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Of the multiple areas of applications of DNA nanotechnology, stimuli-responsive
nanodevices have emerged as an elite branch of research owing to the advantages of
molecular programmability of DNA structures and stimuli-responsiveness of motifs and
DNA itself. These classes of devices present multiples areas to explore for basic and
applied science using dynamic DNA nanotechnology. Herein, we take the stake in the
recent progress of this fast-growing sub-area of DNA nanotechnology. We discuss
different stimuli, motifs, scaffolds, and mechanisms of stimuli-responsive behaviours of
DNA nanodevices with appropriate examples. Similarly, we present a multitude of
biological applications that have been explored using DNA nanodevices, such as
biosensing, in vivo pH-mapping, drug delivery, and therapy. We conclude by
discussing the challenges and opportunities as well as future prospects of this
emerging research area within DNA nanotechnology.
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INTRODUCTION

There has been expanding attempt in the advancement of stimuli-responsive nanomaterials with the
expectation that they can be formed into powerful diagnostic vehicles that can sense and deliver at
the targeted or disease site in vivo (Stephanopoulos et al., 2013; Zhu et al., 2013; Bai et al., 2016;
Rogers et al., 2016; Wang et al., 2016; Zhou et al., 2017; Wang et al., 2017a; Sawada and Serizawa,
2018; Sugimoto et al., 2019). Biomolecules already have encoded structural and functional
information in them are nanoscale materials that can be modified and used to make human-
made building blocks to form stimuli-responsive nanostructures. DNA (Rogers et al., 2016), protein
(Bai et al., 2016), enzymes (Wang et al., 2016; Zhou et al., 2017), viruses (Sawada and Serizawa, 2018;
Sugimoto et al., 2019) and others are potential nanomaterials for controllable self-assembly structure.
The ordered system, adjustable functional groups, and unique properties at the molecular level allow
these biological nanomaterials to be used in material science, tissue engineering, biosensors,
biomedical engineering, and nanotechnology (Stephanopoulos et al., 2013; Zhu et al., 2013;
Mauro et al., 2014; Wang et al., 2017a). The critical challenge is to control the self-assembly of
biomolecules. Managing molecule-molecule interactions (such as hydrogen bonding, electrostatic
interactions, DNA/RNA hybridization) or applying external stimulations (such as pH, temperature
etc.) can solve this challenge. These biomolecular self-assembled nanomaterials’ applications can be
improved by adding functional biocompatible nanoparticles like quantum dots, graphene, carbon
tubes, and polymers. This assembly helps make hybrid nanomaterials that are more superior in terms
of biomedical application than the individual nanomaterial. For example, Zao et al. synthesized
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photothermal peptide-porphyrin self-assembly based nanodots for
anti-cancer therapy. These nanodots are biocompatible and suitable
photothermal agents for cancer cell ablation (Zou et al., 2017). In
Ravoo’s group, they constructed hydrogel of small molecular weight
peptide (Nap GFYE) containing iron oxide paramagnetic
nanoparticles. The hybrid hydrogel can quickly transform into gel
to sol transition on the application of the external magnetic field.
Such stimuli-responsive hydrogel shows significant potential for on-
demand drug release applications (Nowak et al., 2021).

Recent discoveries in the field of DNA nanotechnology brings
close attention to DNA self-assembly in several disciplines. DNA
self-assembly can arrange heteroelements in a manageable
fashion. It was Seeman’s idea that biomolecules like protein
can be organized and oriented the same as DNA lattices. The
ordered structure of proteins obtained, just like natural crystals,
allow their study with X-ray crystallography (Seeman, 1982).
These engineered frameworks use a grouping of endogenous or
exogenous stimuli to initiate an assortment of reactions that can
encourage targeted drug delivery. A set of endogenous stimuli is
equipped for prompting changes in nanomaterial structure and
functionality, vast numbers of which show changing articulation
designs inside specific cell organelles or in unhealthy tissue
(Rapoport, 2007; Ganta et al., 2008; De La Rica et al., 2012;
Fleige et al., 2012). These improvements incorporate proteins
(Verma et al., 2018), nucleic acids (Rosi et al., 2006), peptides
(Feyzizarnagh et al., 2016), small particles (Decuzzi et al., 2017),
electron transport reaction (Forsyth et al., 2017), osmotic
pressure (Chien and Lin, 2002), viscosity, and neighboring
environmental components, for example, pH (Foss et al.,
2004), temperature (Nakayama et al., 2006), or redox state.
Notably, while multiple frameworks prefer response towards
normally emergent endogenous stimuli, more effort is focused
on methods depending on exogenous stimuli. For example,
ultrasound (Unger et al., 2001), electromagnetism (Xiao et al.,
2012), temperature (Lee et al., 2021), and light (Wang et al., 2018)
can be applied straightforwardly to the targeted tissue to control
localization or cargo release (Rapoport, 2007; Ganta et al., 2008;
De La Rica et al., 2012; Fleige et al., 2012). Evan et al. use
ultrasound waves in localized delivery of DNA encapsulated in
microbubble for gene therapy (Unger et al., 2001). When the
microbubble exposed to ultrasound waves, cavitation occur
locally, releasing DNA. Zeyu et al. developed DNA self-
assembly targeted gold nanoparticles for cancer thermo-
chemotherapy. They have designed 24 base pair DNA
sequence for doxorubicin (Dox) loading. The DNA self-
assembly is encapsulating Dox, conjugated onto gold
nanorods. One of the DNA strands has NH2-terminated PEG-
folic acid for targeted delivery of cargo to the cancerous cells. On
providing, NIR radiation, the gold nanorods heat up, resulting in
DNA denaturation and release of the drug (Xiao et al., 2012).
Chen et al. in 2018 have synthesized photoresponsive nucleic
acid-based carboxymethyl cellulose (CMC) based shape-memory
hydrogels. The synthesized hybrid hydrogel mutually stabilized
by photoisomerizable trans-azobenzene/β-cyclodextrin and DNA
as cross-linker. The CMC acts as a backbone of the hydrogel. The
presence of the carboxylic acid group on the CMCmatrix provide
sites for attachment of different functional groups. trans-

azobenzene/β-cyclodextrin supramolecular complexes and
duplex nucleic acid bridges bind to such sites. By treating the
hydrogel to UV radiation, trans-azobenzene is converted to a cis
form, which reduces its binding affinity to β-cyclodextrin, leading
to low hydrogel stiffness (Wang et al., 2018). Such hydrogels can
be used for localized and time-dependent delivery of drugs. Lee
and coworkers have also developed smart DNA nanogels for
stimuli-responsive release of cancer therapeutic drug. Gold
nanoparticles were incorporated in these DNA nanogels for
light-induced temperature increase. The temperature induced
disassembly, therefore, shows precise control over the release
of the loaded drug (Dox) (Lee et al., 2021).

Yu and coworkers developed DNA based shape memory
DNA/acrylamide hydrogel strengthen by duplex nucleic acid
and pH-responsive cytosine rich, I-motif. At pH 7.4, the
I-motif bridges were separated, changing the hydrogel to a
liquid-quasi shapeless state. The duplex DNA bridges are the
permanent shape-memory element in the hydrogel. At pH five or
Ag˖ ion, the quasi-liquid formless state of hydrogel reverse back to
a normal stable condition (Yu et al., 2016). Temperature
measurement at single-cell level is challenging and an
important task to understand functional moieties in a complex
system. Michael Famulok et al. developed thermal responsive
DNA nanojoints. These DNA nanojoints are made of two
interlocked double-stranded DNA (dsDNA) rings. They can
be switched from static state to mobile state at different
temperature conditions without including any unique
annealing process. The temperature response range of these
nanojoints, which made up of DNA catenanes, can be tuned
by changing the length and the sequence of hybridized part in the
structure (Ma et al., 2020). As these stimuli may provide
spatiotemporal authority for the activation of nanomaterials it
is essential to coordinate the functional application with a suitable
stimuli, to design responsive materials.

Deoxyribonucleic acid (DNA) has indicated extraordinary
potential in the creation and development of nanostructures
and devices. The double-stranded helical structure of DNA is
key to its utilization in self-assembling applications. Using single-
stranded overhangs, the double-stranded DNA can be
engineered. The hybridization of two double-stranded DNA
because of these overhangs leading to the formation of further
self-assembly. DNA has advantages over others for forming
devices and computational components, forming interconnects
or as the device component itself. To start with, DNA is the
molecule whose intermolecular interactions are the most
promptly modified and dependably anticipated where G bonds
C and A bonds T. Accordingly, the properties that make DNA
hereditary material likewise make it a genuinely appropriate
particle for programmed self-assembly. Second, DNA formed
by different sequences can be obtained by solid support synthesis.
DNA modification also takes place with biotin groups, and
fluorescent markers presented new DNA applications in
nanobiotechnology. Third, DNA can be modified using
different enzymes that incorporate restriction endonucleases,
exonucleases, and DNA ligases.

According to the need, both single and double-stranded DNA
are part of many devices, which can be used both as flexible and
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rigid molecular parts. A capable blend of these components
passes on specific mechanical and chemical properties to the
resultant devices. ssDNA can be used both as a flexible
component and accessible molecular tags to which its
complementary strand can easily bind. dsDNA is ordinarily
utilized as inflexible structure blocks yet may likewise add to
the devices’ chemical function by including chemical
modifications and binding sites. Based on the principle of
Holiday junction, 4 DNA strands could be self-assembled into
rigid 4-way junction (Seeman, 2003). Double crossover (DX) tiles,
triple-crossover (TX) tiles and paranemic-crossover (PX) tiles
having excellent rigidity were used to create versatile DNA
nanostructures, including both 2D and 3D architectures (Liu
et al., 2004; Endo et al., 2005; Liu et al., 2008). The dsDNA is also
used for the “mechanochemical” functioning of many devices.
The thermodynamics and kinetics of formation of the double-
stranded structure of DNA as well as the mechanical properties of
both single and double-stranded DNA play a significant role not only
in construction but also in the functioning ofDNA-based nanodevices
which can act as “smart programmable stimuli responsive materials
for biological and biomedical applications” (Figure 1).

DESIGNING DNA NANODEVICES FOR IN
VIVO APPLICATIONS

Although a few DNA based nanodevices have been applied to
cells in culture, their application in multicellular life forms has
barely arisen. The most crucial issue for in vivo applications of

nucleic acid nanodevices at the cellular level is their stability and
kinetics. The effective concentrations in the crowded cellular
environment differ from those in the standard in vitro
conditions where experiments are performed in well-mixed
buffer systems. This leads to a very different volume and
osmotic pressure effects, influencing the structure of DNA
(Miyoshi and Sugimoto, 2008). For example, G-quadruplex
structures in telomeres or three-way junctions (Muhuri et al.,
2009) can be stabilized under molecular crowding conditions. A
few designer DNA nanodevices have been used for biomedical
applications like drug delivery and diagnostic probes in living
systems (Krishnan and Bathe, 2012). Apart from the stability, the
significant primary molecular barriers faced in-vivo are targeted
delivery to the site of interest and toxicity towards the host
organism. Currently, the predominant method of delivery of
DNA nanodevices dependent on their injections to specific cell
types. The first study of stimuli-responsive DNA nanodevices on
a multicellular organism was done using a responsive DNA
nanodevice, the I-switch. This I-switch was injected into
Caenorhabditis elegans. The I-switch targeted specific
scavenger cells that show anionic cell surface ligand-binding
receptor (Figure 2A). Once it is internalized, the I-switch
could probe endosomal maturation (Surana et al., 2011).
Similarly, DNA icosahedron is used for drug delivery. to
scavenger cells, in this case, both device stability and cargo
functionality were preserved after delivery of drug (Bhatia
et al., 2011; Surana et al., 2013) (Figure 2A).

DNA nanodevices have also been delivered intravenously in
mammalian models. An overall designing rule for focusing on the

FIGURE 1 | DNA-based stimuli-responsive nanodevices. (A). DNA i-motif based pH responsive nanodevice (Surana et al., 2011), (B). Light-responsive DNA-gold
nano particles (Xiao et al., 2012), (C). Hydrogel crosslinked with DNA aptamer, which enables it’s conversion from gel to sol and triggers the release of embedded
fluorescent particles (Yang et al., 2008), (D). Temperature sensitive DNA hydrogels, where GC content of the sticky ends decides the association-dissociation point (Xing
et al., 2018), (E). Hydrogel monomers having disulfide linkages breaks apart due to enzyme activity of glutathione (GSH) (Li et al., 2015), and (F). Nucleic acid
responsive nanotweezers act upon hybridization with target nucleic acid (Yurke et al., 2000).
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nanodevices to the site of interest exploits the presence of specific
ligands on the nanodevice that empowers its binding to a cell-
specific endogenous receptor, prompting its cell take-up.
Tetrahedron DNA nanoparticles can target cancerous cells by
exploiting the overexpression of folate receptors on cancer cells.
Tetrahedron nanodevices having folate moieties and siRNA are
used for targeted delivery to xenograft tumor in nude mice
(Figure 2B) (Lee et al., 2012a). After the internalization of the
tetrahedron nanoparticles inside the cell, siRNA reduces the
expression level of the target gene (Lee et al., 2012a).
However, despite the targeting of DNA nanodevices to specific
tissues, some nanoparticles are taken up by non-cancerous cells
expressing folate receptors on their surface, making this strategy
less specific (Antony, 1996). Out of various delivery modes, oral
delivery is quite famous in animals, but not much work done so
far in delivering DNA nanodevices through this delivery model.
The main reason can be that DNA nanostructures are highly
susceptible to acid-catalyzed digestion, nucleases and cannot
easily pass through cell barriers. Apart from nucleic acids,
other biomolecules such as proteins and peptides are primarily
packed in nanoparticles, polymers, dendrimers, and micelles to
prevent destruction from low intestinal pH and proteolysis
(Longmire et al., 2008; Gupta et al., 2013). Intranasal delivery
shows very promising results. There are rapid absorption and less
metabolism rate of nanoparticles delivered through this method
because of the high permeability and surface area of nasal
endothelial cells. Also, this method of administration is non-
invasive and user friendly (Ali et al., 2010). This method also
provides access to the mammalian central nervous system, whose
pathways are still not well understood (Dhuria et al., 2010). One
such example is plasmids coated with polycationic lysine

derivatives have been administered intranasally in rats leading
to green fluorescent protein expression in the brain (Harmon
et al., 2014). Other routes to deliver DNA nanodevices to specific
tissues are direct injections to the target site. Most frequently used
are chitosan-DNA nanoparticles injected into rat brain (Yurek
et al., 2011), liver (Dai et al., 2006), eye (Farjo et al., 2006; Ding
et al., 2009), and lungs (Ziady et al., 2003). Direct tissue infusions
present great potential as they give high local concentrations and
limit toxicity yet are intrusive and require exceptional mastery.
Critically, despite the delivery course, DNA nanostructures will
probably evoke an immune response that would be either utilized
properly or moderately reduced depending on the functionality of
the DNA nanostructure, like a vaccine or therapeutic cargos.

There are several cellular mechanisms to dispose of the extra
DNA from the system to maintain homeostasis, so the efficiency
and stability of DNA nanodevices need to match the applications
for which they are being used. Stability in the organism’s
circulatory system depends on many complex factors such as
digestion from DNases, shape, size, cellular uptake, and removal
of DNA nanodevices from circulation through the liver and
kidney. For example, Shih and coworkers improve the stability
of DNA nanostructures by coating them with PEGylated
oligolysines which protect the DNA nanostructures against
low salt concentration and inhances nuclease resistance up to
400 folds. They further increase the nuclease resistance up to
more than 250 folds and incubation timemore than 48 h in Dnase
I solution by using glutaraldehyde, crosslinking PEGylated
oligolysines. DNA nanostructures coated with cross-linked
oligolysines are biocompatible, and their internalization is easy
inside the cells compared to non-coated DNA nanostructures
(Anastassacos et al., 2020). The size and shape of different

FIGURE 2 | Receptor binding and delivery of DNA nanodevices: In vivo delivery of (A) i-motif based pH-responsive DNA nanodevice (left), cargo loaded DNA
icosahedron (right), and (B) DNA tetrahedron functionalized with folate-moieties for siRNA delivery.
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nanoparticles like gold, silica, carbon, quantum dots, dendrimers,
and liposomes affect their clearance time (Longmire et al., 2008)
and cellular uptake (Doshi and Mitragotri, 2010) in vivo
condition. Similar studies on DNA nanodevices are in
progress. For example, Bhatia et al. studied the uptake,
kinetics, and dynamics of DNA cages of different and found
out that there is a pattern in uptake of DNA nanodevices with
respect to the geometry of ligand and type pathway they are
endocytosed (Hivare et al., 2021). Through the understanding of
endocytic uptake and intracellular pathway of DNA nanodevices
will help in designing targeted therapeutics. Furthermore, if the
DNA nanostructures are partially dissociated, it will trigger a
strong immune response, elevated toxicity and higher off-target
delivery. Thus, both the stability of DNA nanostructure and
cellular uptake pathway cumulatively defines their bioavailability.

DNA BASED STIMULI-RESPONSIVE
DEVICES

Because of the incredible programmability of DNA molecules,
both static DNA nanostructures and sensitive dynamic devices
could be planned and built. In this manner, DNA
nanotechnology is at times isolated into two subfields: primary
DNA nanotechnology and dynamic DNA nanotechnology. The
objective of DNA nanotechnology is to combine and modulate
higher arranged DNA models, for example, one-dimensional
(1D) nanotubes (Huang et al., 2019), two-dimensional (2D)
arrays (He et al., 2005; Rothemund, 2006; Wei et al., 2012),
and different limited or occasional three-dimensional (3D)
structures (He et al., 2008; Zheng et al., 2009). Dynamic DNA
nanotechnology means to manufacture different dynamic
reconfigurable nanoscale devices, which function in a
controllable way depending on using different chemical or
physical stimuli. Indeed, stimuli-responsive DNA self-assembly
joins the highlights of both primary and dynamic DNA
nanotechnology. Stimuli-responsiveness of DNA nanostructure
can be grouped into six categories. 1. The protonation of
nucleobases presents some non-Watson-Crick base-pairing
interactions in nucleic acids (e.g., Hoogsteen hydrogen
bonding), which are profoundly sensitive to pH change. It
permits the development of secondary DNA structures in
somewhat acidic conditions, for example, triple-stranded
helices (trio) and four-stranded intercalated motif (i-motif).
This component has been used to plan pH-responsive
frameworks. 2. Toehold-mediated strand displacement: Strand-
displacement in DNA is fueled by the free energy of DNA
hybridization, started by an overhanging region present in
DNA called “toehold.” 3. DNA aptamer-target relation: DNA
aptamer has high specificity and affinity toward its target, which
can upgrade to responsive DNA self-assembly. 4. DNA chemical
modification using stimuli responsive groups. The chemical
molecules introduced into the system will strongly affect DNA
self-assembly both by chemical or physical signal. Modification
of DNA using azobenzene moieties helps in achieving the UV/

Vis light-responsive switches. 5. Intervention through existing
environmental molecules. The communications amongDNA and
molecules existing together with DNA, intervened by
electrostatic, intercalative, and other different processes, could
fill in as managing factors for DNA self-assembly. For instance,
pH-responsive self-assembly and dismantling of DNA
nanostructures have been accomplished through controlling
the protonation and deprotonation of ethylenediamine in a
buffer solution (Liu et al., 2017): 6. Base-stacking association:
In base-stacking, a non-covalent attractive force exists between
neighboring bases with a face-to-face arrangement, which has
been exhibited to apply a huge impact on the self-assembly of
DNA. For the most part, the initial three classes depend on
explicit DNA arrangements, for example, DNA aptamer and
i-motif. The last three classifications are sequence-independent
DNA, without including specificity in sequence designs. It’s
imperative that sometimes more than one trigger is used to
accomplish far-off and more complex controls on dynamic
DNA self-assembly. Stimuli-responsive DNA self-assembly has
discovered extraordinary applications in different fields, for
example, biosensing, drug conveyance, diagnostics, and
nanorobotics. The hybridization chain reaction (HCR) has
been generally used to design different sensors, including
electrochemical and fluorescent sensors (Bi et al., 2017).
Targeted drug delivery and treatment have been accomplished
through a controlled opening of an origami nanorobot dependent
on DNA aptamer-target interaction (Li et al., 2018).

KEY EXAMPLES OF DIFFERENT STIMULI
RESPONSIVE DNA NANODEVICES

Motifs
Homopolymer DNA synthesized artificially was used for
studying base-stacking in DNA duplex structure as they were
considered simplified models (Peters and Maher, 2010). At last, it
was discovered that these artificially synthesized homopolymers
formed diverse conformations, including non-Watson–Crick
base pairing. A-motifs having a structure of parallel duplexes
are formed by A-rich DNA (Figure 3A). C-rich DNA sequences
include i-motifs or i-tetraplexes (Figure 3B). G-rich DNA
sequences form G-quadruplexes (Figure 3C). G-quadruplexes
are considered by many as a potential anti-cancer target. The
incrimination of G-quadruplexes gives rise to several biological
dysfunctions leading to selectively alternation of the integrity of
cancer cells (Oganesian and Bryan, 2007). Specifically, the
arrangement of G-quadruplex-DNA towards the end of
telomeres has been accounted for not only to hinder the
telomerase interconnection and activity but also severely
hampering genomic stability by hindering the recognition
ability of telomerase binding proteins to their targets (Kelland,
2007; De Cian et al., 2008). Many cytotoxic anti-cancer drugs
such as Gemcitabine are explicitly delivered to cancerous cells
using G-quadruplexes as vehicle (Park et al., 2018). The folding
and unfolding of G-quadruplexes in response to environmental
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stimuli made them excellent signal transducer. Small metal ions
such as K+, Cs+, etc., are the first line stimuli that controls the
stability of G-quadruplex. That is why the G-quadruplex has been
used as a sensing device for metal ion detection and other
complex samples. The G-quadruplex are highly cation
dependent, so they are quickly being used as fluorescent bio
detector for metal ion detection such as potassium and copper
(Nagatoishi et al., 2005; Kong et al., 2009; Qin et al., 2018). Small
molecules like ATP and cocaine form the second category stimuli
for G-quadruplex. Proteins, DNA, and other such biomolecules
form the third category of the stimuli.

Octameric structures are formed by GU rich sequences where
G tetrads and U tetrads are intercalated, which lead to the display
of 8Us in an ordered spatial orientation (Nagatoishi et al., 2011).
Petraplexes are created by iGuanine (iG) by narrowing down the
angle of Watson-Crick base pairing and Hongsteen hydrogen
bonding sites being displayed (Zhao et al., 2009). DNA repeats
occurring naturally bear the cost of an asset of surprising
structures. Numerous genomic sequences comprising of
expandable repeats wind up shaping many unordinary motifs,
such as quartets composed of (CGG)n repeats, an imperfect
hairpin structure formed of (CNG)n repeats, slip-stranded
DNA (Pearson and Sinden, 1996), and many more such type
of structures.

Aptamers
An aptamer is formed of nucleic acid sequences (DNA or RNA)
having a length of 15–40 nucleotides or even longer and can bind
specifically to a given molecular target. Nucleic acid (Mayer et al.,
2011) forms a 3D structure when dispersed in solution. The shape
attained by the aptamer decides its binding site to which the

targeted molecule can easily bind. On the other hand, aptamers
may be preorganized in a form and, through an induced-fit
mechanism, bind to their target site. Aptamers can be created
against any biological target in a test tube through a procedure
called “systematic evolution of ligands by exponential
enrichment” (SELEX) (Ellington and Szostak, 1992). These
molecules can adopt extraordinary shapes based on the
massive number of permutations possible in nucleic acid
sequences. A considerable number of molecules can be
targeted through these aptamers, such as small molecules,
toxins, different classes of proteins, and even whole cells.
Aptamers show exquisite specificity and bind to their target
with high affinity (Kawazoe et al., 1997). The dissociation
constant Kd of aptamers majorly shows nanomolar regime in
case of proteins, and for small molecules, it goes to micromolar
regime. Aptamers offer several advantages over antibodies
because of their small size, as they are made up of a short
length of nucleic acids. Aptamers can be easily synthesized
in vitro as compared to antibodies leading to less variability in
every batch. They can be easily labeled without disrupting target
affinity and more excellent stability to sustain at high
temperatures. Low molecular weight help aptamers to have
excellent pharmacological properties like better target
accessibility, short circulation time, and rapid clearance.

Aptamers used for diagnostic purposes are conjugated with
nanoparticles for enabling detection. Zhao et al. synthesized
aptamer-modified silica fluorescent nanoparticles (FSNPs) by
conjugating amine-labelled Sgc8 aptamer to carboxyl-modified
FSNPs via amide coupling for the detection of leukemia cells (Tan
et al., 2016). The sensitivity and selectivity of Sgc8-FSNPs
accessed by flow cytometry and fluorescent spectrometry. Li

FIGURE 3 | Different kinds of motifs (A) A-motifs are pH-induced AH+
–H+A base-paired right-handed symmetric parallel-stranded duplex form of poly dA

sequences with a highly reversible nature. (B) I-motifs are pH-induced intercalated C-rich DNA quadruplex with C-C+ base pairing. (C) G-quadruplexes are formed by
guanine tetrads stacked in G-rich DNA or RNA sequences.
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et al. developed a simple biosensor for the detection of human
breast carcinoma MCF-7 cells by functionalized aptamer on gold
nanorods (GNRs). GNRs show unique optical properties with
longitudinal plasmonic peaks, which can be controlled between
visible to the near-infrared regions by changing the morphology,
hence considered a potential candidate for therapy and imaging
in vivo. The mucin-1 protein is one of the reported cancer
biomarkers in human beings, expressed on cancer cells’
surfaces. Li and colleagues detected MUC-1 positive human
breast carcinoma MCF-7 cells using specific interaction
between MUC-1 and its aptamer, covalently conjugated to the
surface of GNRs by Au-thiolate chemistry and scan the signals
with unique localized surface plasmon resonance (LSPR) spectra
(Li et al., 2016a) (Figure 4A). Recently, a one-pot fluorescence-
based detection of the SARS-CoV-2 virus is introduced
(Chandrasekaran et al., 2020; Woo et al., 2020). Which
involves a promoter probe consists of an upstream
hybridization sequence (UHS) to target the pathogenic RNA
and a reporter probe consists of a downstream hybridization
sequence (DHS) and a dye-binding aptamer template sequence.
In this case, the target RNA acts as a trigger. When it correctly
binds to the UHS and DHS, SplintR ligase connects the probes;
subsequently, T7 RNA polymerase synthesize the aptamer
sequence that attaches to the dye and gives fluorescence as a
read-out.

The chemical modification of aptamers lead to a different
variety of this oligonucleotide and particularly appealing for

ligand-aptamer interactions in solution, called “molecular
beacons” (Liu et al., 2009). Molecular beacon made up of
original aptamer sequence extended with linker sequence
forming the loop followed by the complementary series which
helps in the formation of hairpin structure (Figure 4B). To each
end of the hairpin structure, either fluorophore or quencher are
attached; as the fluorophore is near the quencher in the closed
state, there is no fluorescence signal. However, once the molecular
beacon is attached to the ligand, as they are released to the target
site, we start getting fluorescence signal because fluorophore and
quencher are apart due to disruption of stem hybridization. The
term “molecular beacon” used synonymously with “aptamer
hairpin structure” or “aptamer switch probe” throughout the
literature, so it should not be confused as separate nanodevices.

To this date, only a selected number of aptamers sequences
targeted for small molecules to whole cells have been known so
far. The limited use of aptamers is that automated aptamer
selection procedures still require time and effort. As the
selection procedure is conducted on-demand, there is still a
tiny market for efficient chemicals (Keeney et al., 2009).

DNA Nanoswitches
DNA nanoswitches work on a similar principle, where it binds to
target DNA or RNA instead of a non-nucleic acid target. A DNA
nanoswitch is designed to undergo a specific structural change
when introduced to the target DNA or RNA sequence with a
detection limit of picomolar range (Chandrasekaran et al., 2016).

FIGURE 4 | (A) Schematic representation of aptamer-GNRs based cancer detection system, where mucin-1 aptamer-decorated GNRs detect breast cancer cells
(MCF-7) specifically among other cells and generate a higher signal on LSPR spectra (Li et al., 2016a). (B) Molecular beacons, a hairpin loop DNA structure with a
fluorophore, and a quencher attached on each end remain in proximity until a target DNA/RNA molecule hybridizes with it. Hybridization opens the hairpin structure and
fluorescence can be seen as read-out (Tyagi and Kramer, 1996). (C) Representation of DNA nanoswitch based detection of a target viral RNA (Zhou et al., 2020).
DNA nanoswitch changes structural configuration from linear strand to a loop, when introduced to a complementary target DNA/RNAmolecule, which results into slower
mobility on gel electrophoresis. Reproduced with permission from ref Zhou et al. (2020). Copyright 2020, American Association for the Advancement of Science (AAAS).
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The prepared DNA strand switching from linear (“off” state) to
loop (“on” state) and can be separated by electrophoresis without
any amplification step. A programmable DNA nanoswitch-based
low-cost viral RNA detection system has been realized recently to
detect deadly viruses like Zika, Ebola, and SARS-CoV-2
(responsible for coronavirus disease 2019, COVID-19) virus,
etc (Zhou et al., 2020). This method involves simple steps like
sample collection, RNA isolation, RNA fragmentation (either
enzymatic or non-enzymatic), annealing, and electrophoresis
(Figure 4C). Unlike RT-PCR (reverse transcription-
polymerase chain reaction) based detection methods, this may
be used in low-resource areas at low cost.

DNA Nanozymes
Many enzymes based on nucleic acid demonstrate metal ion-
based catalytic activity. RNA molecules, also called Ribozymes
showing catalytic activity, occur both naturally and artificially
through SELEX (Wilson and Szostak, 1999). Equivalent to
Ribozymes are DNAzymes (SilvermanDeoxyribozymes, 2009)
which are synthesized through artificial method only. These
molecules are engineered to folds into three-dimensional
malleable structures, which offer catalytic centers and binding
pockets. Most of these molecules are selected based on
phosphoester transfer reaction and is extensively studied
(Wilson and Szostak, 1999). The test tube synthesized
DNAzymes can catalyze different chemical reactions such as
Aldol reactions (Fusz et al., 2008), Diels-Alder reactions

(Seelig and Jäschke, 1999), Michael reactions (Sengle et al.,
2001), acylation (Murakami et al., 2003), and N-glycosidic
bond formation (Unrau and Bartel, 1998). These functional
nucleic acids found significant application in sensing,
therapeutics, and targeted delivery. Different units from
aptamers and DNAzymes, which play an important role in
their functioning, are combined to give allosteric aptamers or
“aptazymes.” In the case of proteins, allostery includes spatially
separated catalytic sites that interact with each other through a
change in their conformation when one of the effector molecules
binds to one of the binding sites. The same principle is applied in
the case of aptazymes. Such DNA nanostructures are of keen
interest in the field of information processing, signal
transduction, and also in biosensing (Burgstaller et al., 2002).

Xia li and colleagues reported targeted delivery for highly
specific gene silencing using stimuli-responsive aptamer/
DNAzyme (Apt/Dz) catenane nanostructures. They
synthesized thymidine kinase 1 (TK1) mRNA-responsive Apt/
Dz (Figure 5A). The 10-23 DNAzymes were selected based on
their RNA cleavage and used to aim at the early growth response-
1 (Egr-1) gene. Egr-1 is vital for both tumor angiogenesis, growth
as well as neovascularization (Fahmy et al., 2003; Mitchell et al.,
2004). MCF-7 tumor cells were used inside the cells with elevated
TK1 mRNA concentration (Ding et al., 2016; Zhong et al., 2018),
and mucin1 (MUC1) proteins shown by the cancerous McF-7
cells were used for targeted delivery of Apt/Dz nanostructure. The
Apt/Dz nanostructures, once incubated with MCF-7 cells, enter
the cell through the endocytic pathway by binding to the MUC-1
proteins expressed on the surface of the cell membrane. TK1
mRNA hybridizes with these nanostructures, activating
DNAzymes. These DNAzymes identify and cleave the marked
Egr-1 gene to achieve the gene-silencing function (Figure 5B).
The Apt/Dz nanostructure shows the advantages of targeted
delivery, better stability, nontoxicity, and reduces side effects
which are essential in using DNAzymes as therapeutic drug
(Li et al., 2020).

Gels and Switchable Networks
For drug delivery and controlled targeted release of the drug,
much attention has been drawn toward developing switchable
microgels, which can quickly enclose pharmaceutical compounds
and deliver them when triggered by a particular stimuli (Galaev
and Mattiasson, 1999; Ahn et al., 2002). Yurke et al. developed a
convertible gel system based on DNA and is formed by the
copolymerization of acrylamide with DNA strands. Chemical
modification of DNA strands was done with reactive group
acrydite (Lin et al., 2004). The gel formed can easily be
switched to the gel state from the fluid state when there is
crosslinking between the acrylamide DNA strand and the
complementary DNA linker strand. The amount of cross-
linker strand decides the mechanical properties of the gel. If
the cross-linker strands are removed using the removal strand
through the “strand displacement” method, the gel will be
converted back to the fluid state. Later they also show that
fluorescent nanoparticles can easily be trapped in the DNA-
polyacrilamide gel and can be released upon addition of
suitable effector DNA. Mi and coworkers in some what similar

FIGURE 5 | (A) Construction of the Apt/Dz constrained catenane
nanostructure and (B) the representation of targeted delivery of the Apt/Dz
nanostructure for gene silencing into cancer cells. Reproduced with
permission from ref Li et al. (2020). Copyright 2020, The Royal Society of
Chemistry (RSC).
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way used crosslinking DNA strands. containing sequences of
thrombin binding aptamers. These crosslinking DNA are used to
load thrombin on to the gel. The resolution of the gel depend
upon the amount of thrombin loaded on to the gel. In response to
any chemical stimuli this gel can release drug-carriers to the
target site.

Switchable DNA hydrogels can also be made exclusively from
DNA. The simple and easiest way to form DNA hydrogels is by
polymerizing branched DNA motifs like a three-way junction or
four-way junction, developing through self-assembly of DNA
hydrogels (Nagahara and Matsuda, 1996; Li et al., 2016b;
Shahbazi et al., 2018; Morya et al., 2020) (Figure 6A).
Different methods are being used to enhance the assembly rate
of DNA hydrogel formation, like the use of ligating enzymes
(Figure 6B) (Um et al., 2006), polymerase chain reaction
(Figure 6C) (Hartman et al., 2013), rolling circle amplification
(Figure 6D) (Lee et al., 2012b), hybridization chain reaction
(Figure 6E) (Wang et al., 2017b). DNA can also be used as a
crosslinking agent between polymer chains to form responsive
hydrogels (Figure 6F) (Nagahara and Matsuda, 1996). DNA
hydrogels become an intelligent platform for various
biomedical applications because of their stimuli-responsive
functioning and nontoxicity, and good biocompatibility (Kahn

et al., 2017; Wang et al., 2017d). The size and shape of the
colloidally stable DNA hydrogels can be changed from few
nanometers to bulk gels ranging up to micrometers (Thelu
et al., 2017). The DNA gels having a high surface-to-volume
ratio at the nano and microscopic levels make them readily
available to target diseased tissue or cells (Mou et al., 2017).

DNA based responsive hydrogels have been explored in many
areas, majorly in sensing, capturing, and controlled release (Xiong
et al., 2013). Different DNA based hydrogels responsive to various
stimuli like pH, ions, biomolecules, enzymes, cDNA have been
developed to apply in sensing and biomedical applications
(Morya et al., 2020). Sensing of Cu+2 has been demonstrated
by using Cu+2 DNAzyme sequence as the cross-linker for
polymer matrix. In presence of Cu+2, the cross-linkers break
into fragments and release the gold nanoparticles embedded in
the hydrogel matrix, as a readout (Lin et al., 2011). In a similar
approach, Dave et al. used Hg+2 specific aptamer as a cross-linker
and detects Hg+2 in water samples (Dave et al., 2010). Therapeutic
gene delivery is an emerging field in biomedical engineering,
enzyme responsive DNA nanogels decorated with aptamer
utilized for targeted delivery and release of a therapeutic gene
inside cells (Li et al., 2015). Specific recognition and recovery of
small molecules have also been realized using DNA based

FIGURE 6 | DNA based hydrogels formation by (A) self-assembly of complimentary base pairing (Xing et al., 2011), (B) enzymatic ligation (Um et al., 2006), (C)
polymerase chain reaction (Hartman et al., 2013), (D) DNA synthesized in situ via rolling circle amplification (RCA) having a large amount of physical entanglement (Lee
et al., 2012b), (E) hybridization chain reaction (Wang et al., 2017b) and (F)DNA base pairing induced gelation of acrylamide (Nagahara andMatsuda, 1996). Reproduced
with permission from ref Morya et al. (2020). Copyright 2020, American Chemical Society (ACS).
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hydrogel. He at el. captured and recovered adenosine-5′-
triphosphate (ATP) molecules from a mixture of molecules
using an aptamer cross-linked reversible DNA based hydrogel
(He et al., 2010). The highly modular construction and versatile
components make the DNA based hydrogels suitable for a
plethora of applications.

Future Directions and Perspectives
DNA has been beyond demonstrated to be an excellent scaffold for
realizing artificial molecular machines. Because of the predictable
nature of these sequence-dependent structure formations by the
DNA molecules, programmable supramolecular structure self-
assembly can be created that switched into different
conformations when given particular stimuli. The essential
advantage in using nucleic acid scaffolds is that they are formed
by other units and can easily couple to various functional materials
present on a single structure. Both chemical technology and
biochemistry are being used to synthesize these devices in
considerable quantity. Dynamic DNA nanotechnology is one of
the crucial developing sub-branch of DNA nanotechnology. The
achievements and success achieved are based on DNA
nanostructures, including structural programmability, synthetic
accuracy, ease of chemical modification, nontoxicity,
compatibility with other functional nucleic acids, and pre-well-
understood knowledge of different DNA-based structures. Given
the developments in DNA structural devices as well as new
chemistries available for its coupling to an arena of responsive
biomolecules, DNA nanodevices are poized tometamorphose soon
into next generation stimuli-responsive materials with applications
in broad spectrum areas like biosensing, targeted delivery,
immunotherapy, chemotherapy to mention the few.

Despite so many advantages, there are still so many challenges
to deal, in the field of stimuli-responsive DNA nanodevices. In
most cases, the devices’ response time is comparatively slow
because of accompanying structural changes, which take
minutes to hours to finish. The overall efficiency and
reversibility of the process are also decreased because of
multiple steps. Also, the wastes such as salt and hybridized
DNA accumulated after any chemical trigger reaction may
affect the device’s performance. Significant potential in the
construction of sophisticated responsive DNA nanodevices has
been shown by DNA origami. However, protection against
enzymatic degradations and structural disassembly is required.
It is still difficult to predict the structural changes in DNA
nanodevices once used for in vivo applications. Diverse non-
biological stimuli like magnetic, electrical, and optical controlled
stimuli-responsive DNA structures are chosen for a cleaner and
non-invasive application method in the coming years. For

example, i-motif’s switching by electrolytically generating bases
and acids has already been achieved by Liu et al. (Del Grosso et al.,
2015). Simmel. et al. have developed DNA-origami based
nanomechanical setup combined with an electrically
manipulated robotic arm under synchronously alternated,
quadrupolar electric fields (Kopperger et al., 2018). All these
physical sources are especially welcome as they are a non-
invasive method triggering mechanism. Responsiveness to light
is much easier to deal with, as compared to electric responsiveness.
Near-infrared light is better to use as compared to ultraviolet light
due to good biosafety and penetration depth. Several triggering
methods for highly integrated systems can be used in the future to
perform complicated tasks.

Apart from DNA bases, which occur naturally, non-natural
nucleotide analogs are good postulants for excellent stimuli
control and biomedical application. Floxuridine-incorporated
DNA self-assemblies prepared by Zhang.et al. (Chen et al.,
2018) shows superior anti-cancer efficacy. Considering the
exceptional properties of DNA-based stimuli-responsive
systems and rapidly emerging research in this field, we could
see a big future for DNA devices in direct biomedical applications
like recent covid19 biosensing.
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