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An electron acceptor with a truxene core and ring-fusion perylene diimide (PDI) tripolymer

annulated by selenium (Se) branch, named as FTr-3PDI-Se, is designed and synthesized.

FTr-3PDI-Se exhibits large conjugated planar conformation, strong absorption spectra in

the regions of 300–400 and 450–550 nm, the deep HOMO energy level of 6.10 eV, and

high decomposition temperature above 400◦C. The FTr-3PDI-Se: PBDB-T-2Cl based

device achieved a disappointing power conversion efficiency (PCE) of 1.6% together

with a high Voc of 1.12 V. The low PCE was due to the large aggregates of blend film, the

imbalanced hole/electron transport and low PL quenching efficiencies. The high Voc can

be attributed to the high-lying LUMO level of FTr-3PDI-Se and the low-lying HOMO level

of PBDB-T-2Cl. Our research presents an interesting and effective molecule-designing

method to develop non-fullerene acceptor.

Keywords: organic solar cells, non-fullerene acceptor, truxene, perylene diimides, selenium

INTRODUCTION

Organic solar cells (OSCs) have attracted boundless interest over the past few decades owing to
the advantages of light weight, low cost, wide source, and large-scale roll-to-roll printing process
(Kang et al., 2016; Hou et al., 2018). Recently, the fullerene acceptors, due to their numerous of
disadvantages of weak absorption, limited structural modifications and electronic energy levels
non-tunability, were marginalized by non-fullerene acceptors (NFAs) (Cheng et al., 2018; Yan
et al., 2018). Significant progress in NFAs-based OSCs has been achieved with power conversion
efficiency (PCE) over 18% (Lin et al., 2020; Liu Q. et al., 2020; Zhan et al., 2021). Among the widely
reported NFAs, fused-ring electron acceptors (FREAs) and perylene diimide derivatives (PDIs) are
the two main study directions.

Because of the strong electron affinity, high absorption coefficient and electron mobility, as well
as energy-level tunability, PDIs are widely developed (Zhan et al., 2011; Li andWonneberger, 2012;
Liu et al., 2016; Sun et al., 2016; Feng et al., 2018; Agnieszka and Frank, 2019; Li M. Y. et al., 2020).
The large conjugated skeleton of PDI exhibits strong aggregation tendency, which may result in
self-trapping of light excitons and afterwards generate fast bimolecular recombination of charge
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carriers, limiting the high performance of OSCs (Sharenko
et al., 2013; Liu S. Y. et al., 2015). The researcher verified that
changing the planarity of the PDIs is the popular methods to
avoid this strong aggregation (Zhong et al., 2014, 2016; Lin
et al., 2016; Zhang et al., 2016; Duan et al., 2017a; Liu X.
et al., 2017; Liu et al., 2018). For example, various 3D electron
acceptors with the central aromatic core (atom) and twisted PDI
trimers or tetramer were investigated (Liu Y. H. et al., 2015;
Lee et al., 2016; Zhan et al., 2017; Zhang A. D. et al., 2017; Lin
et al., 2018a; Liu W. X. et al., 2020). A twisted configuration
of PDIs is confirmed effectively to avoid large aggregation.
However, the single bonding connection between central core
and PDIs would weaken charge mobility due to an excessive twist
geometry, giving a low OSCs performance. Therefore, the proper
twisted non-planar structures, i.e., good balance of desirable
film morphology with proper domain size and sufficient charge
transport ability seems to be the key point for developing high-
performance PDI electron acceptors (Lin et al., 2018a).

Interestingly, oxidative ring-fusion between the central
aromatic core and the PDI branches was verified to be an effective
strategy to achieve an exquisite balance aforesaid for high OSCs
performance (Hartnett et al., 2016; Meng et al., 2016a, 2017;
Zhong et al., 2016; Wang et al., 2017; Zhang J. Q. et al., 2017;
Lin et al., 2018a; Chen et al., 2020). The fused PDI NFAs all

SCHEME 1 | Chemical structure and synthetic routes of FTr-3PDI-Se.

FIGURE 1 | Views of the optimized geometries of FTr-3PDI-Se, and the LUMO/HOMO electron distribution obtained using DFT calculations at the

B3LYP/6-31G(d) level.

exhibited better planarity than non-fused counterparts, since the
aromatic core and PDI branches were locked by the adjacent
benzene. Meanwhile, the fused PDI NFAs showed stronger
intermolecular π-π stacking and higher electron mobility (Lin
et al., 2018a). Moreover, these fused PDI NFAs generated proper
phase separation with proper domain size and high domain
purity when blended with donors (Chen et al., 2018; Hu et al.,
2018; Wu et al., 2019). Therefore, the fused PDI NFAs displayed
better OSCs properties compared with unfused ones (Li et al.,
2016; Meng et al., 2016a, 2017; Liu X. F. et al., 2017; Wang et al.,
2017; Zhang J. Q. et al., 2017; Lin et al., 2018a; Yin et al., 2019;
Carlotti et al., 2020).

Recently, several studies showed that five-membered
heteroatom-annulated (nitrogen/chalcogen-fused in bay
regions) of PDIs has been regarded as the most effective
molecular design strategy to achieve high performance OSCs
(Sun et al., 2015; Meng et al., 2016a; Cann et al., 2017). The
five-membered heteroatom-annulated PDI NFAs reinforced
intra- and intermolecular interactions, leading to high electron
mobility, which achieved improved PCEs. Among the varied
nitrogen/chalcogen, the selenium atom (Se), since its enormous
and loose electron cloud, is much easier to realize orbital
overlap between the adjacent PDI NFAs, afterwards enhance
the charge carrier mobility (Meng et al., 2016b; Li et al.,
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FIGURE 2 | (A) TGA of FTr-3PDI-Se; (B) DSC of FTr-3PDI-Se; (C) normalized UV–vis absorption spectra of FTr-3PDI-Se in CHCl3 solution (FTr-3PDI-Se, s) and in film

(FTr-3PDI-Se, f); (D) CV curves of FTr-3PDI-Se.

2018; Luo et al., 2018; Li G. et al., 2020; Yang et al., 2020).
Moreover, due to the natural easy-polarizing characteristic
of the Se atom, the Se-annulated PDIs exhibit the stronger
intra- and intermolecular interactions, which also confirmed
the important application foreground of Se-annulation PDIs
in non-fullerene OSCs (Duan et al., 2017b; Yin et al., 2018; Li
et al., 2019; Luo et al., 2019; Qureshi et al., 2020; Wang et al.,
2020).

Truxene has been demonstrated as a promising skeleton
to construct high performance NFAs (Nielsen et al., 2013,
2014; Lin et al., 2018b; Wu et al., 2018). Inspired by the
above achievements of Se-annulated PDIs, herein, we
report the design and synthesis of truxene functionalized
star-shaped NFAs with fused selenium-annulated PDIs,
named FTr-3PDI-Se (Scheme 1). The devices based on
poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-chloro)thiophen-2-yl)-
benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-
bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)]
(PBDB-T-2Cl): FTr-3PDI-Se exhibited a PCE of 1.6% with a high
open-circuit voltage (Voc) of 1.12V. The FTr-3PDI-Se exhibited
large conjugated planar skeleton that can effectively promote
the blend films to form large aggregates, which may lead to
bimolecular recombination, limiting the OSCs performance.

RESULT AND DISCUSSION

Material Synthesis and Characterization
The synthetic routes of FTr-3PDI-Se was presented in Scheme 1

and the detailed synthetic procedure was provided in the

Supporting Information. Compounds FTr-3PDI was synthesized
according to the reported method (Lin et al., 2018a). FTr-
3PDI-NO2 was prepared with a high yield of 95% using the
fuming HNO3. Finally, the three fused selenium-annulated PDIs
branches based on truxene, FTr-3PDI-Se, was synthesized by
reductive cyclization reaction with Se powder. The as-synthesized
FTr-3PDI-NO2 and FTr-3PDI-Se were fully characterized by
1H NMR, 13C NMR, and MALDI-TOF mass spectrometry
(Supplementary Figures 1–6). Although large conjugated planar
conformation, FTr-3PDI-Se electron acceptor displays moderate
solubility in section of organic solvents such as chloroform,
toluene, and chlorobenzene at room temperature. We ascribe it
to the six hexyl chains of the truxene core.

Theoretical Calculations
The geometry and electron distribution of FTr-3PDI-Se was
presented by employing the density functional theory (DFT)
method at the B3LYP/6-31G(d,p) level in the Gaussian 09
software, where the long alkyl chain (–C6H13 of the truxene
core and –C5H11 of the PDIs branches) was simplified to methyl
groups (Figure 1). Obviously, FTr-3PDI-Se exhibits an overall
planarity structure from the top view and side view. According to
the optimized geometry, the highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO)
electron distribution were calculated. The LUMO is distributed
on two fused selenium-annulated PDIs sub-group. TheHOMO is
localized on one two fused selenium-annulated PDIs and truxene.
The different wave function distributions between HOMO
and LUMO are attributed to the degenerate orbital/multiple
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FIGURE 3 | (A) The device structure; (B) current densityevoltage (J-V ) characteristics; (C) external quantum efficiency (EQE) spectra of PBDB-T-2Cl: FTr-3PDI-Se

solar cells.

resonance configurations of the three fused selenium-annulated
PDI groups. Furthermore, the calculated LUMO and HOMO
levels were−3.30 and−6.00 eV.

Thermodynamic, Optical, and
Electrochemical Properties
Thermogravimetric analysis (TGA) measurement (Figure 2A)
demonstrated that FTr-3PDI-Se showed outstanding thermal
stability along with a high decomposition temperature (Td,
5%weight loss) exceeding 400◦C under nitrogen atmosphere,
benefiting from large conjugated planar conformation.
Afterwards, differential scanning calorimetry (DSC) was
performed without obvious endo- and exothermal peaks
from room temperature to 320◦C in the second heating cycle
(Figure 2B). The spectrum of FTr-3PDI-Se in chloroform
solution showed two sets of absorption bands in the range of
300–600 nm. The short wavelength region displayed a maximal
sharp peak of 360 nm with two broad shoulder peak, while
the longer wavelength region exhibited the maximal peak of
500 nm with two broad shoulder peak as well (Figure 2C).
FTr-3PDI-Se in thin film showed similar absorption spectra

outline to their solution ones, indicating that the intermolecular
aggregation is effective suppressed. Meanwhile, FTr-3PDI-Se
demonstrated a slightly large optical bandgap of 2.24 eV with

optical absorption onsets 555 nm (E
opt
g = 1240/λonset eV). The

absorption profiles of FTr-3PDI-Se is complementary to the
strong absorption of PDBT-T-2Cl donor, which was exhibited
in Supplementary Figure 7. The electrochemical property of
FTr-3PDI-Se in chloroform solution was investigated by CV,
as shown in Figure 2D. The half-wave potential of Fc/Fc+

was measured to be 0.40V, and the energy levels of HOMO
and LUMO were estimated from the onset oxidation (Eonsetox )
and reduction (Eonset

red
) potentials by equations: EHOMO =

-e(Eonsetox - EFc/Fc+ + 4.8) and ELUMO = -e(Eonset
red

- EFc/Fc+
+ 4.8), respectively (Li et al., 1999). The HOMO/LUMO
levels are −6.10/−3.65 eV. The slightly high-lying LUMO
level cooperate with low-lying HOMO level of donor will
contribute to achieve a high Voc. Meanwhile, the down-shifted
HOMO level maintain the excellent chemical durability,
and is favorable for hole transfer from excited acceptor to
donor in OSCs (Duan et al., 2016, 2017b; 2018; Jia et al.
2017).
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Photovoltaic Properties
The OSCs devices were prepared and measured with
a conventional device structure of ITO (indiumtin
oxide)/PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly
(styrenesulfonate))/PBDB-T-2Cl: FTr-3PDI-Se/PFN-Br
(poly[(9,9-bis(3’-((N,N-dimethyl)-N-ethylammonium)-
propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)])/Ag
(Figure 3A). PDBT-T-2Cl was picked as the medium-bandgap
donor to matched FTr-3PDI-Se acceptor benefiting from their
complementary absorption and appropriate energy levels. The
devices were fabricated and evaluated in terms of donor/acceptor
weight ratios, solvent additives, and thermal annealing. All
the device parameters under the mentioned above conditions
are listed in Supplementary Tables 1–3. The optimal devices
fabrication is that chlorobenzene as the main processing solvent
with 1% chloronaphthalene solvent additives, and the annealing
temperature is 120◦C. The total concentration of PDBT-T-2Cl
and FTr-3PDI-Se was optimized to be 20mg mL−1 with the
donor:acceptor weight ratio of 1.5:1. The optimized device
parameters are summarized in Table 1, and the corresponding
J–V curves are shown in Figure 3B. The optimized OSC device
based on PBDB-T-2Cl: FTr-3PDI-Se exhibited a PCE of 1.6%
with a high Voc of 1.12V, but a relatively poor short-circuit
current density (Jsc) of 3.6mA cm−2 and a fill factor (FF) of
38.9%. The high Voc is consistent with the high-lying LUMO
level of FTr-3PDI-Se and low-lying HOMO level of PDBT-T-2Cl.

The external quantum efficiency (EQE) spectra of PBDB-
T-2Cl: FTr-3PDI-Se films were collected from the above

TABLE 1 | Photovoltaic parameters of OSCs based on PBDB-T-2Cl: FTr-3PDI-Se

under AM1.5G illumination at 100 mW cm−2.

Acceptor

devices

Voc (V) Jsc (mA cm−2) Jacal (mA cm−2) FF PCE (%)

PBDB-T-2Cl:

FTr-3PDI-Se

1.12 3.6 3.5 0.39 1.6

aCalculated from EQE intetrations.

optimized devices and displayed in Figure 3C. The calculated
Jsc of 3.5mA cm−2 from the EQE spectra was consistent
with the measured Jsc (Table 1). The continuous EQE
responses between 300 and 700 nm for the PBDB-T-2Cl:
FTr-3PDI-Se based device results from the complementary
absorption of PBDB-T-2Cl: FTr-3PDI-Se blend film
(Supplementary Figure).

Charge Transport and Recombination
The charge transport were acquired by single-carrier devices
with a device structure of ITO/ZnO/PBDB-T-2Cl: FTr-3PDI-
Se/Ca/Al for electron only devices and ITO/PEDOT:PSS/PBDB-
T-2Cl: FTr-3PDI-Se/MoO3/Ag for hole only devices, respectively
(Supplementary Figure 8). The hole mobilities (µh) of PBDB-T-
2Cl: FTr-3PDI-Se blend film was estimated to be 4.5× 10−6 cm2

V−1 s−1. In contrast, the electron mobility (µe) was measured to
be 2.2 × 10−4 cm2 V−1 s−1, which are two orders of magnitude
higher than µh. The low hole mobility and highly imbalanced
µe/µh seriously suppress the charge transport and give rise to
more bimolecular recombination, which in turn acquire low FF
and Jsc.

The photoluminescence (PL) quenching experiments were
proceeded to study the charge transfer efficiency. As shown in
Supplementary Figure 9, the PL quenching efficiencies of PBDB-
T-2Cl: FTr-3PDI-Se blend films are 83.3 and 47.7% as compared
to the neat PBDB-T-2Cl and FTr-3PDI-Se films, respectively,
suggesting a moderate exciton dissociation efficiency.

Morphology
The surface morphology of PBDB-T-2Cl: FTr-3PDI-Se blend
films were investigated using atomic force microscopy (AFM).
The film exhibited obvious phase separation with nanofibrillar
structures (Figure 4), forming a relative coarse surface with
a RMS surface roughness of 3.97 nm. The large planar
conformation of FTr-3PDI-Se, can effectively promote the blend
films to form large aggregates.

FIGURE 4 | AFM height and phase images of PBDB-T-2Cl: FTr-3PDI-Se blend films.
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CONCLUSION

In summary, FTr-3PDI-Se was synthesized and employed as
electron acceptors for organic solar cells. The optimized devices
based on PBDB-T-2Cl: FTr-3PDI-Se displayed a PCE of 1.6%,
which was attributed to the following reasons. The conjugated
planar conformation of FTr-3PDI-Se, verified by the DFT
quantum calculation, can effectively promote the blend films
to form large aggregates, which impeded the charge transport.
Meanwhile, the imbalanced hole/electron transport and low PL
quenching efficiencies seriously obstruct the charge transport and
reduce exciton dissociation efficiency. Obviously, this research
missed the balance between the highly twisted non-planar
structures and coplanar conformation. Taking the excellent
advantages into consideration and discard the disadvantages, we
expect that the combination of the fused selenium-annulated
PDIs with other conformation cores will create more promising
and practical acceptors.
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