 2019; Fan et al.,
2020). Similarly, Cr3+ has mutagenicity and cytogenetic toxicity, the scarcity or excess uptake of Cr3+

results in cardiovascular diseases and diabetes, mutations or malignant cells (Paul et al., 2015; Zhang
et al., 2015; Dong et al., 2016; Rasheed and Nabeel, 2019), so it is urgent and necessary to detect metal
ion pollutants in solution for the human security and environmental protection.
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Various techniques have been developed to detect Fe3+/Cr3+

and TNP (Chen et al., 2018; Pavlačka et al., 2016; Sadak et al.,
2017; Tian et al., 2017; Goswami et al., 2013; Wen et al., 2002);
among them, fluorescence analysis has been very popular due to
its simplicity, sensitivity, fast response, economical way, low
interference (Carter et al., 2014; Guo et al., 2014). Therefore
the development of excellent fluorescence sensors for the
sensitivity of Fe3+/Cr3+ and TNP has become a focus. The use
of coordination polymers for fluorescence analysis has been
explored extensively (Zhang et al., 2018; Hu et al., 2014; Yi
et al., 2016). The coordination polymers, built up from organic
ligands and metal ions or clusters, are porous materials suitable
for various applications including luminescence, magnetism, gas
adsorption and separation, as well as catalysis, drug delivery, and
proton conduction (Kurmoo, 2009; Huxford et al., 2010; Sun
et al., 2013; Yamada et al., 2013; Li et al., 2014; Liu et al., 2014;
Zhou. and Kitagawa, 2014; Chughtai et al., 2015; Lustig et al.,
2017; Espallargas and Coronado, 2018).

Over the past few years, many luminescent coordiantion
polymers have been synthesized to detect metal ions, anions,
pH value, small molecules, gases and vapors (Kurmoo, 2009; Lan
et al., 2009; Li et al., 2013; Ma et al., 2013; Zhang et al., 2015; Yu
et al., 2017; Mi et al., 2019; Tang et al., 2020), in this contribution,
we select a tricarboxytriphenylamine (H3L) as a ligand to
construct a new Co coordiantion polymer is mainly based on
the following considerations: 1) The conjugated and photoactive
triphenylamine moiety makes the MOFs highly fluorogenic; 2)
Lewis base N sites on the internal surface of the framework can
improve the sensing of ions and adsorption of CO2; 3) The
carboxylate groups have multiple coordination modes to
coordinate the metal ions, and the uncoordinated O atoms can
provide interaction sites for the metal ions and NACs
(specifically, TNP containing three NO2 groups). Meanwhile,
among the MOF sensors, highly economical and abundant Co.
ions with magnetic properties have rarely been studied as sensors,
mainly because the non-d10 electronic structures have low
emission performance owing to d–d transitions (Mishra et al.,
2014; Chen et al., 2017; Zhang et al., 2018; Zhao et al., 2018).

For the recent years, significant progress has been expended on
the development of materials for CO2 capture, because CO2 is
responsible for the global warming. Utilizing the activated
carbon, zeolites or amine solutions for absorbing CO2 are
considered the most adequate adsorbents, though the
insufficient uptake capacity and high expense prevent these
materials mass production (Zhang et al., 2014).

Many human diseases and infections are caused by unsafe
drinking water and food containing bacteria such as Escherichia
coli, Staphylococcus aureus. As to the low molecular weight
antibacterial materials, they have many disadvantages, such as
toxicity to the environment, short-term antibacterial activity.
Hence, there is an urgent need for the development of
effective antibacterial materials (Haendel et al., 2014; Kaur
et al., 2020; Saira et al., 2020).

Taking the luminescence properties, CO2 adsorption and
antibacterial activity into consideration, we used the
coordination polymer as the multifunctional material for
sensitivity as well as CO2 adsorption and antibacterial activity.

In the manuscript, we obtained a Co. based coordiantion polymer
[Co3(L)2 (2,2′-bipy)2](DMF)3(H2O)3 (denoted as compound 1)
under solvothermal conditions which has been utilized as a
multifunctional MOF with preferential CO2 adsorption,
antibacterial activity, selective sensing of metal ions (Fe3+,
Cr3+) and TNP, meanwhile, magnetic measurements show that
there exists an antiferromagnetic exchange interaction in
compound 1.

MATERIALS AND METHODS

Synthesis of Compound 1
Co.(NO3)2•6H2O (29.1 mg), H3L (18.8 mg), and 2,2′-bipy
(15.6 mg), N,N-dimethylformamide (3 ml), distilled water
(1 ml), and ethanol (1 ml) were mixed in a 15 ml Teflon-lined
stainless steel autoclave and heated at 100 °C for 72 h. Upon
cooling at room temperature, purple crystals were prepared,
which were washed with DMF and dried at 60°C for 6 h. Yield
38% (based onH3L), IR (KBr 4000–400 cm−1) 3463 (w), 3082 (w),
2,793 (w), 2,496 (w), 1,593 (s), 1,388 (s), 1,191 (w), 1,036 (w), 803
(m), 768 (m), 704 (m), 636 (w), 485 (m). Elemental analysis (%):
Calcd for: C71H67Co3N9O18: C 56.39, H 4.43, N 8.34; Found: C
56.41, H 4.29, N 8.37.

RESULTS AND DISCUSSION

Crystal Structure of Compound 1
The single-crystal X-ray data were collected using the X-ray
diffraction technique and the results showed that
crystallization of compound 1 in the monoclinic space group
C2/c and the presence of two independent Co. atoms, one 2,2′-
bipy molecule, and one linker (L3−) in the asymmetric unit of 1
(Supplementary Figure S1). The Co1 atom is involved in

FIGURE 1 | The coordination mode of Co atoms in compound 1 (C:
Gray, N: Blue, Co:Purple, O: Red).
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coordination with six O atoms of the carboxylates of 6 L3−

ligands, showing an octahedral configuration (Co–O �
2.053–2.108 Å), the six-coordinated Co2 or its symmetry-
related Co3 atom displays a distorted octahedral configuration,
which is bonded with four carboxylate O atoms from 3 L3−

ligands, and 2 N atoms from one 2,2′-bipy molecule, Co2–O
and Co2–N or Co3–O and Co3–N are in the range of
2.007–2.183 Å and 2.085–2.115 Å, respectively (Figure 1)
(Mistri et al., 2017; Zhou et al., 2019), the bonding mode of
the carboxylate toward the six Co2+ ions is μ6-η1:η2:η1:η1:η2:η0
(Supplementary Scheme 1 in the Supplementary Information),
the adjacent Co1–Co3 atoms (Co···Co. separation,
3.168–6.337 Å) are united together by six carboxylates to form

trinuclear Co.(II) clusters, each cluster can be connected to the
adjacent ones to evolve a unique bylayer 2D framework,
which contains quadrangle grids with a size of 7.0 Å ×
6.4 Å running along the b-axis (atom-to-atom distance)
(Figure 2). The 2D layers are then further converted into
a 3D (supramolecular) structure via interactions of π–π
stacking with the distance of 3.317 Å (Figure 3). The
solvent-accessible volume in compound 1 was found to be
28.8 % (calculated using the PLATON software.12 after
removal of solvent molecules).

If the L3− ligands are defined as three-connected nodes, and
the trinuclear Co.(II) cluster as six-connected nodes, the entire
structure of Co. coordiantion polymer can be denoted as a (3, 6)-
connected two-nodal net with a point symbol of {43}2{4

6.66.83},
displaying the kgd topology (Supplementary Figure S2) (Kim
et al., 2012; Wang et al., 2014).

Gas Sorption Experiment
The as-synthesized compound 1 was subjected to stirring with
methanol at ambient temperature for 24 h to remove the solvent
in the pores, followed by filtration of the compound and keeping
at 60°C for 6 h in an oven. The compound was then heated for
24 h at 100°C under a vacuum to obtain the activated sample, 1a.
The N2 adsorption isotherm was acquired at 77 K, the result
indicates that 1a displays a reversible type-I adsorption isotherm
with the Brunauer–Emmett–Teller (BET) surface area of
658 m2·g−1, and the N2 uptake (1 atm) reached 307 cm3·g−1
(Figure 4A). Meanwhile, the CO2 adsorption isotherms for 1a
were measured at 273 and 298 K; at 273 K (1 atm), and 298 K
(1 atm) the CO2 uptakes reached a maximum of 74 cm3·g−1 and
50 cm3·g−1, respectively (Figure 4B). The PXRD pattern of
compound 1a remained stable after the adsorption of N2 and
CO2 (Supplementary Figure S11). Considering the adsorption
isotherm at 298 K, the observed CO2 adsorption capacity of 1a
is better than the metal-organic frameworks including

FIGURE 2 | The 2D framework of compound 1 (Co:Purple, O: Red, N:
Blue, C: Gray).

FIGURE 3 | The structure of compound 1 and interactions of π–π stacking (C: Gray, O: Red, N: Blue, Co:Purple).

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 6789933

Zhou et al. Synthesis, Luminescence of Coordination Polymer

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


[Zn(BPTC)0.5 (Tz)]•DMF•CH3OH, JUC-MOF56, {[Cd2 (tdz)2
(4,4′-bpy)2]•6.5H2O}n, [Zn2 (TCA) (BIB)2.5]•(NO3),
([Zr6O4(OH)8(H2O)4(BTEB)2], and {[Cd4 (hbhdpy)2 (bdc-
NH2)3 (DMA)2]•(H2O)4}n that are summarized in
Supplementary Table S3 (Hong et al., 2017; Kong et al., 2018;
Yao et al., 2018; Zhou et al., 2018; Liu et al., 2019). The
adsorption isotherms show typical type-I sorption isotherm
with fast kinetics and good reversibility, further indicating its
microporosity.

To understand better the CO2 adsorption, we calculated the
Qst (isosteric heat) for 1a using the CO2 adsorption data, which
were recorded at 273 and 298 K using the virial coefficient
method. As depicted in Figure 4C, the Qst value reached
25.5 kJ mol−1 at zero loading, showing the good interactions
of framewok–CO2 in compound 1, which can be ascribed to
the uncoordinated O sites, N-donor of the H3L, and the unique
microporous channels. The dual-site Langmuir-Freundlich
(DSLF) model was also utilized to fit the absolute
adsorption isotherms of CO2 from molecular simulations
(Figure 4D). The result shows that the simulated

CO2 adsorption isotherms are in accordance with the
experimental datas.

Magnetic Properties
Compound 1 was subjected to magnetic susceptibility
measurements in the range 2–300 K at 1,000 Oe field, plots of
the variable temperature magnetic susceptibility for compound 1
in the form of χmT vs T are presented in Figure 5. Compound 1
showed a higher χmT of about 17.17 emuK·mol−1 for a Co3 unit at
300 K than the calculated spin-only value for three isolated Co2+

ions (5.75 emuK mol−1 and S � 3/2), and lies well in the range
identified for octahedral Co2+ ions in the 4T2g state, which is due
to the significant contribution of orbitals belonging to Co2+ ion in
the octahedral surroundings. Upon cooling, the χmT value
decreases sharply until the temperature descends to 11 K, then
it starts to increase rapidly, attaining a minimum value of 6.84
emuK·mol−1 at 2 K. The behavior is consistent with
antiferromagnetic phenomenon between 11–300 K. The
magnetic susceptibility fits the Curie−Weiss law well above
130 K, giving C � 20.95 emuK·mol−1 and θ � −185.5 K,

FIGURE 4 | (A) N2 adsorption isotherms of 1a at 77 K; (B) CO2 adsorption isotherms of 1a at 273 K, 298 K; (C) Heat of CO2 adsorption as a function of uptake
amount; (D) The DSLF model for CO2 adsorption isotherms.
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indicating an antiferromagnetic interaction between the
Co3 units.

Luminescent Emission
The solid-state emission spectra of compound 1 and H3L ligand
are depicted in Supplementary Figure S3. The free ligand H3L
displayed emission at 448 nm when it is excited at 330 nm.
Meanwhile, compound 1 showed an emission peak at 420 nm
under excitation at 345 nm, there is a blue shift of 28 nm in
comparison with the H3L ligand. The fluorescence emission of
compound 1 can be associated with the corresponding
intraligand transitions (π*→ π and π*→ n) (Zhang et al., 2018).

We select compound 1a as a representative example to study
its sensing sensitivity. Dispersions of compound 1a (3 mg) in
different solvents, namely DMA, DMF, methanol, ethanol,
acetonitrile, dichloromethane, 1,4-dioxane, NMP (N-methyl-2-
pyrrolidone), and H2O (3 ml) were prepared, and the emission
spectra were measured. As shown in Figure 6, the luminescence
intensity was affected by the solvent, especially for DMA.

The above fluorescence performance prompted us to explore
their potential sensing of metal ions. Samples of grounded 1a
were dispersed in M(NO3)x DMA solution separately (3 mg each
sample in 3 ml, 0.01 M, M(NO3)x) (M � K+, Cd2+, Na+, Zn2+,
Co2+, Cu2+, Mn2+, Ni2+, Pb2+, Bi3+, Fe3+, Al3+, Cr3+), followed by
ultrasonication for 1 h to obtain the uniform suspensions, the
luminescence intensities of the suspensions were measured. The
different emission peaks are shown in Figure 7, the metal ions
exhibited different influence on the luminescence intensity, and
the result showed that Fe3+ and Cr3+ exhibited a remarkable effect
to quench the luminescence of 1a, which indicate the high
sensitivity performance of 1a towards Fe3+ and Cr3+, the
PXRD of compound 1a were measured after sensing the metal
ions which remained their structural integrity (Supplementary

FIGURE 7 | Fluorescent analysis of 1a toward various metal ions
(10–2 M) in DMA solution.

FIGURE 8 | Fluorescence of 1a in DMA containing different volumes of
Fe3+ (1 × 10–3 M).

FIGURE 5 | Magnetic susceptibility of compound 1 plotted as χm vs. T
(black) and χmT vs. T curves (blue).

FIGURE 6 | Fluorescent spectra of compound 1a in different solvents.
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Figure S12). Furthermore, the anti-interference experiments
were performed and the results indicated that the presence of
other metal ions would not disturb the selective sensing of Fe3+ or
Cr3+ (Supplementary Figure S7). Meanwhile, 3 mg samples of 1a
were ground and immersed in DMA solution, sonicated for 1 h,
the well-dispersed original suspensions were obtained, the Fe3+ or
Cr3+ have been prepared in 1 × 10–3 M or 5 × 10–3 M DMA
solution. The emission intensity decreased by gradually
increasing the volume of Fe3+ and Cr3+ (Figures 8, 9).
Compound 1a was centrifuged and washed by DMA solvent
after sensing Fe3+ or Cr3+, the framework of the regenerated
samples retained their stability, and reused for three cycles, the
PXRD pattern of compound 1a is consistent with the recovered
samples after three cycles (Supplementary Figure S13).

The fluorescence quenching efficiency can be discussed
though the linear Stern–Volmer (S–V) equation: I0/I � 1 + Ksv

[M], where I0 and I are the fluorescence intensities before and
after the addition of Fe3+ or Cr3+, Ksv and [M] are the quenching
constant and the concentration of Fe3+ or Cr3+, the Stern–Volmer
analysis of quenching effect on Fe3+ and Cr3+ ions show that the
values of Ksv for Fe

3+ and Cr3+ ions are 5.4 × 104 M−1, 7.83 ×
103 M−1, and the limit detection of Fe3+ and Cr3+ are 0.278 mM,
1.91 mM respectively (Figs. S4 and S5).

The results indicate that compound 1a has the potential to act
as a luminescence sensor toward Fe3+, Cr3+.

The NACs are explosive and environmentally deleterious.
They have been used a lot in the chemical industry, so it is
necessary to develop effective and quick detection of NACs. As
presented in Figure 10, the luminescent intensity of 1a is
completely quenched at 425 nm in the presence of TNP, while
no obvious luminescent changes of 1a can be observed in other
NACs, confirming that TNP has a pronounced emission
quenching of compound 1a, while other NACs showed less
pronounced quenching.

To investigate further the sensitivity of 1a for TNP, a
fluorescence titration study of TNP was conducted
(Figure 11), the results showed that with increased
incorporation of TNP solution (10–3 M), the luminescent
intensity drastically decreased. Moreover, For the emission
band of 1a, there is a large bathochromic shift of 39 nm,
which is due to the energy transfer between TNP and
compound 1a (Gogia and Mandal, 2019). The quenching

TABLE 1 | Inhibition zone diameters of compound 1 (A), H3L (B) and 2,2′-bipy (C).

Diameters A B C

Samples of inhibition
zone (mm)

Escherichia coli 5 0 0
Staphylococcus aureus 0 0 0

FIGURE 9 | Fluorescence of 1a in DMA containing different volumes of
Cr3+ (5 × 10–3 M).

FIGURE 10 | Fluorescence of 1a in NACs solutions (10–3 M).

FIGURE 11 | Fluorescence of 1a in DMA containing different volumes of
TNP (10–3 M).

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 6789936

Zhou et al. Synthesis, Luminescence of Coordination Polymer

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


effect of TNP on compound 1 can also be explained by the Stern-
Volmer equation, and the details are provided in the SI. The S–V
plot shows that the concentration of TNP and I0/I possess a direct
relationship over the added TNP volume range (100–1000 μL),
with a linear fit coefficient value of 0.982. It is commendable that
the Ksv value of sensing TNP reaches 3.99 × 105 M−1

(Supplementary Figure S6), which is one of the highest
reported values for TNP sensing, and the limit detection of
TNP is 0.0376 mM (Hong et al., 2017; Hua et al., 2018; Gogia
and Mandal, 2019; Ghorai et al., 2019; Wang et al., 2019).

In addition, the Fe3+, Cr3+ and TNP solutions exhibit an
absorption in the 260–500 nm range, which has overlaps with
the excitation of compound 1a (Figs. S8 and S9). This shows the
energy of excited light is taken by Fe3+, Cr3+ or TNP, so the
transfer of energy from L3- to Co2+ is blocked, resulting the
quenching effect on compound 1a. The sensing mechanism for
metal ions can be attributed to the suppression of luminescence
resonance energy transfer and the enhancement of
intermolecular electron transfer (Chen et al., 2018).

Antibacterial Activity
The antibacterial activities of compound 1 against Staphylococcus
aureus and Escherichia coli were measured using the
transparent ring method. Compound 1, the organic linker
of TCA, and 2,2′-bipy were dissolved in distilled water with a
concentration of 2 mg/ml. All the cultures were incubated for
18 h at 37 °C.

The results of the inhibition zone (ZOI) are shown in
Table 1 which reveals the antibacterial potential of
compound 1 against E. Coli, whereas compound 1 does not
have antibacterial activity against S. aureus (Supplemetary
Figure S16). Therefore, compound 1 has potential
applications as an antibacterial agent.

CONCLUSIONS

A new fluorescent 3D supramolecular Co. coordination polymer
that contains uncoordinated O atoms in the channels was
synthesized and characterized. The activated 1a exhibits a
strong affinity toward CO2 molecules, with the adsorption of
74 cm3·g−1 (273 K, 1 atm). Magnetic measurements show that an

antiferromagnetic exchange interaction exists in compound 1.
Moreover, compound 1 shows luminescence quenching with
Fe3+/Cr3+ metal ions, further studies on detection of NACs
showed high performance for sensing TNP. These results may
contribute to the design of more multifunctional coordiantion
polymers.
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