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Themajority of studies focusing onmicrobial functioning in various environments are based
on DNA or RNA sequencing techniques that have inherent limitations and usually provide a
distorted picture about the functional status of the studied system. Untargeted proteomics
is better suited for that purpose, but it suffers from low efficiency when applied in complex
consortia. In practice, the scanning capabilities of the currently employed LC-MS/MS
systems provide limited coverage of key-acting proteins, hardly allowing a semiquantitative
assessment of the most abundant ones from most prevalent species. When particular
biological processes of high importance are under investigation, the analysis of specific
proteins using targeted proteomics is a more appropriate strategy as it offers superior
sensitivity and comes with the added benefits of increased throughput, dynamic range and
selectivity. However, the development of targeted assays requires a priori knowledge
regarding the optimal peptides to be screened for each protein of interest. In complex,
multi-species systems, a specific biochemical process may be driven by a large number of
homologous proteins having considerable differences in their amino acid sequence,
complicating LC-MS/MS detection. To overcome the complexity of such systems, we
have developed an automated pipeline that interrogates UniProt database or user-created
protein datasets (e.g. from metagenomic studies) to gather homolog proteins with a
defined functional role and extract respective peptide sequences, while it computes
several protein/peptide properties and relevant statistics to deduce a small list of the
most representative, process-specific and LC-MS/MS-amenable peptides for the
microbial enzymatic activity of interest.

Keywords: targeted metaproteomics, in silico peptide selection, LC-MS/MS, microbial functioning, environmental
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IMPORTANCE

Targeted proteomics is a powerful analytical tool for sensitive detection and precise quantification of
selected proteins in biological samples. This is of particular importance in life sciences and the field of
microbiology in particular, as it allows tracing specific microbial processes at the molecular level and
elucidating the functional role of isolated microorganisms. However, in complex systems hosting
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mixed microbial communities, a specific biochemical process
may be catalysed by numerous homologous proteins with
divergent amino acid sequences, which complicates the
application of LC-MS/MS-based targeted proteomic methods
for the detection of key-acting proteins. Currently, there is
lack of software for the assistance of targeted metaproteomic
studies in complex natural habitats. Here, we introduce and
describe PepMANDIS, a novel tool intending to assist
analytical chemists in the development of function-based
targeted proteomic assays for systems harboring mixed
microbial communities. PepMANDIS calculates various
properties of trypsin-generated peptides from long lists of
homologous proteins and provides guidance for shortlisting
target peptides that will combine functional specificity,
extensive cross-species coverage and LC-MS/MS detectability.
We believe that this new approach will help to gain targeted
insights about microbial functioning in natural systems and
enable quantitative monitoring of key biochemical processes.

INTRODUCTION

Microorganisms are literally everywhere in the environment and
are the key drivers of countless processes, such as organic matter
remineralization, pollution remediation and global
biogeochemical cycling of elements/chemicals. Most of the
studies concerning microbial environmental functioning are
based on DNA or RNA sequencing (e.g. 16S rRNA gene
metagenomics), shotgun metagenomics (i.e. sequencing of total
DNA from environmental extracts) or metatranscriptomics (i.e.
sequencing of total RNA content) (Huang et al., 2016). However,
these techniques have several limitations. The 16S rRNA
metagenomics analysis targets a single ribosomal gene and
thus provides information only about the identity of
microorganisms and the microbial diversity of the system
under investigation without revealing any direct information
on microbial functioning. The latter is inferred by compiling
the functional traits reported in the literature for the identified
species. On the other hand, shotgun metagenomics cannot clarify
if the identified DNA sequences originate from live or dead/
inactive cells and whether the identified genes are actively
expressed or not. Metatranscriptomics has been considered as
an alternative approach for the elucidation of microbial
functioning. However, RNA is labile and prone to degradation,
making transcriptomic analysis a challenging task, especially in
environmental samples. More importantly, several studies have
shown that the levels of mRNA molecules in cells are not always
correlated with the levels of encoded proteins (Maier et al., 2009;
Vogel and Marcotte, 2012), which are the ultimate functional
entities, implying that transcriptomic profiling may provide an
unclear picture of microbial functionalities.

Over the last two decades, proteomics made outstanding
progress in biomedical sciences and the understanding of
biological processes at the molecular level (Cayer et al., 2016;
Shi et al., 2016; Hristova and Chan, 2019). At the same time, there
has been an increasing interest about the potential applications of
this technique in the fields of microbial ecology and

environmental chemistry (Schulze, 2005; Sowell et al., 2011;
Zorz et al., 2019). The majority of relevant studies were
oriented towards the complete cataloguing of proteins in
native environments. However, the scanning capabilities of the
LC-MS/MS systems currently employed for untargeted
proteomics are far from providing exhaustive coverage of
complex microbial consortia and they are able to unveil only
the most abundant proteins expressed by the most abundant
microorganisms. Moreover, a great part of them are house-
keeping proteins providing relatively limited biological
information about distinct, habitat-related functions (Gouveia
et al., 2019). Undoubtedly, protein-based stable isotope probing
(protein-SIP) has been a valuable proteomic approach for
exploring the functional characteristics of microbial
communities through the metabolic incorporation of
isotopically labeled substrates (e.g. 13C, 15N) (von Bergen
et al., 2013). There are dozens of such quantitative studies
investigating the changes in microbial community structure
and function, the assimilation pathways of organic compounds
and nutrients, as well as the functional role of individual proteins
in microbial processes (Bryson et al., 2016; Taubert et al., 2018).
However, protein-SIP relies on the cultivation of sampled
microorganisms in controlled laboratory experiments, which
hardly maintain the conditions and the microbial composition
encountered in natural habitats.

Instead of global proteomic profiling, targeted analysis of
specific proteins is a much more appropriate strategy when
particular biological processes of high importance are under
investigation (Saito et al., 2014; Saito et al., 2015). Typically,
triple quadrupole LC-MS/MS systems operating in Selected
Reaction Monitoring (SRM) mode are employed for tracking
process-related peptides/proteins. This methodology is
inherently more sensitive and comes with the added benefits
of increased throughput, dynamic range and selectivity. However,
the application of targeted proteomics requires a priori
knowledge of the target peptides and their detection-related
characteristics, such as their elution time, ionization efficiency
and SRM-transitions. When focusing on a single organism with
sequenced genome (e.g. human), the development of efficient
SRM assays is relatively easy, as a particular biological function is
assigned to specific proteins with unambiguously defined amino
acid sequences. Considering the broad genetic diversity of
microorganisms living in natural habitats, a specific
biochemical process may be driven by a large number of
homologous proteins having considerable differences in their
amino acid sequence, which would complicate LC-MS/MS
detection. Moreover, environmental microbial communities are
most likely dominated by unsequenced microorganisms with
unknown amino acid sequences.

Up to date, a few bioinformatics tools have been developed for
examining peptides in large metaproteomic datasets or multiple
peptidomes and classifying them according to their functional
and taxonomic attributes, with Unipept by Mesuere et al. (2015)
(Gurdeep Singh et al., 2019) being the most popular platform.
This is a web application implemented in Ruby and JavaScript,
which offers impressive capabilities for interactive data
visualization. However, it neither provides extensive flexibility
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in pinpointing unique peptide sequences among all registered
homologous proteins, nor is capable of examining the suitability
of selected peptides towards LC-MS/MS detection. Here we
present PepMANDIS, a Pythonic solution explicitly developed
to facilitate the design of targeted proteomic assays for LC-MS/
MS metaproteomic studies. It is an automated pipeline that
interrogates UniProt or a user-created protein database to
gather homolog proteins with defined functional role and
extract respective peptide sequences, while it computes several
protein/peptide properties and calculates relevant statistics to
deduce a small list of the most representative, process-specific and
MS-amenable peptides for a microbial enzymatic activity of
interest.

METHODS

Algorithm Overview
PepMANDIS was written in Python v3 and it was tested on
several Linux distributions (Fedora, Ubuntu and CentOS),
macOS (High Sierra, Big Sur) and Windows (v10). It supports
two different peptide prediction modes, the procedures of which
are illustrated in Figure 1 and Figure 2. In both modes, the
“protein name” is a mandatory option that users have to declare.
It is assumed that the users are familiar with the metabolic
pathway describing the biological process of interest (e.g.
KEGG pathways, https://www.genome.jp/kegg/pathway.html;
UM-BBD database, http://eawag-bbd.ethz.ch) and the protein

FIGURE 1 |Overview of general peptide prediction workflow as implemented in PepMANDIS. Input sequences are either gathered from UniProt DB or provided as
a file in FASTA amino acid format. They are consequently digested proteolytically in silico and subjected to the next steps of data processing.
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catalyzing a critical step in this pathway has been identified. The
name of the protein is thus used to programmatically query
UniProt database and track down all relevant entries, and to
generate a list of potential protein synonyms reported in BLAST
non-redundant protein DB to facilitate peptide specificity
calculations in later steps of the pipeline. In the first basic
mode, PepMANDIS can download from UniProt DB all the
protein sequences classified with the specified protein name,
but it also allows the user to set specific taxonomy restrictions
(i.e. retrieve sequences from specific groups of microorganisms;
by default, PepMANDIS retrieves bacteria-derived sequences
only). Moreover, it can accept as input a custom database with
pre-selected protein sequences of desired functionality, such as
those resulting from an annotated metagenomic assembly file.
Indeed, the proteins sequences emanating from metagenomic
data of the study system are preferable, because these are more
likely to be detectable in the system compared to the non-site-
specific proteins listed in UniProt.

Initial input data are gathered and consequently preprocessed
(extraction of taxonomy information and protein lengths).
Proteins with lengths out of the specified tolerance are filtered
out (by default, proteins can vary in size up to 25% from the
median length value) and some summary statistics about the
proteins are output (e.g. average protein size and protein length

standard deviation before and after initial filtering; protein counts
per phyla/genera/species). Afterwards, proteins are digested in
silico, critical features regarding the peptides (e.g. frequency of
occurrence among proteins, coverage of microbial species) are
extracted and calculated, and the list of peptides having the
highest contribution to the coverage of microbial species are
outputted. This list is further scrutinized to identify peptides
prone to chemical modifications (i.e. those being more
challenging to quantify by LC–MS/MS) and estimate their LC-
MS/MS detectability and functional specificity (i.e. whether a
peptide is present in proteins with the desired function only or
not). In the final stage, comprehensive information about the
peptides resulting from the in silico digestion of input proteins
and having a specified length (by default, from 8 amino acid
residues (AA) up to 25 AA) is outputted together with two lists
containing best target peptide predictions (i.e. peptides with the
highest frequency of occurrence across proteins and passing all
the filtering options, such as size, functional specificity and MS
detectability thresholds and number of possible chemical
modifications). The first list encompasses peptides that
collectively cover as many as possible of the microbial genera
known to encode the target peptide/protein, while the second list
represents the highest coverage in terms of microbial species). If
the input is a user-defined database of protein sequences, a single

FIGURE 2 | Overview of optional peptide prediction mode workflow. User provides extra input file with protein sequences in FASTA AA format (e.g. derived from
metagenomic sequencing). These proteins are digested in silico and resulting peptides are compared to those derived from either UniProt DB or other trusted sources of
functionally annotated proteins. Exact matches only are then subjected to downstream data processing.
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list with the best predicted target peptides is only outputted due to
the absence of taxonomy information.

In the second mode, the user provides a FASTA file with the
AA sequences of proteins assigned to the functional class of
choice (e.g. derived from metagenomic data). Protein sequences
are extracted from this file, digested in silico and the resulting
peptide sequences are compared to those of homologous proteins
retrieved either from UniProt DB or other trusted sources of
functionally annotated proteins. Only the peptide sequences
showing an exact match are selected and subjected to the next
steps of data processing. In this way, the user is assured that the
best target peptides predictions frommetagenomic data represent
peptides previously reported in databases.

Input and Output
As a mandatory input, the user specifies protein name which is
then used for downloading the initial protein dataset
programmatically from the UniProt DB using Selenium
libraries (http://www.seleniumhq.org). The initial dataset
includes information such as protein ID and names, taxonomy
(organism and phylum) and AA sequence along with its length.
This UniProt DB search can be restricted to a particular
taxonomy specified by the user as an input parameter (by
default, this option is set to “Bacteria”). The software
automatically creates the UniProt search-query URL based on
script parameters. However, this option can be overridden by
either specifying a custom URL of UniProt DB search or by
inputting a custom protein dataset in AA FASTA format. In the
latter case, some functionalities of the pipeline, particularly those
related to the taxonomic classification of protein/peptides, are not
applied since necessary information is missing. On the other
hand, the use of a custom protein database derived from
metagenomic studies, which includes the proteins more likely
to be present in the environment under investigation, can
significantly enhance the effectiveness and specificity of the
algorithm in the prediction of site-specific target peptides.
Moreover, the copy numbers (i.e. coverage) of each protein/
peptide sequence in the nucleotide FASTA file can be specified
(more information is available in the GitHub README file or
after invoking help message of PepMANDIS), which enables this
parameter to be used as a proxy for the identification of target
peptides with tentatively higher abundance in the real
environment. As an advanced option, the user can also supply
a dataset with protein entries in FASTA AA format. The peptides
resulting from in silico digestion can be compared to peptides of
homologous proteins previously reported in UniProt DB or other
custom lists of proteins with the desired functionality. The entries
presenting an exact match with the reference database can be
selected as target peptides of high confidence in terms of
biological functionality.

The user can also provide a config file containing information
about the paths to supportive software tools, files and databases
(i.e. Google Chrome driver, PeptideSieve executable and its
accompanying file with amino acid physicochemical
properties, BLASTP executable, BLAST nr database, as well as
the file containing taxids for taxonomy restrictions of offline
BLASTP search; Chrome and PeptideSieve employed for the

prediction of peptide detectability by LC-MS/MS, as well as
offline BLASTP used for evaluating functional specificity of
peptides). However, a config file is not necessary as long as
the user prefers to use Safari web browser and does not want
to perform PeptideSieve analysis or offline blasting (see section
“Calculation of peptide properties” below for further
information). There are also multiple input parameters that
can be modified in order to adjust the performance of the
pipeline according to user’s needs. These parameters are
explained after running the software with --help or -h option.

During the execution of the pipeline, several figures (see
Figure 3), an XML file with the results of BLASTP search
(blastp_results.xml) and various text files are outputted: a
FASTA AA file of retrieved UniProt proteins
(UniProt_proteins.faa), a file containing initial statistics about
the input proteins (initial_info.txt), a file with the list of peptides
chosen for computation of specific peptide properties
(peptide_candidates_for_calculations.txt,
peptide_candidates_for_calculations*.faa), a file with identified
peptides prone to chemical modifications
(possible_chemical_modifications.txt) and a file containing
information regarding the specificity score calculations
(peptide_blastp_specificity.txt). Besides the files generated in
the initial stages of data processing, the ultimate resulting files
include the lists of predicted best target peptides amenable to LC-
MS/MS analysis (covering as many genera/species as possible, i.e.
files Selected_peptides.genera, Selected_peptides.species) and a
tab-delimited file that can be easily imported to MS Excel, with
comprehensive information about the properties computed by
PepMANDIS for all peptides of input proteins
(Peptides_complete_info.txt). An example of the latter is
shown in Figure 4.

Data Processing
Pre-Processing of Protein Sequence Datasets
After loading input protein sequences, a pre-processing step is
carried out in the following way: taxonomic information and
sequence length are extracted, summary statistics for sequence
lengths are calculated and the entries deviating from the median
value by more than a specified percentage (by default, > 25%)
are filtered out. The entries assigned with a putative function by
UniProt are also removed when this option is activated.
Summary statistics such as median, mean and standard
deviation of protein lengths before and after refinement are
calculated by Numpy (Oliphant, 2006). Taxonomy statistics (i.e.
counts of proteins belonging to different phyla, genera and
species) are computed as well. Afterwards, four figures are
drawn employing matplotlib. pyplot functions (Hunter,
2007): a histogram of length distribution for input proteins,
and pie charts showing frequencies of occurrence of input
proteins among different phyla and genera. Some basic
statistics on protein sequences, such as the total number of
proteins entries retrieved, mean/median and standard deviation
of protein sequences length, as well as the protein counts
belonging to different taxonomic groups, before and after
their pre-processing are also automatically exported in the
form of tab-delimited text file.
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In silico Protein Digestion
After pre-processing, the protein entries are proteolytically
digested in silico with trypsin using classes from pyOpenMS
library (Röst et al., 2014) and peptides having a specified length
(by default, from 8 AA up to 25 AA) are stored for downstream
analysis. Some key information is subsequently gathered for
the resulting peptides, such as their frequency of occurrence
among the different proteins, along with the total number and
names of microbial species presenting a given peptide.
Peptides are then sorted in descending order according to
the number of species in which they were found. Finally, a list
of peptides (400 by default) with the highest frequency of
occurrence among microbial species are outputted into a tab-
delimited text file. The specific list is subsequently used for
calculations of the peptide properties in the following stage of
the pipeline.

Integration With Metagenomic Datasets
When the protein sequences originate from custom data sources
(e.g. metagenomic analysis) and the user wants to ensure that the
target peptides resulting from PepMANDIS will be consistent
with already verified records, two input datasets can be optionally
reconciled–the primary customized dataset of proteins derived
from environmental sequencing studies and annotated with the
desired functionality, and a secondary dataset of verified entries
derived from UniProt DB or another trusted source for the same
biological function. The protein sequences of both datasets are
digested in silico as described above and the resulting peptides

with the same size are compared in a pairwise manner. The exact
matches are retrieved and used in all the consequent stages of the
analysis starting with the generation of the list of 400 peptides
with the highest frequency of occurrence along with the highest
coverage of different species.

Calculation of Peptide Properties
The list of top-ranking peptides is then scrutinized to
determine which of them contain AA residues prone to
chemical modifications. The total number and type of
problematic AA are then calculated for each peptide and
outputted to a tab-delimited text file. Subsequently,
selenium libraries (http://www.seleniumhq.org) are used to
submit via Google Chrome or Safari web browser the peptide
sequences to the server running CONSeQuence tool (Eyers
et al., 2011). The latter predicts the LC-MS/MS-based
detectability of peptides by combining four machine
learning algorithms that were trained and tested on yeast
proteome data. By default, a peptide is assumed to pass the
detectability filter if it is predicted to be detectable by at least
one algorithm. Results are consequently retrieved and parsed
by PepMANDIS. As an extra option, the user can also perform
calculations with PeptideSieve (Mallick et al., 2007) (if this
program is locally installed), to further evaluate the probability
that a given peptide will be detectable by means of LC-MS/MS
instrumentation.

The peptides included in the list are also examined for their
functional specificity (i.e. whether they are encoded exclusively in

FIGURE 3 | Illustration of various graphical outputs generated during PepMANDIS execution. These include three pie charts showing taxonomic composition of the
protein data retrieved from UniProt DB and a histogram displaying the size distribution of the retrieved proteins (in terms of the total number of amino acid residues).
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proteins with desired function or not). This is done by their
sequence alignment to the non-redundant (nr) protein database
via BLASTP (Camacho et al., 2009) and subsequent inspection of
the proteins to which they are aligned with no mismatches or
gaps. BLASTP search can be conducted either online using
NCBIWWW BioPython package (Cock et al., 2009) or offline
if the BLAST + toolkit is installed on the computer along with the
storage of nr protein database on a local disk. We recommend
offline blasting since the retrieval of the results from the online
search engine can take several hours or even fail entirely
depending on user’s Internet connection speed and NCBI
BLAST server load, whereas NCBI moves larger queries to
slower computational queue. Indeed, this step is the biggest
and only bottleneck of the software in terms of computational
time. BLASTP search is limited to proteins occurring in selected
taxonomy only (this parameter is set to “Bacteria” by default if
online BLASTP search is invoked; in offline BLASTP search,
taxonomy can be limited by specifying file with list of taxids). The
results of BLASTP search are stored in an XML file that is then
parsed by NCBIXML package from BioPython. BLASTP hits
having the desired biological function are identified by comparing
their description with the name of the target protein selected (user
input). Since homolog proteins are frequently stored in nr
database with slightly disparate names, some BLASTP hits can
be erroneously regarded as not having the desired functional role.
For this reason, PepMANDIS creates an exhaustive list of protein

synonyms from nr database that are subsequently taken into
account in the computation of functional specificity scores of
peptides (i.e. the percentage of BLASTP hits with the desired
biological function). A text file with all protein synonyms along
with information about the specificity scores of individual
peptides is outputted to enable the possibility for manual
inspection of results and the detection of potential errors in
specificity score calculations. In case the user suspects that some
peptides are still erroneously flagged with low specificity scores
and rejected from further analysis, it is possible to decrease the
specificity threshold (option -s) or use option -a, which allows to
define a list of peptides for which the specificity score-based
filtering step will not apply. There is also the possibility of
disabling the computation of peptides functional specificity
(option --no-bsearch), in case the user prefers to use other
tools for this purpose (e.g. Unipept).

Generation of Short Lists of Target Peptides
When the input dataset consists of function-specific protein
sequences retrieved from UniProt DB together with taxonomy
information, two lists of predicted best target peptides (50
peptides by default) are outputted. The first list includes
peptides that collectively cover as many genera as possible,
while the second list contains peptides comprising the highest
coverage at the species level. In both cases, only the peptides that
pass all filtering criteria (i.e. detectability thresholds, specificity

FIGURE 4 | Demonstration of ‘Peptides_complete_info.txt’ file which provides comprehensive information about peptide properties calculated during the
execution of PepMANDIS.
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threshold, peptide length thresholds and maximum number of
allowed chemical modifications) are identified and sorted in
order of decreasing contribution to genera or species coverage.
For input datasets consisting of protein sequences inferred from
metagenomic data without taxonomic classification, a single list
of peptides with the highest frequency of occurrence among
encoded proteins is generated. This relies on the premise that
genes presenting multiple copies in a metagenomic analysis will
be expressed at higher levels in the environmental system and the
respective protein/peptides will have greater probability of
detection by LC-MS/MS. Since PepMANDIS is focused on
homologous genes/proteins only, this assumption is very likely
to be true.

In addition to short lists, PepMANDIS also outputs a tab-
delimited file containing all the peptides within the specified
length thresholds derived from initial proteins (when protein/
peptide sequences derived from metagenomics studies are
compared against UniProt homolog entries, only the peptides
having an exact match are included) together with comprehensive
information, such as AA sequence, frequency of occurrence
among proteins, number of different species encoding each
peptide, PeptideSieve and CONSeQuence scores, functional
specificity score, number of possible chemical modifications
and related taxonomy. This enables the user to manually
modify the short list of target peptides produced by
PepMANDIS or even create a completely different list of
peptides for analysis by LC-MS/MS.

User Guide
Installation
PepMANDIS is distributed as a GitHub repository. Downloading
its source code and installation of dependencies is straightforward
and should not take more than 15 min (except for NR BLAST
database download) to a command-line user of average
experience. The users are encouraged to contact the authors if
any troubleshooting is needed. A short version of this guide with
some further examples of usage is available in README file at
https://github.com/matejmedvecky/pepmandis. The very first
step is to ensure that Git is installed on user’s computer. On
Linux, Git can be installed through the package management tool
that comes with the Linux distribution (e.g. by typing ‘sudo yum
install git’ in CentOS terminal or ‘sudo apt-get install git-all’ in
Ubuntu terminal). MacOS users can install it via Homebrew
package manager (https://brew.sh) by typing ‘brew install git’ in
MacOS terminal, while Windows users should download and run
an official build, which is available at https://git-scm.com/
downloads.

After Git is successfully installed, the working directory should
be changed to the one where PepMANDIS is going to be installed.
PepMANDIS repository with the source code, configuration files
and output screenshots can then be obtained by entering ‘git
clone https://github.com/matejmedvecky/pepmandis.git’ in the
Terminal. PepMANDIS script is located in the ‘bin’ directory.
For convenience, the path of PepMANDIS ‘bin’ directory can be
added into PATH system variable. so that it can be easily executed
from the command line without specifying full path to the
script file.

Apart from Python 3, the following list of dependencies is
necessary to be installed in order to successfully execute the
pipeline: biopython, matplotlib, multiprocess, numpy,
pyopenms and selenium. All of them can be installed via
package installer for Python (https://pip.pypa.io/en/stable/
installing/) by command ‘pip install package_name’, e.g. ‘pip
install biopython’. If after installation of pyopenms, an error
message comes up informing that a library cannot be loaded,
‘openssl’ library needs to be installed as well. This one can be
installed via Homebrew by typing ‘brew install openssl’ in
Terminal. Chrome (recommended) or Safari web browser
also needs to be installed on user’s computer. In the second
case, the ‘Allow Remote Automation’ option must be enabled
in Safari’s Develop menu. On the other hand, Chrome users
should be aware that system’s ChromeDriver must be
compatible with the system’s Chrome browser version.
ChromeDriver can be downloaded from https://sites.
google.com/a/chromium.org/chromedriver/downloads.
macOS users may experience the following exception with
Chrome browser: ‘chromedriver cannot be opened because
the developer cannot be verified.’ This error can be fixed by
making macOS trust ChromeDriver binary by typing ‘xattr -d
com.apple.quarantine /path/to/chromedriver’ in Terminal
and replace ‘/path/to/’ by the absolute path of
ChromeDriver (most of the times this is located in
‘/Applications’ directory).

Since NCBI generally moves large BLAST queries to slow
queues, the usage of offline BLASTing option in PepMANDIS is
highly recommended. This option requires to set up BLAST non-
redundant database along with BLAST + software locally. For the
installation of BLAST + command line applications, the users can
refer to https://www.ncbi.nlm.nih.gov/books/NBK279690/. Non-
redundant (NR) BLAST database can be downloaded from the
FTP server https://ftp.ncbi.nlm.nih.gov/blast/db/. In order to limit
offline BLASTP search by taxonomy, a file with taxonomy IDs
(taxids file) has to be provided by the user (see https://www.ncbi.nlm.
nih.gov/books/NBK546209/#cookbook.Limiting_a_BLAST_search_
with_a). A file ‘bacterial.ids’ containing all taxids available for
bacteria can be found in ‘config’ directory of PepMANDIS
repository.

As an optional dependency, PeptideSieve can be obtained
from https://sourceforge.net/projects/sashimi/files/
peptideSieve/. However, it should be mentioned that newer
versions of macOS are not able to run PeptideSieve since LD_
LIBRARY_PATH and DYLD_LIBRARY_PATH cannot be
loaded due to ‘System integrity protection’. The latter
should be turned off in order to enable dyld library loading.

Configuration File
Configuration file is another requirement in order to make
PepMANDIS work more efficiently, if Google Chrome
browser, offline BLASTP search and/or PeptideSieve tool
are to be used. The structure of this file is similar to
Microsoft Windows INI files. It consists of sections, starting
with a [section] header on separate line, followed by keys and
their values separated by ‘ � ’ character. There are four possible
sections [ChromeDriver] [blastp] [PeptideSieve] and
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[taxidFile]. Users may include only sections that they want to
use during the execution of PepMANDIS. In [ChromeDriver]
section, user should provide path to CromeDriver (key is ‘path’
and value is the absolute path to ChromeDriver executable); in
[blastp] section, user should provide the path to BLASTP
executable (key is ‘executable’), as well as the path to NR
BLAST DB (key is ‘databasePath’); in [PeptideSieve] section,
there are two keys, a path to executable (key is ‘executable’) and
a path to properties file (key is ‘propertiesFilePath’); in
[taxidFile] section, user should specify the path to taxid file
(key is ‘taxidFilePath’). A configuration file template
(‘defaults.cfg’) can be found in ‘config’ directory of
PepMANDIS repository. An example of a configuration file
for Windows is shown in Figure 5.

Quick Start
On UNIX-like systems (Linux and macOS), one may need to
change permissions on pepMANDIS.py file by command
‘chmod u+x pepMANDIS.py’. Several different ways of
executing pepMANDIS.py along with a detailed description
of its options can be found in README file at https://github.
com/matejmedvecky/pepmandis. For the purposes of this user
guide, it is assumed that path to pepMANDIS.py script is
specified in PATH variable. The very first recommended step is
to invoke help message by using the commands ‘pepMANDIS.
py -h’ or ‘pepMANDIS.py –help’. It should be also noted that
Windows users may need to write the python command before
the actual script name (i.e. ‘py pepMANDIS.py -h’). A help
message with a brief description of the software along with an
explanation of all possible options should appear in the
Terminal.

Generally, the command for PepMANDIS execution should be
written in the form ‘pepMANDIS.py -m “desired_molecule_name”
[arguments]’. Users can familiarize with PepMANDIS command
line arguments and its output by running quick test instances. For
example, in order to gather all catechol-1,2-dioxygenase protein
entries from UniProt DB, compute basic statistics and escape
running further time-consuming steps of the pipeline, the
command ‘pepMANDIS.py -m “catechol-1,2-dioxygenase” --stats-
only’ should be executed. To familiarize with all types of output files,
onemaywant to run the full pipeline quickly by setting the argument
-n (number of peptides with the highest species-coverage that are

subjected to properties calculations) to a low number (e.g. 25), such
as ‘pepMANDIS.py -m “catechol-1,2-dioxygenase” --offline-blastp
-t 8 -n 25’. In the same command, offline BLASTing using eight
threads has been activated by adding ‘--offline-blastp -t 8’
argument.

Examples of Advanced Usage
During PepMANDIS execution, it is likely that a warning
message, such as “Caution: Following list of selected
peptides is missing specificity scores” may show up. This
may occur when the -n parameter is set to very low values.
In this case, users may have to either increase -n parameter
(e.g. set it to 1,000) or they can store the list of peptides with
missing specificity scores into a FASTA AA file and re-run the
analysis using the following command ‘pepMANDIS.py -m
“catechol-1,2-dioxygenase” --no-usearch --offline-blastp -t 8 -
i list_of_peptides.faa’. The argument ‘--no-usearch’ will
deactivate gathering proteins from UniProt DB, while the
‘-i’ argument specifies that peptides from an input FASTA
AA file will be used. Users may then manually combine the
outputs from both analyses.

Given the extensive flexibility of PepMANDIS, commands
of increased complexity can be used in order to execute the
pipeline, such as ‘pepMANDIS.py -m “catechol-1,2-
dioxygenase” -u “Actinobacteria|Proteobacteria” --offline-
blastp -t 12 -a “SQSDFNLR,
HGQRPAHIHFFISAPGHR,LIAAAGWHAWRPAHLHVK”
-cd 2’. In this specific case, the ‘-u “Actinobacteria|
Proteobacteria"’ argument restricts UniProt retrieval to
protein entries belonging to either Actinobacteria or
Proteobacteria phyla. In addition, the ‘-a “SQSDFNLR,
HGQRPAHIHFFISAPGHR,LIAAAGWHAWRPAHLHVK"’
argument ensures that filtering of peptides SQSDFNLR,
HGQRPAHIHFFISAPGHR, and LIAAAGWHAWRPAHLHVK
due to unfairly low specificity scores will be avoided (the
problem of biased specificity scores may result for some proteins
due to the inconsistent naming of their entries in NR BLAST
database). Furthermore, the ‘-cd 2’ argument specifies that at
least two out of the four CONSeQuence algorithms should
predict a peptide as detectable in order to avoid filtering out the
peptide from the final list of best-performing candidates (i.e. increase
the stringency of prediction about peptides detectability).

FIGURE 5 | Example of a configuration file for Windows Operating System. Section headers are followed by keys and their actual values (the values represent the
absolute paths to the various external files and/or executables).
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RESULTS

Algorithm Testing
To demonstrate the functionality of PepMANDIS pipeline, we
present results for two different enzymes of UniProt DB that
catalyze monoaromatic compound degradation, namely
catechol-1,2-dioxygenase and benzoate-1,2-dioxygenase,
alpha subunit. In both cases, the default settings were used.
Moreover, we present results generated using the optional
input mode, where metagenomic-derived proteins/peptides
of a specific biological function are integrated with homolog
entries of UniProt DB and the exact matches are used for
shortlisting target peptides. In this case, we utilized
metagenomic data obtained from a red microbial mat at the
seafloor of Santorini caldera, Greece (IMG/M system
accessions 3300002231, https://img.jgi.doe.gov), indicating a
high abundance of microbial genes related with the
degradation of monoaromatic compounds (Oulas et al.,
2016). We focused on catechol-2,3-dioxygenase enzyme,
which was represented by multiple homologous genes in the
specific metagenome.

Execution Time
Execution times of PepMANDIS tool are highly dependent on
whether the offline or online BLASTP search option is used.
Excluding the blasting stage, all remaining parts of the pipeline
were completed within minutes for the tests conducted herein (ca.
1min 30 s in the case of benzoate-1,2-dioxygenase, alpha subunit
and ca. 5 min in the case of catechol-1,2-dioxygenase) when using
MacBook Pro 2017 (2.3 GHz Intel Core i5). Execution times of
online blasting depend on NCBI BLAST server load and they are
usually shorter during weekends and weekday mornings in
Europe. Generally, online blasting stage lasts from 10 min up
to 2 h when 400 peptides (default value) are used as queries. Due
to this inconvenience, we recommend using the offline BLASTP
search option, especially when large computational resources are
available for the user. Due to its higher speed, the offline option
helps to increase the number of peptides that can be directed to
the next stage for properties calculation. For users that do not
have the capacity to perform offline BLASTP search, we
introduced two options. First option (-I) enables reusage of
previously generated blastp.xml file which speeds up the
analysis considerably when re-running the analysis with the
same dataset but different pipeline parameters. Alternatively,
functional specificity calculations can be skipped completely
(option–no-bsearch) and user can use third-party software for
this purpose.

Catechol-1,2-Dioxygenase
A total of 6,296 entries of catechol-1,2-dioxygenase were
automatically obtained from UniProt DB. The length of
sequences (number of amino acid residues) ranged from 14 to
758 AA, with a median of 305 AA, an average of 288 AA and a
standard deviation of 55 AA. About 9% of the entries were
removed from the dataset, as their length deviated
considerably from the median value (by default, >25%). These
highly diverged sequences were deemed to represent incomplete

or erroneous entries. After trimming, the dataset contained
5,737 catechol-1,2-dioxygenase sequences with a length
ranging from 229 to 371 AA (median: 306 AA, average: 303
AA, standard deviation: 15 AA). The filtered dataset comprised
entries belonging to 12 different phyla (Proteobacteria,
Actinobacteria, Firmicutes, Bacteroidetes, Candidatus
Rokubacteria, Acidobacteria, Deinococcus-Thermus, Chloroflexi,
Planctomycetes, Verrucomicrobia, Cyanobacteria, Balneolaeota),
while 16 entries were of unknown taxonomy. The majority of
entries belonged to Proteobacteria (n � 4,122), the most
important genus of which was Pseudomonas (n � 1,031)
followed by Acinetobacter (n � 437) and Burkholderia (n � 383).

In silico digestion resulted in 25,153 peptides, which were
sorted in descending order according to their contribution to
species coverage, and the properties were calculated for the top
400. The peptide LGQDGEAALLAAGLGLEK was identified as
having the highest coverage at the species level (i.e. encoded in 73
different bacterial species), while it was present in 199 UniProt
DB protein entries. More importantly, it passed all threshold
criteria and thus represented an excellent peptide for targeted
metaproteomic studies. Similarly, the most frequently
encountered peptide was SQSDFNLR, found in 357 different
protein entries belonging to 68 different bacterial species.
However, SQSDFNLR was not included in the final short-lists
as it did not pass CONSeQuence filter (i.e. low probability of
being detected by LC-MS/MS). Furthermore, 76 out of the 400
peptides failed to pass CONSeQuence detectability filter, while
seven peptides were below the specificity threshold and eight had
more than three sites prone to chemical modifications. After
discarding these 96 cases, the top 50 of the remaining peptides
were added to the final short-list of target peptides. The specific
peptides collectively covered 58.0 and 59.1% of genera and species
registered in UniProt DB for catechol-1,2-dioxygenase.

Benzoate-1,2-Dioxygenase, Alpha Subunit
A total of 895 sequences of benzoate-1,2-dioxygenase, alpha
subunit were retrieved from UniProt DB with their length
ranging from 42 to 533 AA (median: 454 AA, average: 437
AA, standard deviation: 75 AA). About 6% of them were
excluded from the initial input file as being highly divergent,
leading to a dataset of 842 protein sequences having a length of
363–533 (median: 455 AA, average: 455 AA, standard deviation:
14 AA). This refined dataset included three different phyla
(Proteobacteria, Actinobacteria, Bacteroidetes), while the
taxonomy of two proteins was not specified. Similarly to
catechol-1,2-dioxygenase, the benzoate-1,2-dioxygenase
enzyme was predominantly represented by Proteobacteria (n �
682) with Pseudomonas (n � 186) being the most important
genus, followed by Acinetobacter (n � 103) and
Burkholderia (n � 52).

Protein sequences were digested into 5,990 peptides. The
peptide TEVTIYCIAPK exhibited the highest coverage at the
species level, as it was present in 146 different bacterial species.
This was also the most commonly observed peptide among
individual proteins, as it recurred in 242 of them (it should be
stressed that several protein entries in UniProt are attributed to
uncharacterized species). Out of the 400 peptides with the highest
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recurrence rate in bacterial species, 174 were discarded by not
meeting the criteria set for the calculated properties (62 failed to
pass CONSeQuence detectability filter, 14 indicated more than
three sites prone to chemical modifications and 98 did not fulfill
the specificity threshold criterion). The top 50 of the remaining
peptides collectively covered all different genera presenting
benzoate-1,2-dioxygenase within UniProt DB, while the
respective coverage at the species level was 97.2%.

With regard to specificity score calculations, some BLAST hits
of peptides can be erroneously classified as irrelevant to the target
protein if both their names and synonyms are completely
different from those registered for all other homologous
proteins in the database. Therefore, the users are strongly
advised to check “peptide_blastp_specificity.txt” file, which
contains information about the synonyms of the target protein
and the names of all individual BLAST hits. In the case of
“benzoate-1,2-dioxygenase, alpha subunit” enzyme, the
majority of its tryptic peptides presented relatively low
specificity scores (i.e. below 90%), because their parent
proteins in BLAST database were named as “Rieske 2Fe 2S
domain containing protein”, which is the short form of
“Rieske 2Fe 2S domain containing protein benzoate-1,2-
dioxygenase, alpha subunit”. Default specificity threshold of
90% can therefore be changed to a lower number in order to
retain false negative peptides within the dataset. Lowering the
specificity threshold value to 70%, the species-level coverage of
the top 50 peptides increased to 100%.

Catechol-2,3-Dioxygenase
The capability of PepMANDIS to derive target peptides from the
consensus of a user-defined custom dataset (e.g. metagenomic
data) and UniProt DB was tested for catechol-2,3-dioxygenase. In
this operation mode, the software compares the peptides of a
defined protein target that is found in a user’s sequencing study
with those retrieved from UniProt DB. The exact matches from
this comparison represent peptide/protein sequences that are
highly likely to be expressed in the study site (e.g. as
evidenced by the identification of respective exact genes in the
metagenome), while their presence in UniProt DB provides an
additional measure of confidence. Our custom database consisted
of 43 full and partial sequences of catechol-2,3-dioxygenase
derived from the metagenomic study of a red microbial mat of
Santorini caldera. Despite the enormous number of catechol-2,3-
dioxygenase entries retrieved from UniProt DB (17,581 protein
sequences that were reduced to 11,836 after filtering highly
divergent entries), only two of the resulting peptide sequences
were commonly present in our custom database. The first one
(IAAFLSCSNK) lacked taxonomic information as it was matched
to uncultured bacteria previously reported in UniProt, while the
second peptide (TIYFFDPSGNR) was ascribed to the species
Pseudomonas xanthomarina/fluorescens/monteilii/furukawaii.
The small number of exact matches suggests that the catechol-
2,3-dioxygenase-like enzymes encoded by the bacteria of the
microbial mat are considerably different from those stored in
UniProt DB.

Given this disparity, it is advised to use metagenomic-derived
sequences as the sole input dataset (i.e. deactivate cross-checking

against UniProt DB), particularly when seeking target peptides
for a specific family of enzymes in a largely unexplored
environments. We re-analyzed our metagenomic dataset after
setting parameter “−l” (length variation coefficient) of
PepMANDIS to its maximum value (i.e. 100%). This
modification was necessary to ensure that none of the proteins
would be discarded due to protein size constraints. In silico
digestion of the 43 sequences resulted in 185 unique peptides.
Among them, eight peptides contained an unknown AA residue
(i.e. the unspecified AA symbol “X”) within their sequence, 24
failed to pass CONSeQuence filter (among them also the most
frequently occurring peptide LWAAWMHR that was present in
four different protein entries), three peptides had more than three
sites prone to chemical modifications and three did not pass
specificity threshold criterion. After the application of all filtering
options, there were still >100 remaining peptides for the
development of LC-MS/MS-based targeted proteomic assays
for the investigation of catechol-2,3-dioxygenase in microbial
mat samples. Among them, 34 peptides possessed 100%
specificity, contained zero AA with propensity to chemical
modifications and they were predicted to be LC-MS/MS-
detectable by at least one CONSeQuence algorithm, making
them ideal candidates for targeted metaproteomic studies.

Limitations
When using online BLASTP search option, long execution times
can be encountered depending onNCBI server load and the user’s
Internet connection speed. Sometimes, when the NCBI server
load is heavy, results might not be obtained at all and the user
should lower -n parameter (number of peptides to be involved in
properties calculations) in order to acquire the results. Another
possible limitation is related to the procedure applied for the
calculation of specificity scores, which is practically based on
protein names and the extensive synonyms stored in BLAST non-
redundant database. The user should always check
“peptide_blastp_specificity.txt” file that contains information
regarding the specificity score calculations and of particular
peptides with low specificity scores. Users should adjust the -s
parameter (functional specificity threshold) to an appropriate
value, apply optional parameter -a (i.e. define a list of peptides to
be excluded from the specificity score-based filtering step), or
disable functional specificity calculation completely (option --no-
bsearch) and use another tool for these computations instead.
Finally, other properties, such as elution time and SRM-
transitions of the peptides are not predicted by PepMANDIS,
but these are well covered by other specialized software (e.g.
Skyline).

DISCUSSION

Until now, environmental proteomics were mainly oriented
towards the global proteomic profiling of native soils and
waters to help ecologists gain a better understanding about
microbial diversity and its impact on ecosystem functioning.
As opposed to the untargeted nature of classical
metaproteomic studies, we here provide a bioinformatics tool
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that may open the way of detecting specific families of enzymes in
mixed microbial communities and tracking the progress of
specific biological processes with environmental or
biotechnological interest. We believe that this alternative
proteomic approach deserves further investigation and that
PepMANDIS can significantly contribute towards this direction.

PepMANDIS is an automated pipeline with novel concept that
interrogates UniProt or user-defined protein databases and
calculates several protein/peptide properties and associated
statistics to deduce a small list of the most representative,
process-specific and MS-amenable peptides for a microbial
enzymatic function of interest. Besides providing short lists of
predictions for best target peptides, it generates multiple files and
figures to give a comprehensive overview of their taxonomic
status and assist the evaluation of some critical properties
pertaining to LC-MS/MS-based targeted proteomic analysis.
With regard to other software, Unipept is of the closest
relevance as it is the leading platform for scrutinizing peptide
lists from UniProt microbial proteomes or metaproteomic
datasets. However, this is primarily oriented towards achieving
comprehensive biodiversity and functional analysis of peptides
rather than supporting the design of targeted proteomics
methods. To our knowledge, pepMANDIS is the first-of-its-
kind software explicitly developed to facilitate peptides
selection for tailoring function-specific targeted metaproteomic
assays in complex microbial systems. It introduces a novel
approach specifically for the implementation of environmental
targeted metaproteomics, but this can also find interesting
applications in host-associated bacterial communities (e.g. gut
microbiota). It is open source, cross-platform and offers multiple
advanced features to analytical chemists working in this field.
Moreover it is implemented as a Pythonic class that can be easily
forked and customized by other users, since Python is among the
most widely used languages in current biology.
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