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The expanding amount of remaining drug substances in wastewater adversely affects both
the climate and human well-being. In the current investigation, we developed new cellulose
acetic acid derivation/zeolite fiber as an effective technique to eliminate erythromycin (ERY)
from wastewater. The number of interchangeable sites in the adsorbent structures and the
ratio of ERY to the three adsorbents were identified as the main reasons for the reduction in
adsorption as the initial ERY concentrations increased. Additionally, for all adsorbents, the
pseudo–second-order modeling showed better fitting for the adsorption than the
pseudo–first-order modeling. However, the findings obtained in the pseudo–first-order
model were still enough for explaining the sorption kinetics of ERY, showing that the
surface displayed all chemisorption and physi-sorption adsorption processes by both
adsorbents. The R2 for the second order was very close to 1 for the three adsorbents in the
case of pseudo–second-order. The adsorption capacity reached 17.76mg/g. The three
adsorbents showed negative values of ΔH, and these values were −6,200, −8,500, and
−9600 kJ/mol for zeolite, CA, and ZCA, respectively, and this shows that the adsorption is
exothermic. The desorption analysis shows no substantial loss of adsorption site after
three trials, indicating higher stability and resilience of the three adsorbents, indicating a
strong repeatability of their possible use in adsorption without contaminating the
environment. In addition, the chemical attitude and possible donor–acceptor
interactions of ERY were assessed by the quantum chemical parameters (QCPs) and
NBO analysis performed, at the HF/6-311G** calculations.
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INTRODUCTION

One of the most important reasons for the economic growth of
developing countries and the expansion of urban areas is a
society’s ability to provide fresh water for sanitation and
consumption to its population. However, as the population
and urbanization increase, so does the release of radioactive
materials into the atmosphere and surface water. There are
many sources of surface and groundwater contamination,
including agricultural, industrial, oil pollution, sewage, and
wastewater (Al-Shaalan et al., 2019; El-Zawily et al., 2019;
Khan et al., 2019; Chon et al., 2020).

Several water pollution scenarios including the chiral pollution
are a serious issue for our health and environment due to the
enantioselective biodegradation of the chiral pollutants. It has
adverse impact on our society and science. There is a big loss of
our economy due to the use of racemic agrochemicals. The most
notorious chiral pollutants are pesticides, polychloro biphenyls,
polyaromatic hydrocarbons, brominated flame retardants, drugs,
and pharmaceuticals (Basheer, 2018a; Basheer and Ali, 2018).

Nowadays, water contamination due to the drugs and
pharmaceutical residues is increasing and alarming. These
contaminants are called as new emerging pollutants. The
contamination due to the new emerging contaminants is of
great concern due to their endocrine, hormonal, and genetic
disturbance nature (Basheer, 2018b).

In environmental samples such as surface water, groundwater,
seawater, soil, and drinking water, pharmaceuticals were found
(Arshad et al., 2020; Kiszkiel-Taudul, 2021), so they are referred
to as emerging pollutants. The estimated global consumption of
pharmaceuticals such as antibiotics is 100,000 to 200,000 tons per
annum (Bungau et al., 2020). Based on the chemical properties of
the drug, about 5–90% of the absorbed antibiotic doses are
excreted by urine or stool as a metabolite or parent compound
(Bhowmick et al., 2020). These drugs end up in drainage systems
and eventually reach the ecosystem by sewage leakage, discharge
of wastewater treatment plant (WWTP) effluents into marine
systems, or disposal of unwanted or unfinished medications
(Barchiesi et al., 2020). The use of sludge and animal waste as
fertilizer in agriculture can also contribute to the degradation of
agricultural soils, which can lead to the incorporation of
antibiotics into marine environments by leaching into
groundwater (Stevens and Jones, 2003).

In recent years, the Environmental Protection Agency (EPA)
has been more involved in informing the public about new
pollutants of concern (CECs). CECs are a form of pollutant
that is commonly found at trace levels in surface and
groundwater (i.e., ppb and ppt). Examples of CECs are
pesticides, chemicals, anti-infection agents, over-the-counter
meds, mechanical synthetics, oil-based synthetic compounds,
and others (Farré, 2020). Some of these processes, in
particular, lack actual removal procedures, and the by-
products generated, such as organochlorine species, may be
more toxic than the original compounds (Mery-Araya et al.,
2019).

To deal with this wastewater problem, lots of conventional and
advanced technologies have been developed (Ali et al., 2018a;

Mery-Araya et al., 2019). The conventional water treatments such
as oxidation (Ma et al., 2020), electro precipitation, membrane
separation, coagulation–flocculation, evaporation, floatation, and
ion exchange (Yu et al., 2021) have been largely used, but these are
inadequate techniques for water treatments (Tabassum, 2019).

Many approaches have been used and reported for the
removal of a variety of pesticides and drugs. Among the
different methods, adsorption is the best approach because of
several advantages associated with adsorption including time and
cost (Ali et al., 2018a; Ali et al., 2018b; Ali et al., 2019).

Erythromycin (ERY) is a natural antibiotic used to treat a
variety of bacterial infections. Antibiotics pass into the human
body after consistent treatment and ultimately enter inland areas
and effluents; there is even a path of environmental degradation
in the poultry and livestock breeding industries. Because of the
structure of their aromatic ring, ERY molecules are resistant to
the environment and difficult to degrade. Several reports (Ma
et al., 2020; Yu et al., 2021) have reported the presence of ERY in
water and wastewater to be above the average range. As a result,
removing ERY residues from wastewater is important.

Zeolite is a crystalline aluminosilicate with well-defined
micropore dimensions and a strong crystal lattice form that is
environmentally friendly. Zeolite structures are made up of
tetrahedral SiO4 and AlO4 groups, and their alumina silica
ratio (SAR) determines zeolite polarity (Martucci et al., 2012).
Because of their three-dimensional framework, which creates
nanometer-sized channels and cages, these materials have a
high porosity and a large surface area. The shape of their
internal pore structure can have a direct impact on their
adsorption selectivity against host molecules, which is one of
their distinguishing features (Zide et al., 2018).

Cellulose acetate is an excellent candidate for use as a polymer
matrix because it can be easily molded into a variety of shapes and
because its hydrophilic surfaces can improve the mobility of
aqueous solutions to the surface of hybrid materials (Das et al.,
2020). The aim of this research was to use zeolite/cellulose acetate
blended fiber as a reusable, simple-to-prepare adsorbent for
erythromycin adsorption. The effects of several parameters,
including contact time, concentration effect, temperature
effect, and equilibrium and kinetics, on erythromycin
adsorption by the composite fiber were studied.

SEM, FT-IR spectroscopy, thermogravimetric analysis, and
dynamic scanning calorimetry were used to characterize the
zeolite/cellulose acetate fiber.

The novelty of this work is shown by using three different
adsorbents which showed very high percentage of removals. Also,
theoretical studies were very supportive of the experimental
findings.

METHODS AND MATERIALS

Chemicals
The zeolite compounds are containing aluminum and silicon
(M2/nO.Al2O3.xSiO2.yH2O) whereM can be any one of a number
of metals, including sodium, lithium, potassium, calcium, and
magnesium. The variable “n” stands for the valence of the metal
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cation and “y” for the number of water molecules in the structure
of zeolite, according to the Research Foundation at State
University of New York (SUNY). Cellulose acetate (C10H16O8)
has been purchased from Al Quds Chemicals in Jerusalem. The
zeolite chemical composition was included in the MSDS that has
been supplied from the manufacturer. Acetone was bought from
Guangzhou Chemi. Erythromycin with technical grade of 99%
was purchased from Fluka (Fluka Chemie AG, Switzerland).
Acetonitrile was purchased from Sigma–Aldrich, United States
with analytical grade of more than 99%. The water was of the
Milli-Q standard (Millipore, MA, United States).

Preparation of ZCA Fiber
Wet spinning was used to produce the zeolite/cellulose acetate
blend fiber (ZCA); cellulose acetate (6 g) was dissolved in 50 ml of
acetone/water solution (6:1, w/w). The zeolite rocks were ground
and sieved to achieve an average dimension of approximately
800 mesh.

1.5 g of zeolite is added to the solution and scattered by
mechanical stirring. To make a solid filament, the blended
solution was spun in a stainless-steel spinner and then
protruded into a water coagulation tank. The fiber was taken
out of the bath and washed twice with filtered water. Finally, the
fiber was dried at 30°C before being cut into very small fragments
(Rodchanasuripron et al., 2020).

Characterization of ZCA Fiber
The scanning electron microscopy (SEM) manufactured by the
Hitachi model (S-4700) in Japan was used to study the
morphology of ZCA fiber. ZCA fiber was immersed in a liquid
nitrogen atmosphere to create a very clean cross section for
scanning. The Hitachi S-4700 FE-SEM is a cold field emission
high-resolution scanning electron microscope. This SEM permits
ultrahigh resolution imaging of thin films and semiconductor
materials on exceptionally clean specimens. It is also suitable for
polymeric materials. S-4700 is configured to detect secondary and
backscattered electrons as well as characteristic X-rays.

The X-Ray diffraction analysis was done using XRD-
Shimadzu XD-1 with monochromatized graphite Cu-K alpha
(15,418) and a scanning speed of 20°/min. The Bruker Alpha-P
spectrophotometer was used to collect the Fourier transform
infrared (FTIR) fiber spectrum. FT-IR spectra were reported
from 400 to 4,000 cm−1 with 32 scans on Nicolet NEXUS-470
FT-IR (America) apparatus and a resolution of 4 cm−1.

The Shimadzu UV absorption spectrum of the sample was
tested using an 1800 UV-Vis spectrophotometer with UV probe
software. The ERY concentration was measured quantitatively
using a UV–Vis spectrophotometer (SHIMADZU, UV-1201).
The absorbance of the ERY solution was estimated at 481.5 nm,
the wavelength at which ERY has the greatest absorbance.

CuK Al radiation was used for X-ray diffraction on the
Panalytical X’Pert Pro diffractometer (1.5418 Å) from 2° to 70°

(2θ), with a scanning rate of 1° per minute. The water intrusion
process was also used to determine membrane porosity (Wang
et al., 2017; Bagaev et al., 2021).

Thermogravimetric analysis was carried out on DTG 60H
equipment (Shimadzu Co., Japan). Around 3.0 mg of adsorbents

were heated from 25 to 700°C in the nitrogen atmosphere (50 ml/
min) at a temperature of 10 0°C/min. The compounds’
decomposition temperatures were calculated using the first
mass loss (percentage) vs. temperature derivative (DTGA)
(Güler et al., 2013; Zhang et al., 2014).

Adsorption Procedure (Import)
Erythromycin [C37H67NO13] with molecular mass of
733.937 g mol−1 is an antibiotic used for the treatment of a
variety of Fluka. The chemical structure is presented in Figure 1.

To study the adsorption equilibrium experiments, a sample of
10.0 mg of ZCA fiber was used in most of the analysis. Following
that, 100 ml of aqueous solutions with varying initial ERY
concentrations (10–50mg/L) were applied and shaken at
200 rpm in an orbital incubator (Gallenkamp, model INR-250).
To achieve adsorption equilibrium, the contact time was varied
between 5 and 90min. The other study was performed to see the
effect of temperature on the adsorbent activity and efficiency at
different temperatures and constant contact time of 30min, and
the temperatures were 25, 35, 45, and 55°C. In each study, a UV-Vis
(Varian, model Cary 1E) spectrophotometer (λmax: 482 nm) was
used to measure ERY equilibrium concentrations using a
calibration curve of different concentrations (Jamshaid et al., 2020).

The effect of pH was studied from 2 to 12, and both 0.1 M
NaOH and 0.1 M HCl solutions were used to change the pH as
required. At 293 K, 100 ml of ERY solution containing 20 mg/L
was shook with 10.0 mg of ZCA fiber.

The pH study was carried using a micro pH 2002 Crison pH
meter. All equilibrium concentrations of the adsorbed ERY by
ZCA were presented using different adsorption parameters; qe
(e.g., in mg/g) was calculated using the following equations (Eqs
1, 2) (Abujaber et al., 2018):

FIGURE 1 | Structure for erythromycin.
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qe � V(Co − Ce)
W

, (1)

%R � (Co − Ce)
Co

p 100%, (2)

where qe is the amount (mg g−1) adsorbed, Co and Ce are the ERY
initial and equilibrium concentrations in solution (mg/L),
respectively, W is the adsorbent dosage (g/L), and R percent is
the adsorption efficiency coefficient. The kinetic study was done
by taking several dosages of ZCA (50, 100, and 150 mg/L). This
study’s tested temperatures were 293, 303, and 313 K, with a
maximum contact time of 60 min.

Adsorption Kinetics
Pseudo–first-order and second-order models have been used to
model the kinetic effects of ERY adsorption on the surface of ZCA
fibers to achieve the control rate structure of adsorption including
chemical reactions and mass transfer. As seen in Eq. 3,
pseudo–first-order modeling is based on the premise that
physical adsorption that occurs during the removal process is
the rate-determining step (Azzaoui et al., 2017):

log(qe − qt) � log qe − ( K1

2.303
)t, (3)

where qe (mg/g) represents the equilibrium adsorbed ERY quantity, qt
(mg/g) represents the equilibriumadsorbed ERYquantity at time t, and
K1 (min−1) represents the pseudo–first-ordermodeling adsorption rate
constant (Azzaoui et al., 2017). The modeling of the pseudo–second-
order, on the other hand, was based on the assumption that the rate-
determining process, as shown by Eq. 4, is chemi-sorption:

t
qt

� 1
qe
t + 1

K2q2e
, (4)

where K2 (g/mg/min) is used as the pseudo–second-order rate
constant. The slope and intercept of a plot of t/qt vs. t are used to
calculate the values of qe and K2, respectively. ERY was controlled
for attachment to the ZCA surface through chemical bond
forming in the chemical adsorption process.

Adsorption Isotherm
Adsorption isotherms usually have data on the distribution of
adsorbed molecules in equilibrium between solid and liquid
phases. Most experiments used the regression coefficient (R2)
to assess the best-fitting isotherms. Adsorption equilibrium
results were discovered to be more appropriate for two types
of Freundlich and Langmuir isothermal models.

The most fundamental model is Langmuir, which assumes
that all adsorption sites are equal and autonomous. The tendency
of molecules to bind is separate from the neighboring populated
sites (Radi et al., 2015). The isotherm of Langmuir can be given by
the following equation:

Ce

qe
� 1
qm

Ce + 1
qmKL

, (5)

where Ce is the ERY equilibrium concentration (mg/L), qe is the
sum of ERY adsorbed per gram of the three equilibrium

adsorbents (mg/g), and qm is the full potential of monolayer
coverage (mg/g) (Radi et al., 2015). The Langmuir isotherm (L/
mg) constant is KL.

The Freundlich isotherm, on the other hand, demonstrates
un-ideal and reversible adsorption. The best representation of
heterogeneous structures is preferred. It is possible to
approximate Freundlich isotherm by the following equation:

ln qe � 1
n
ln Ce + lnKF , (6)

where qe is the capacity of adsorption, Ce is the ERY
concentration at equilibrium, and KF and n are constants. KF

reflects the capacity of adsorption, whereas n reflects the
deviation from linearity of adsorption. If n � 1, the process of
adsorption is linear; if n < 1 the process of chemical adsorption;
and if n > 1, the process of adsorption is favorable. The Langmuir
model is limited to monolayer adsorption. The Langmuir model
is limited to monolayer adsorption systems, whereas in multilayer
systems, the Freundlich model can be used.

Adsorption Thermodynamics
From the obtained kinetic data, the reaction rate and other
thermodynamics parameters can be identified. Nonetheless,
the response changes that will happen during the process of
adsorption require the determination of the thermodynamic
parameters, including entropy [(ΔS, kJ/mol), enthalpy, free-
energy Gibbs (ΔG, kJ/mol), and adsorption changes (ΔH, kJ/
mol). You can calculate the thermodynamic parameters from the
van’t Hoff Eq. 7]:

lnKd � −H
o

RT
+ So

R
, (7)

where the gas constant is R (8.314 J/mol/T) and the temperature
is T (K). Eq. 8 can be used to calculate the distribution coefficient
(Kd) on the adsorbent surface.

Kd � V(Co − Ce)
WpCe

. (8)

Gibbs free energy can be calculated by the following equation:

ΔGo � – RT ln KD. (9)

Both ΔH and ΔS can be calculated using both slope and
intercept from the van’t Hoff plot of lnK vs. 1/T (Hanbali
et al., 2020).

Computational and Theoretical Study
The geometry optimization of ERY was performed by G09W
(frisch et al., 2009) with the Hartree–Fock (Roothaan, 1951; Pople
and Nesbet, 1954) method and 6-311G** (Krishnan et al., 1980;
McLean and Chandler, 1980) basis set in the gas phase. In
theoretical predictions of the chemical reactivity, the
Koopmans’ theorem (Koopmans, 1934) is the first essential
step to calculate the ionization energy (I) and electron affinity
(A) values via the FMO energies.

I � −EHOMO
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A � −ELUMO

Moreover, the quantum chemical parameters (QCP) (Parr and
Pearson, 1983; Pearson, 1986; Pearson, 1988; Parr et al., 1999),
which are defined as χ “electronic chemical potential,” η “global
hardness,” ω “electrophilicity index,” and ΔN “fractional number
of the electrons transferred” in case of B and C systems have
contacted each other, and ΔNmax “maximum charge transfer
capability,” have been also obtained from the I and A values
using the following formula:

χ � −I + A
2

,

η � I − A
2

,

ω � μ2

2η,

ΔN � χC − χB
2(ηC + ηB),

ΔNmax � I + A
2(I − A).

In addition, Gazquez and coworkers introduced two useful
parameters to calculate the ω− “the electron-donating power” and
ω+ “the electron-accepting power” parameters (Gázquez et al., 2007)

ω+ ≈ (I + 3A)2/(16(I − A)),
ω− ≈ (3I + A)2/(16(I − A)).

Also, the ΔEback-donation “back-donation energy” (Gómez et al.,
2006) is a powerful value and defined as the following equation:

Δεback−donation � −η
4
.

In addition, the stabilization energy lowering obtained from
the second-order perturbative energy analyses depending on the
NBOs “Natural Bon Orbitals” (Foster and Weinhold, 1980; Reed
and Weinhold, 1985; Reed et al., 1988) is defined as follows:

E(2) � Eij � qi
(Fij)2
(εj − εi).

For the molecular system, qi states the donor orbital
occupancy, εi and εj are diagonal elements, and Fij is the off-
diagonal NBO Fockmatrix element where “i” and “j” are the filled
and unfilled molecular orbitals.

Regeneration of Adsorbent
In the field of adsorption process applications, adsorbent
regeneration is important. ZCA samples were pre-adsorbed for
12 h at 25°C with 10 ml of 50 mg/L ERY solution, then washed
with methanol/acetic acid (v/v, 9:1) until no ERY was present in
the eluent, and dried overnight at 50°C. Following that,
regenerated materials were redistributed in 10 ml solutions
containing an initial concentration of 50 mg/L. The
effectiveness of ERY adsorption by regenerated materials has
been studied after several adsorption–desorption processes.

RESULTS AND DISCUSSION

Adsorbent Characterization Results (BET)
Nitrogen adsorption–desorption isotherm measurements were
carried at 77 K using a Quantachrome Autosorb AS-1 instrument
(United States). The BET specific surface area of ZCA was
measured using the data of nitrogen adsorption isotherm at
low temperature (Brunauer et al., 1938) and involving the
adsorption data at P/P0 of 0.05–0.2 and with 2.47 m2/g. The
BJH model was used to measure the pore volume and the average
pore size as other previous study (Barrett et al., 1951). The pore
volume of ZCA sample was determined as 2.45 × 10−2 cm3/g, and
pore diameter was 3.5 nm. The ZCA pore diameter was
considered as a mesoporous material as the classification by
the Pure and Applied Chemistry International Union (IUPAC)
(Foster and Weinhold, 1980).

FIGURE 2 | SEM images of (A) ZCA fiber, (B) zeolite, and (C) cellulose
acetate (CA).
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Characterization of ZCA Fiber Using SEM
SEM was used to examine the morphology of ZCA fiber. The
surface morphologies and cross-sectional configurations of the
ZCA filament are shown in Figure 2. The surface of the ZCA fiber
is relatively smooth, as seen in Figure 1, and the diameter of the
as-prepared fiber is approximately 250 nm. As seen in the cross-
section, the ZCA fiber has a sponge-like appearance. The ZCA
fiber is composed of a homogeneous, highly porous material. The
ZCA fiber network is embedded with zeolite crystals about 100°m
in height. As seen in Figure 2, cellulose acetate serves as a matrix
support, and the pore size of the fiber ranges between 5 and 10 m.
ERY could rapidly disperse into the pores for contact with the
adsorptive sites of the ZCA particles.

The dispersion of zeolite attributed by the silica and aluminum
shown in Figures 1B,C indicates that the zeolites were embedded
in the cellulose acetate matrix. This is attributed to the interfacial
interaction between zeolite and cellulose acetate.

X-Ray Diffraction Analysis
The diffractogram of the synthesized zeolite is identical to JCPDS
No. PDF 0038-0241 for LTA form zeolite-A [Na96(AlO2)
96(SiO2)96.216H2O] as seen in Figure 3. Furthermore,
diffractogram of CA, as shown in the figure, appropriates with
a diffractogram reported by Fan et al. (2013), who stated that CA
has distinctive angles at 2θ of 10° and 13.2°. These two typical
angles were also recognized as the crystalline peaks of modified
CTA II (Deus et al., 1991). Furthermore, Jayalakshmi et al. (2014)
announced that the CA membrane diffractogram had a normal
semicrystalline angle at 2 of 9.6° and two crystalline angles at
diffraction angles of 20.1° and 26.8°.

The diffractogram of CA membrane in this study was
identified as a crystalline peak at 26.8°. Composite membrane
also has a crystalline peak at 26.8°. Moreover, the composite
membrane has also a weak peak at 10° and 13.2°, indicating the
typical peak of CA in different intensities. It was caused by a
decreasing crystallinity form in the membrane compared to CA

solids. It was reviewed that the CA/ZAmembrane has a peak at an
angle of 10.3, 12.6, and 16.2, indicating the presence of zeolite-A.
Based on the results of the composite membrane diffractograms,
it was known that zeolite-A has better dispersity in the CA porous
membrane as a filler.

FT-IR Analysis
Figure 4 demonstrates the ZCA fiber FTIR spectrum before and
after ERY adsorption. As can be seen, a peak of 600–800 cm−1 was
observed, which is associated with T-O-T stretching and T-O
zeolite bending (Armaroli et al., 2006).

A sharp peak in such regions indicates the presence of zeolite
inside the membrane. In addition, the membrane showed a peak
in the region of 1,000–1,200 cm−1, indicating the interaction
between Si-O-Si of zeolite and CA.

Some peaks were also detected at 1,735–1,738 cm−1 assigned to
carbonyl C�O stretching of CA and broad peak at about
3,400 cm–1 assigned to O-H stretching. Furthermore, the
absence of new peaks was observed on the membrane after the
adsorption process. However, the peak was slightly shifted and
the peak intensity decreased. This might be due to the presence of
van der Waals force, indicating the physical adsorption between
the metal ions and membrane.

FIGURE 3 | Comparison of X-ray diffractograms of (A) zeolite, (B) CA,
and (C) ZCA.

FIGURE 4 | FT-IR for ZCA (A) before and (B) after adsorption process
of ERY.

FIGURE 5 | Thermogravimetric analysis (TGA) for (A) zeolite\CA (ZCA),
(B) CA, and (C) zeolite.
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Thermogravimetric Analysis
Thermogravimetric analysis for the three samples, namely, ZCA,
cellulose acetate, and zeolite, is presented in Figure 5. From the
TGA thermogram obtained for cellulose acetate (CA), there is
initially a minor weight loss of about 3% up to 200°C, which is
caused from the loss of volatile compounds and the moisture of
H2O that is bound to the hydrophilic (OH) groups that is bonded
in the chain of cellulose acetate chains (Hong et al., 2020).

There are two steps of thermal decomposition: the first phase
(300–400°C) which refers to the major loss with a proximate
weight loss of 75%, while the second one (400 and 600°C) having a
weight loss of 15% is referred to the complete degradation and
composition (Hong et al., 2020).

Two levels of mass reduction have been found for zeolite. The
first stage was between 30 and 230°C, with a weight loss of 40%
which can be due to the loss of H2O adsorbed to the material and
to the deterioration of certain aluminum and silicate fractions
which did not decompose at 400°C during the pyrolysis process.
The second stage of zeolite thermal decomposition, starting at
380°C, was caused from the removal of minerals and salts from
the material, which has 35% of its initial mass which is considered
as its high mineral residue content.

The ZCA fiber thermogram showed three levels of thermal
decomposition between 30 and 200°C, 215 and 380°C, and above
380°C. This thermogram showed an intermediate profile in
comparison to the CA and zeolite thermograms; that is, for
both of the temperature scales of the thermal events referred
to above, their mass variations occurred roughly as the sum of the
other two thermograms, because the fiber is made up of 50% of
the weight of each part. The first process, with a weight loss of
approximately 20%, can be attributed mainly to the release of
H2O from the material due to the presence of zeolite, with the CA
mass being practically constant in this temperature range. The
second stage of decomposition is probably due to the degradation
of the CA chain, with the zeolite mass remaining almost
unchanged. The CA mass loss at this stage was 80%. The third

and final stage can be due to complete fiber degradation, and part
of the fiber has thermal stability lower than CA, with maximum
CA losses at 335 and 360°C, respectively.

Differential Scanning Calorimetry
The DSC thermogram obtained for the ZCA is shown in Figure 6.
The peaks were shown at different temperatures (180, 211, and
225°C). ZCA melting happened at a temperature lower than that
of CA melting as indicated by other studies (Gómez et al., 2006).
This may have been explained by the fact, that is, the
strengthening as well as a lower amount of contacts between
the CA chains. Also, the melting enthalpy was 3,600 kJ/g for ZCA.
The higher energy involved during the ZCA melting process may
be due to water volatilization, since TGA showed large mass loss
in this temperature range.

Adsorption Study
Effect of Contact Time
The effect of equilibrium adsorption time on adsorption
efficiency was studied at room temperature close to 25°C. To
study that, an initial concentration of ERY of 20 mgL−1 and about
20 mg of ZCA adsorbent were used at different time intervals: 15,
30, 45, 60, 75, 90, and 120 min, as shown in Figure 7. The
presence of large number of active sites made the adsorption of

FIGURE 6 | Differential scanning calorimetry (DSC) for the cellulose
acetate/zeolite (ZCA) fiber.

FIGURE 7 | Effect of time on the ERY adsorption onto the three
adsorbents.

FIGURE 8 | Effect of temperature on ERY adsorption onto the three
adsorbents.
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ERY to the surface of the adsorbents very easy and increased
rapidly at an early stage. This process was followed by a slower
rise in adsorption. This shows that the complex derivatives
formed at the initial stage of adsorption are unstable, resulting
in a rapid rate of adsorption. As a result of the presence of
hydrogen protons emitted to the oxygen-containing solution on
the adsorbent surface beside the presence of hydroxyl and
carboxyl groups, this causes a slower adsorption speeds which
could be due to a reduction in the driving force of the present
adsorption sites. The various efficiencies of adsorption have
shown that the absorbents do not show identical morphologies.

Effect of Temperature
Measurements of adsorption were carried out using an adsorbent
weight of 20 mg, an initial concentration of 20 mg/L, and a time
interval of 60 min. The removal of ERY, controlled by CA, zeolite,
and ZCA tests, increased with a rise in temperature from 20 to
45°C, initially indicating an endothermic adsorption mechanism
up to 30°C (Figure 8). This could lead to an improvement in the
diffusion rate of ERY in the porous structure of the ZCA
derivatives, raising the temperature. Due to high temperatures,

the adsorption mechanism can include both physical and
chemical adsorption, resulting in increased active sites due to
bond breakup. The endothermic adsorption process can therefore
be attributed to increased pore diameter. Nevertheless, increases
in the removal of ERY were controlled with a rise in temperature
from 20 to 45°C using CA, zeolite, and ZCA samples, showing a
concentration equilibrium between ERY and adsorbents.

Effect of ERY Initial Concentration
Measurements of adsorption at room temperature (25°C) were
carried out using separate initial ERY concentrations of 10, 20, 30,
and 40 mg/L for 60 min and 20 mg of the three adsorbents, as
shown in Figure 9. With an increase in the overall ERY content of
up to 20 mg/L, the adsorption process improved and then started
to decrease.

The number of interchangeable sites in the adsorbent
structures and the ratio of ERY to the three adsorbents were
identified as the main factors for the decline in adsorption as
initial ERY concentrations increased. The exchangeable sites on
the adsorbents are saturated after increasing the ratio of ERY,
resulting in a decrease in the efficiency of adsorption. It was
observed that the adsorption capacity of adsorbents improved by
5% with an improvement in initial ERY concentrations from 10
to 20 mg/L. This may be the result of the substantial driving force
transferred by the ERY concentration in order to defeat the
resistance to mass movement between solid and liquid phases.

As seen in Table 1, with reference to the previous studies, the
innovation of this study can be summarized as using zeolite/
cellulose acetate blended fiber as the first example in the ERY
removal literature.

Kinetic Models and Adsorption Isotherms
In this study, the modeling of adsorption kinetics was studied to
help and describe the adsorption rate–controlling mechanism.

We studied the adsorption kinetics of ERY using the three
adsorbents at initial concentration of 30 mg/L and at 25°C. From

FIGURE 9 | Effect of ERY initial concentration onto the three adsorbents.

TABLE 1 | Previous studies on ERY removal from water.

Adsorbent Optimum condition Percentage
removal (%)
or adsorption

capacity
(qm)

Reference

Magnetic activated carbon Initial ERY concentration of 65 mg L−1, sorbent weight of 1.55 g L−1, the
contact time of 76.25 min, and at the temperature of 35°C

95.125% Gholamiyan et al.
(2020)

Magnetic imprinted polymers (MIPs) from
chitosan

Initial ERY concentration of 10 mg L−1, and at the temperature of 25°C.
pH � 4

Adsorption capacity
(qm) � 52.32 μmol/g

at 15°C

Ou et al. (2015)

Multi-walled carbon nanotubes Mixing rate of 200 rpm, amount of adsorbent up to 1 g/L, and at the
temperature of 75°C

99.4% Mostafapour et al.
(2018)

Porous magnetic graphene (PMG) pH of 3, contact time of 30 min, initial antibiotic concentration of 200 mg/
L, and adsorbent dose of 0.35 g/L

adsorption capacity
(qm) � 286 mg/g

Fateme et al. (2020)

Fe3O4/activated carbon/chitosan (MACC:
Magnetic activated carbon/chitosan)

15 mg adsorbent, and at the temperature of 20°C adsorption capacity
(qm) � 526.31 mg/g

Danalıoğlu et al.
(2017)

Amberlite XAD-4 0.002 mg adsorbent at 30°C adsorption capacity
(qm) � 358 mg/g

Ribeiro and Ribeiro
(2003)

Zeolite/cellulose acetate blend fiber (our study) Initial ERY concentration of 20 mg L−1, the contact time of 60 min, and at
the temperature of 30°C

98% –
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this study, the obtained kinetic data were analyzed with the
pseudo–first-order (Radi et al., 2015), pseudo–second-order
(Hanbali et al., 2020), and intraparticle diffusion using Eqs 3,
4, 10 respectively.

As seen in Figure 10, pseudo–second-order modeling showed
an improved fit for adsorption calculations relative to
pseudo–first-order modeling for all adsorbents.

However, the results obtained in pseudo–first-order modeling
were still adequate to define the sorption kinetics of ERY, showing
that the surface showed both chemisorption and physi-sorption
adsorption processes. The regression coefficient (R2) of all
adsorbents in the pseudo–second-order is very close to 1 more
than the one for the pseudo–first-order. Also, the qe calculated for
the three adsorbents in the pseudo–second-order is very close to
the experimental one, as shown in Table 2. It has been shown that
the pseudo–second-order modeling showed an acceptable match

FIGURE 10 | Kinetic models of (A) pseudo–first-order, (B)
pseudo–second-order processes, (C) the intraparticle diffusion for the
adsorption of ERY by the three adsorbents at different time periods.

TABLE 2 | Results of pseudo–first-order, second-order, and intraparticle diffusion
kinetic models.

Kinetic model

Parameter Zeolite CA Zeolite/CA

1st order qexp 10.16 8.21 9.37
qcalc 13.92 17.21 18.23
K1 0.416 0.023 0.098
R2 0.752 0.823 0.788

2nd order qcalc 10.62 8.17 9.23
K2 0.85 0.027 0.0335
R2 0.978 0.976 0.98

Intraparticle diffusion C (mg g−1) 14.1 23.9 31.4
Kid (mg g−1 h−0.5) 4.21 3.76 4.03
R2 0.856 0.898 0.902

FIGURE 11 | Adsorption isotherm models: (A) Freundlich and (B)
Langmuir models for ERY using three different adsorbents.

TABLE 3 | Results of Langmuir and Freundlich models for ERY adsorption onto
three adsorbents.

Isotherm model

Model Parameter Zeolite CA Zeolite/CA

Langmuir Slope 0.051 0.059 0.056
Yint 0.035 0.023 0.037
qm (mg g−1) 19.61 16.95 17.76
KL 560.22 743.38 477.47
R2 0.971 0.934 0.963

Freundlich Slope −0.0287 −0.0281 −0.0305
Yint 1.33 1.35 1.40
Kf (mg(1−1/n) g−1 L1/n) 21.16 22.59 25.24
N −34.84 −35.59 −32.79
R2 0.975 0.988 0.985
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to the adsorption compared to the pseudo–first-order modeling.
The movement of ERY from aqueous solution to the adsorbents
surfaces might be in different steps, that is, intraparticle diffusion,
film diffusion, or both, and that is the rate determining step. The
intraparticle diffusion model is shown.

qt � Kpi t1/2 + Ci. (10)

The constant Ci represents the boundary layer thickness, and Kpi
is a constant. A plot between qt vs. t

1/2 showed straight line with
an appropriate value of correlation coefficient (R2) giving the
applicability of the intraparticle diffusion model on all three
forms of experimental data. For data that match the
intraparticle diffusion model, one sees two distinct areas,
meaning that two stages are involved in the diffusion process:
the external transfer of mass or boundary diffusion of the layer
and the intraparticle or micropore diffusion. A greater slope of
the first step than the second step suggests a faster adsorption
operation, which is due to the more accessible adsorption sites at
the initial stage (Hong et al., 2020).

Equilibrium Modeling
Both Langmuir and Freundlich isotherms are the most widely
used models for representing equilibrium data of adsorption of
ERY onto three adsorbents that were investigated at 25°C for
30 min, with an adsorbent weight of 30 mg/L (Figure 11).

The equilibrium study was carried out in order to understand
the mechanism of adsorption process, that is, Langmuir (Hanbali
et al., 2020) and Freundlich (Brunauer et al., 1938), which

assumes the adsorption of adsorbate as a function of
equilibrium concentration. Langmuir isotherm best describes
the monolayer adsorption of the solute from solution onto the
adsorbent surface having a finite number of active sites present on
it. The linear form of the Langmuir isotherm model is shown
in Eq. 5.

The results of the models are shown in Table 3. A
dimensionless constant RL was calculated using Eq. 11.

RL � 1

(1 + KLCo), (11)

where Co is the original concentration of ERY (mg/L) and KL is
the constant of Langmuir isotherm. The RL value represents
adsorption mechanisms that are unfavorable (RL > 1), linear (RL
� 1), desirable (1 > RL > 0), or irreversible (RL � 0) (Hong et al.,
2020). The RL (0.106) values for ERY in the present study were <1
for the three adsorbents, which indicated favorable adsorption.
Freundlich isotherm considers the heterogeneous surface and
nonuniform distribution of heat of sorption. It is most favorably
studied for description of the multilayer adsorption
process (Eq. 6).

In summary, the studied isotherms were best suited to
Langmuir models, which is believed due to the high regression
coefficient (R2) value (Table 3). It can also be observed that the
surfaces of all three adsorbents are homogeneous and that
adsorption process occurred mainly in the monolayer system.

Thermodynamic Study
The adsorption thermodynamics for the adsorption process of
ERY onto three adsorbents are displayed in Table 4, in order to
understand the nature of ERY adsorption on the three adsorbents
using Eqs. 7–9. The three adsorbents showed negative values of
ΔH, and the values were −6,200, −8,500, and −9600 kJ/mol for
zeolite, CA, and ZCA, respectively, and this shows that the
adsorption is exothermic. The positive values of ΔS for ERY
on the three adsorbents showed some orderliness on the surfaces
of adsorbents. Meanwhile, spontaneous sorption nature of the
reaction was depicted by negative values of ΔG, that is, −1.32,
−0.1.56, and −1.9 kJ/mol, respectively.

Quantum Chemical Studies
The optimized geometry and calculated physical and quantum
chemical quantities of ERY are given in Figure 1 and Table 1,
respectively. Accordingly, the dipole moment (D), polarizability,
(α), and first-order hyperpolarizability (β) values of ERY
compound were determined as 4.421 D, 416.124 au, and
169.795 au, respectively. Also, the thermodynamic quantities
ΔE, ΔH, and ΔG including the thermal correction were
calculated at −2,467.184 au, −2,467.129 au, and −2,467.269 au,
respectively. As known well, the vibrational freedom constitutes a
remarkable part of the thermal energy as well as the entropy (S)
and heat capacity (Cv) for the molecular systems (McQuarrie,
1973; Sandler, 2010; Herzberg, 2013). From Table 5, the thermal
energy (ΔE) and vibrational movement contribution to the ΔE
(ΔEvib.) were predicted at 730.238 kcal/mol and 728.461 kcal/mol,
respectively. In addition, the Cv and S values of ERY compound

TABLE 4 | Adsorption thermodynamics for the adsorption of ERY.

Thermodynamic

Parameter Temperature Zeolite CA Zeolite/CA

ΔS (J mol−1) 20 0.08 0.06 0.03
ΔH (kJ mol−1) 20 −6,200 −8,500 −9,600
ΔG (kJ mol−1) 20 −0.25 −0.35 −0.62

25 −1.13 −1.17 −1.36
30 −1.32 −1.56 −1.9
35 −2.13 −2.78 −3.26
45 −2.5 −3.5 −4.1

TABLE 5 | Calculated physical and quantum chemical quantities of ERY at HF/6-
311G** level.

QCP Physical parameters

HOMO (-I) (eV) −9.385 DM (debye) 4.421
LUMO (-A) (eV) 0.372 α (au) 416.124
ΔEgap (L-H) (eV) 9.757 β (au) 169.795
µ (eV) −4.506 ΔE (au) −2,467.184
η (eV) 4.879 ΔH (au) −2,467.129
ω (eV) 2.081 ΔG (au) −2,467.269
ω+ (au) 0.016 ΔEthermal (kcal/mol) 730.238
ω− (au) 0.182 ΔEvib.(thermal) (kcal/mol) 728.461
ΔN (eV) 0.032 Cv (cal/molK) 207.438
Δεback-donat (eV) −1.220 Cvib (cal/molK) 201.476
ΔNmax (eV) 0.924 S (cal/molK) 294.519
– Svib. (cal/molK) 209.940
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were estimated at 207.438 cal/molK and 294.519 cal/molK,
respectively, whereas the vibrational part of these quantities
were determined at 201.476 cal/molK and 209.940 cal/molK,
respectively.

In addition, the QCPs are used successfully to assess the
reactivity and its selectivity from the simple molecular systems
(Serdaroğlu, 2011a; Serdaroğlu, 2011b; Serdaroğlu and Ortiz,
2017; Serdaroğlu et al., 2020) to complex systems (Jacob et al.,
2020; Al-Otaibi et al., 2021; Junejo et al., 2021). In this work, the
chemical reactivity tendency of ERY was assessed in light of the
calculated QCPs and is displayed in Table 5. ΔEgap and µ (eV)
were determined at 9.757 and −4.506 eV, respectively. As known
well, the hardness value is a very helpful parameter to assess the
chemical reactivity, especially in the evaluation of the
adsorption processes. Hence, it has been the main subject of
a series of theoretical investigations (Parr and Pearson, 1983;
Berkowitz et al., 1985; Yang and Parr, 1985; Pearson, 1986; Zhou
and Parr, 1989; Parr and Chattaraj, 1991; Parr and Gazquez,
1993; von Szentpaĺy et al., 2020; Chaudhary et al., 2021) to be
able to calculate it by using the different atomic and/or
molecular constants and/or quantities such as ionization
energies and electronegativities of the atoms in a specific
molecule (Kaya and Kaya, 2015a), and atomic charges (Kaya
and Kaya, 2015b). In addition, the molecular hardness has been
reported to be able to be used in the theoretical prediction of the
lattice energies of the ionic crystals (Kaya and Kaya, 2015c; Kaya
et al., 2016; Islam and Kaya, 2018). In this work, the η and
Δεback−donat values of ERY were calculated at 4.879 and
−1.220 eV, respectively. Furthermore, Table 5 displayed that
the electron-donating power (0.182°au) of the ERY compound

was calculated to be greater than the electron-accepting power
(0.016°au), which affirmed that the ERY compound preferred
the charge transfer to the metal surfaces. In past, corrosion
inhibition efficiency was reported to increase with an increase of
the electron-donating ability in case ΔN < 3.6, and vice versa for
ΔN > 3.6 (Lukovits et al., 2001). According to the ΔN (0.032 <
3.6) and electro-donating power values, the adsorption of ERY
toward the studied adsorbents is easily noticed to be actualized
via the charge transfer from the ERY compound to studied
adsorbents.

Moreover, the possible nucleophilic (HOMO) and
electrophilic (LUMO) attack sites of ERY compound are
shown in Figure 13. The HOMO density was mostly
amplified over the dimethyl amin (-N(CH3)2) functional and
partially be scattered on the oxacyclohexane ring. On the other
side, the LUMO broadens on the surrounding of -(C�O)-
functional group of ERY. In addition, the MEP graphs
displayed the richness of the electron by red color (V < 0)

TABLE 6 | NBO results for ERY at HF/6-311G** level.

Donor (i) EDi/e Acceptor (j) EDj/e E(2)/kcal/mol E(j)-E(i)/a.u F(i.j)/a.u

σ C31-C43 1.97272 U* C12-O36 0.04962 4.77 1.06 0.064
σ C31-H72 1.96974 2.39 0.92 0.042
LP (2) O1 1.94227 σ* C15-H17 0.04194 9.47 1.08 0.091

σ* C22-C26 0.04338 9.64 1.11 0.093
LP (2) O2 1.94036 σ* C18-H54 0.02444 8.56 1.18 0.090

σ* C23-C27 0.03360 9.06 1.10 0.090
σ* C23-H60 0.03251 9.90 1.15 0.096

LP (2) O3 1.96470 σ* C17-C19 0.03290 10.64 1.12 0.097
LP (2) O4 1.93923 σ* C22-C26 0.04338 9.30 1.11 0.091

σ* C37-H77 0.02955 11.13 1.15 0.102
LP (2) O5 1.93444 σ* O2-C23 0.04266 15.27 1.12 0.117
LP (2) O6 1.84800 σ* C38-C45 0.02263 6.57 1.12 0.079

U* O13-C39 0.15098 62.33 0.74 0.192
LP (2) O7 1.94152 σ* C24-C30 0.04813 10.84 1.10 0.098

σ* C51-H117 0.01658 9.50 1.12 0.093
LP (2) O8 1.96521 σ* C26-C28 0.03160 9.21 1.11 0.090
LP (2) O9 1.96742 σ* C24-C30 0.04813 9.41 1.13 0.092
LP (2) O10 1.96687 σ* C32-C35 0.04718 8.51 1.10 0.087
LP (2) O11 1.96259 σ* C31-C35 0.03166 9.18 1.10 0.090
LP (2) O12 1.91457 σ* C21-C36 0.05236 24.58 1.10 0.148

σ* C31-C36 0.05427 24.89 1.11 0.149
LP (2) O13 1.88472 σ* O6-C39 0.07615 42.55 1.13 0.197

σ* C20-C39 0.05115 24.31 1.08 0.147
LP (1) N14 1.90376 σ* C28-H67 0.02912 10.72 1.11 0.099

σ* C48-H108 0.02251 10.83 1.07 0.098
σ* C49-H111 0.02255 10.74 1.07 0.097

FIGURE 12 | Optimized structures of ERY at HF/6-311G** level (left site
with Hs and right side without Hs).
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and poorness by blue color (V > 0) fields of the ERY compound.
As expected, the charge transfer zeolites are minerals that
contain mainly aluminum and silicon compounds-C�O
groups were covered by red color to electrophilic attacks, and
the H Atom of the -O-H group was marked by blue color for the
nucleophilic attacks. Also, the saturated C- chain of ERY
presented neutral attitude for both nucleophiles and
electrophiles because it is covered by green color.

The chemical reactivity of many kinds of molecular systems
(Mustafa and Serdaroğlu, 2017; Jacob et al., 2020; Serdaroğlu,
2020; Serdaroğlu et al., 2020; Al-Otaibi et al., 2021) has also been
clarified by using the results of the second-order perturbative
energy analysis. Table 6 summarized the lowering of the
stabilization energy, possible interaction types, and the
occupancies of both donor and acceptor orbitals. As
expected, the mainly saturated structure of the ERY
compound, the dominant interactions contributed to E(2)

(62.33 kcal/mol) were sourced from the charge transfer to
anti-bonding orbital U* O13-C39 (EDj � 0.15098e) from
nonbonding orbital LP (2) O6 (EDi � 1.84800e). Also, the
hyperconjugations due to the charge movement from each
filled orbital σ C31-C43 and σ C31-H72 to unfilled orbital U*
C12-O36 were calculated with the E(2) of 4.77 kcal/mol and
2.39 kcal/mol, respectively, even if they did not contribute much
to the E(2). From Table 6, the remaining interactions were due to
the anomeric interactions, and the highest energy interactions
among themwere predicted as the interaction LP (2) O13 (EDi �
1.88472e) → σ* O6-C39 (EDj � 0.07615e) in 42.55 kcal/mol.
Similarly, the charge movement from the lone pair of the oxygen
atom known as the strong electron-donating of the -C�O group
to neighbor orbitals also had great responsibility of energy
lowering. Namely, the LP (2) O12 → σ* C21-C36 (E(2) �
24.58 kcal/mol), LP (2) O12→ σ* C31-C36 (E(2) � 24.89 kcal/
mol), and LP (2) O13 → σ* C20-C39 (E(2) � 24.31 kcal/mol)
interactions also had significant roles in the lowering of the
stabilization energy. As known well, the -NH2 group also has

strong capability of electron-donating. From Table 6, the charge
movement from the N atom of the -NH2 group to each of σ*
C28-H67, σ* C48-H108, and σ* C49-H111 interactions was
calculated with the energy of 10.72, 10.83, and 10.74 kcal/mol,
respectively. Here, it can be considered that these interactions
have significant responsibility of the possible intermolecular
interactions due to the charge movement that existed in a
molecular system, affecting the polarity distribution on the
surface.

Desorption Study
The stability and reusability of the three adsorbents are
especially critical for widespread applications. The
adsorption–desorption recycling test, as shown in Figure 14,
was used to investigate the adsorbents’ stability further. The
adsorbents were washed twice with ethanol after each run and
then reused for the next stage of adsorption (Jodeh et al., 2018;
Gholamiyan et al., 2020). The findings show that there is no
significant loss of adsorption site after three runs, showing that

FIGURE 13 | HOMO and LUMO (isoval: 0.02), and MEP (isoval: 0.0004) pilots of ERY at HF/6-311G** level.

FIGURE 14 | Three cycles for each adsorbent showing excellent reuse.
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the three adsorbents are more reliable. After the first three
regeneration cycles, the adsorption efficiency loss of the three
adsorbents to ERY was only about 5.04%. The result was
attributed to the reduction of the binding sites in imprinted
polymer matrix during regeneration cycles (Barrett et al., 1951).
Therefore, the three adsorbents can be reused at least three times
without significantly decreasing their adsorption capacities.

CONCLUSION

With an increase in the number of studies and research on the fate
of pharmaceuticals, personal care products, and their
environmental effects on human beings, many researches have
been published. As the population and economies grow,
numerous antibiotics are increasingly being used in bio-
manufacturing, livestock farming, and pharmaceutical industries.

The QCPs revealed that the adsorption of ERY toward the
studied adsorbents actualize via the charge transfer from the ERY
compound to studied adsorbents, because of the ΔN (0.032 < 3.6)
and electro-donating power values. The MEP plots pointed out
that the -C�O groups were covered by red color to electrophilic
attacks and the H Atom of the -O-H group was marked by blue
color for the nucleophilic attacks. The NBO analysis of ERY
indicated that the anomeric and hyper-conjugative interactions
have chief responsibility of the possible intermolecular
interactions because of the charge movement affecting the
polarity distribution on the surface.

The three adsorbents zeolite, cellulose acetate, and ZCA were
used to study the removal of ERY from aqueous liquid prepared
in the lab. Several characterizations were done on both the
adsorbents and ERY including SEM, XRD, FTIR, and TGA. A
brief summary of the results was shown in Abstract, and more
details about the results were presented in the Results section.

In summary, the three adsorbents showed very high removal
efficiency and reached more than 98% using the fiber. Those

adsorbents showed very high reusability, and this will save a lot of
money and protect environment.
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