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Viruses are natural supramolecular nanostructures that form spontaneously by molecular
self-assembly of complex biomolecules. Peptide self-assembly is a versatile tool that
allows mimicking viruses by creating their simplified versions through the design of
functional, supramolecular materials with modularity, tunability, and responsiveness to
chemical and physical stimuli. The main challenge in the design and fabrication of peptide
materials is related to the precise control between the peptide sequence and its resulting
supramolecular morphology. We provide an overview of existing sequence patterns
employed for the development of spherical and fibrillar peptide assemblies that can act
as viral mimetics, offering the opportunity to tackle the challenges of viral infections.
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INTRODUCTION

Designed bio-nanomaterials are often inspired by basic processes found in nature such as molecular
recognition and self-assembly (Lehn, 2002; Whitesides and Grzybowski, 2002; Yang et al., 2020a).
Viruses present a great source of inspiration for the design of life-like materials (Whitesides, 2015;
Maslanka Figueroa et al., 2021) as they constitute simple, yet sophisticated supramolecular
assemblies that contain genetic code and present well-defined rod-like or spherical
morphologies. In addition, they show the ability to self-replicate, respond to physical and
chemical stimuli, adapt to the environment, and evade the immune system which makes them
ideal candidates to be manipulated and repurposed.

A variety of virus-mimetic materials have been developed for biological and chemical sensing
(Mao et al., 2009), drug delivery (Li et al., 2016), cancer immunotherapy (Mohsen et al., 2020)
and vaccine design (Abudula et al., 2020). Virus-like particles (VLPs), formed by the multimeric
self-assembly of expressed viral structural proteins in absence of genetic material, are the most
studied ones (Ludwig and Wagner, 2007; Ferreira and Martins, 2017; Roldão et al., 2019). The
complexity of their fabrication, that requires fully folded proteins and efficient upstream and
downstream strategies, impacts the production yields, and is associated to high costs. Other
examples include polymer peptide nanogels (Lee et al., 2008), dendritic lipopeptides (Liang et al.,
2019), iron oxide-lactoferrin magneto-responsive nanocapsules (Fang et al., 2015), peptide-
DNA condensates (Cao et al., 2018), rabies-inspired gold nanorods (Lee et al., 2017) or
metal–organic frameworks (Qiao et al., 2020). However, the potential of minimalistic, purely
peptidic, supramolecular nanostructures to resemble the morphology and/or functionality of
viruses has not been fully exploited yet.
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Several peptide-based therapeutics have reached the market while
others are in various phases of clinical development for the treatment of
cancer and metabolic disorders (Vlieghe et al., 2010; Craik et al., 2013).
Compared to their protein counterparts, peptides are easier to
synthesize and more stable under harsh conditions (Fosgerau and
Hoffmann, 2015). Furthermore, peptides can be exploited as building
blocks for the fabrication of highly ordered nanostructures with varying
morphologies and surface functionalities, developed for drug delivery,
tissue engineering, and regenerative medicine due to their inherent
biocompatibility and biodegradability (Zhang, 2003; Collier et al., 2010;
Woolfson andMahmoud, 2010; Frederix et al., 2015; Smith et al., 2015;
Slocik and Naik, 2017; Lampel et al., 2018; Sharma et al., 2021).

Peptide-based nanomaterials offer simple and low costs alternatives
to VLPs (Matsuura, 2012; Hendricks et al., 2017; Singh et al., 2017; Cai
et al., 2020). When designing peptide-based virus mimetics, the main

strategy is capsid reconstruction through the formation of
supramolecular assemblies based on peptide segments with the goal
of mimicking the viral architecture and functionality of efficient cell
entry, immune evasion, and targeted cargo delivery. In here, we provide
an overview of sequence patterns that drive peptide self-assembly,
followed by the potential to achieve dimensional control through co-
assembly. Finally, examples of peptide-based building blocks used in
the design of supramolecular virus mimetics are discussed.

MORPHOLOGICAL CONTROL THROUGH
SEQUENCE DESIGN

In the context of molecular self-assembly, the composition and
the physico-chemical properties of amino acid side chains dictate

FIGURE 1 | Schematic representation of the main sequence patterns found in self-assembling peptides, namely (A) high content of aromaticity, (B) binary
alternating patterns of hydrophobic-hydrophilic residues and (C) surfactant-like, followed by (D) the most common supramolecular morphologies. (E)Molecular designs
used for peptide-based virus mimetics based on capsid-like materials (tripodal and β-annulus designs) and peptide-DNA/RNA complexes. (F) AFM and TEM example
images of fibrillar and spherical peptide nanostructures, adapted with permission from (Son et al., 2019). Copyright 2019 American Chemical Society.
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their behavior in different environments. In a hydrophilic
environment, aromatic amino acids tend to aggregate due to
hydrophobic interactions and π-π stacking, whereas polar and
charged amino acids promote nanostructure formation through
hydrogen bonds and electrostatic interactions, respectively. In
addition, the position of a particular amino acid within the
sequence, as well as the type of neighboring residues, affect
the formation of supramolecular assemblies and their
morphologies. Although it is possible to identify distinct
sequence patterns with the tendency to form a particular
nanostructure, it is challenging to attribute a supramolecular
morphology based solely on the amino acid composition.
Peptide sequences can self-assemble into a variety of shapes,
including spheres, fibers, vesicles and tubes, with diameters in the
10–100 nm range and in the case of nanofibers, reaching
micrometers in length (Gazit, 2007a; Zhao et al., 2008). In this
section, we will focus on three main patterns used in the design of
purely peptidic materials (Figures 1A–C): (i) high content of
aromaticity, (ii) binary alternating hydrophobic-hydrophilic and
(iii) surfactant-like.

Peptides With High Content of Aromaticity
Peptides composed of aromatic amino acids preferentially self-
assemble into nanofibers with high intermolecular β-sheet
content. Short motifs such as FF, YY, and WW constitute
fundamental building blocks for self-assembly, with
diphenylalanine being the most widely studied one (Gazit,
2007b; Frederix et al., 2015; Tao et al., 2017). Depending on
the combination of amino acids adjacent to the FF motif and its
position within the sequence, various morphologies such as
fibrous and plate-like assemblies for FFF, nanospheres for
CFF, helical fibrils for PFF and heterogeneous nanostructures
for FFV, VFF, and LFF, are observed (Reches and Gazit, 2004;
Tamamis et al., 2009; Marchesan et al., 2012; Frederix et al., 2015;
Bera et al., 2019). Examples of fiber forming peptides (Figure 1A)
having longer sequences include FFKLVFF, GFFLG, GFFL,
FFAGL, FFVLK, FFVDF, and WWWW (Kalafatovic et al.,
2016; Diaferia et al., 2018; Son et al., 2019; Yang et al., 2020b).
Moreover, tyrosine-rich sequences including YYAYY,
YYACAYY, YFCFY, KYF, and KYY were found to assemble
into nanosheets, nanocapsules or nanofibers (Frederix et al., 2015;
Lee et al., 2019; Sloan-Dennison et al., 2021). Amyloid-like
peptides find applications in plaque-associated
neurodegenerative diseases research or as biosensors and
nanocarriers (Gazit, 2007b; Al-Halifa et al., 2019).

Binary Alternating Sequences of
Hydrophobic-Hydrophilic Residues
Peptides with the binary-alternating patters rely on hydrogen
bonds and/or electrostatic interactions for the formation of
supramolecular assemblies. The first reported self-assembling
peptide, EAK16-II (AEAEAKAKAEAEAKAK) is a repetitive
segment derived from a natural yeast protein consisting of
alternating hydrophobic and hydrophilic, positively, and

negatively charged amino acids (Zhang et al., 1993; Zhang,
2017). It was shown that the disposition of amino acids within
the sequence and the pH of the environment influence the
supramolecular morphology of EAK16 (Hong et al., 2003). At
neutral pH, EAK16-II formed fibrils and its analogue EAK16-IV
(AEAEAEAEAKAKAKAK) formed globular assemblies, whereas
both peptides showed fibrillar assemblies at conditions above or
below the neutral. Other examples (Figure 1B) including
RAD16-I (RADARADARADARADA), RAD16-II
(RARADADARARADADA), KLDLKLDLKLDL, FKFEFKFE,
FEFKFEFK, FEFEFKFK, VEVE, SFSFSF, RFRFRF, and
NININI have been reported to self-assemble into fibers
(Kisiday et al., 2002; Marini et al., 2002; Yokoi et al., 2005;
Cui et al., 2009; Guilbaud et al., 2010; Mandal et al., 2014; Do
et al., 2016; Gao et al., 2017; Pelin et al., 2020). In addition to
linear sequences, cyclic peptides have been used as building
blocks allowing for manipulation of the supramolecular
morphology through monomer design (Mandal et al., 2013).
Cyclic peptides having the [WR]n structure, where n ∈ {3,4,5},
favor the formation of vesicle-type assemblies, unlike the linear
designs with the binary alternating pattern, that preferentially
assemble into fibrillar morphologies. The main applications of
peptides classified in this category are related to their ability to
form hydrogels. Such biomaterials can serve as scaffolds for tissue
engineering, bioprinting, cell proliferation, regenerative medicine
and drug delivery (Liu and Zhao, 2011; Levin et al., 2020; Gelain
et al., 2021).

Surfactant-Like Peptides
Surfactant-like peptides formed by combining aliphatic and charged
segments have been also reported as self-assembly units. Their
design is based on a hydrophobic tail composed of V, I, L, G, A
or P followed by a charged head group containing K, D, R or E
(Figure 1C). Examples include V6K, V6K2, V6D, V6D2, I3K, I6K2,

A3K, A6K, A6D, G4D2, G6D2, G8D2, A12R2, A2V2L3WE2/7, P10R3, etc.
(Vauthey et al., 2002; van Hell et al., 2007; Yoon et al., 2008; Wang
et al., 2009; Zhao, 2009; Xu et al., 2010; Hamley et al., 2013). These
sequences can assemble into various morphologies comprising
micelles, fibers, vesicles and tubes. The size and shape of the
formed supramolecular assemblies depend on the type of amino
acids used to constitute the amphiphile as well as the number of
aliphatic and charged residues. In addition, factors such as
temperature, solution pH and ionic strength affect the self-
assembly process. The ability to form lipid bilayer-like assemblies
makes them ideal for applications in immunotherapy, gene and drug
delivery. Moreover, they can be used as protective envelopes for the
delivery of enzymes and other biomolecules (Dasgupta and Das,
2019).

DIMENSIONAL CONTROL THROUGH
CO-ASSEMBLY

Compared to the unimolecular assemblies described above,
supramolecular co-assemblies lead to the formation of
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TABLE 1 | Examples of peptide-based viral mimetic design strategies.

Strategy Peptidic component /
sequence

Role (structural (s) /
functional (f))

Supramolecular
Morphology

Development
Stage

Ref.

Capsid mimicking nanomaterials with C3 symmetry (trigonal or based on α-helical or β-sheet forming peptides)

Trigonal (trimesoyl)
peptide conjugate

Ci-FKFEFKFEii i) Conjugation to core
molecule (s)

Nanospheres Biophysical data Matsuura
et al. (2005)

Ci-KTWTWTEiii ii) β-sheet self-assembly
unit (s)

Matsuura
et al. (2011)

(γE-Ci-G)iv iii) Tryptophane zipper based
β-sheet self-assembly (s)

Matsuura
et al. (2009)

iv) self-assembly unit (s)

Wheel (trimesoyl)
peptide conjugate

(FKFE-Ci-KFE)ii i) Conjugation to core
molecule (s)

Nanofibers Biophysical data Murasato
et al. (2008)

ii) β-sheet self-assembly
unit (s)

Trigonal (tertiary
amine) dipeptide
conjugate

WW β-sheet self-assembly unit (s) Nanospheres Biophysical data Ghosh et al.,
(2007)

FF Nanotubes

Trigonal (ethyl
benzene)-peptide
conjugate

(γE-Ci-G)ii i) Conjugation to core
molecule (s)

Nanospheres Biophysical data Matsuura
et al.,
(2010a)ii) Self-assembly unit (s)

Peptide triskelion
(trilateral honeycomb
symmetry)

βAKK
i-(RRWTWE)3ii, iii i) Trigonal core (s) Nanocapsules Cell assays

(RNA delivery,
antimicrobial
activity)

Castelletto
et al. (2016)ii) Tryptophane zipper based

β-sheet self-assembly (s)
iii) Antimicrobial activity (f)

Trigonal peptidic
coiled coil
heterodimers

KβAKβAK
i-(KIAKLKQKIQKLKAKIAKLKQ)3

ii i) Trigonal core (s) Nanospheres Cell assays
(RNA delivery,
antimicrobial
activity)

De Santis
et al., (2017)CβAEISALEQEIASLEQEISALEQ

iii ii) Cationic, covalently bound
antimicrobial component (s)
iii) Anionic component for
heterodimer formation (s)

β-annulus fragment
from TBSV capsid

INHVGGTGGAIMAPVAVTRQLVGSi i) β-annulus segment (s) Hollow nanocapsules Biophysical data Matsuura
et al.
(2010b);
Fujita and
Matsuura
(2017)

INHVGGTGGAIMAPVAVTRQLVGGi-

CGGGKIAALKKKNAALKQKIAALKQii
ii) Cationic component
covalently bound to
β-annulus (s)

Nanospheres

EIAALEKENAALEQEIAALEQiii iii) Anionic component for
heterodimer formation (s)

β-annulus fragment
from SMV

GISMAPSAQGAMi-FKFEii i) β-annulus segment (s) Nanospheres Biophysical data Matsuura
et al., (2016)ii) β-sheet self-assembly

unit (s)

Tecto-dendrimeric
design

Ci-GGii-
EIARLEQEIARLEQEIARLEYEIARLEiii

i) Disulfide crosslinking (s) Spherical particles Cell assays
(gene
transfection)

Noble et al.,
(2016)ii) Glycine linker (s)

iii) α-helical conformation
promoting sequence (s)

Multicomponent peptide-DNA complexes

Surfactant-like
sequences

I3V3A3G3
i-K3ii i) β-sheet self-assembly

unit (s)
Nanosheets for peptidic component Cell assays

(gene
transfection)

Cao et al.,
(2018)

ii) DNA condensing (f) Heterogeneous morphologies via
condensation with DNA

Multicomponent,
glucose-peptide
conjugate

GSGSGSi-K8
ii-GGSGGSiii-(WKWE)3WGiv i) linker (s) β-nanoribbons for peptidic

component and for complexes with
siRNA and dsDNA

Cells assays
(siRNA
transfection)

Lim et al.,
(2008)ii) siRNA binding site (f)

iii) linker (s)
iv) β-sheet self-assembly
unit (s)

(Continued on following page)
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nanostructures with increased chemical diversity and structural
complexity that can resemble natural systems. Peptides can co-
assemble in cooperative, orthogonal, disruptive or random
manner (Makam and Gazit, 2018). It is possible to fine-tune
the morphology and dimension of nanostructures, and
consequently their chemical, mechanical and physical
properties, by controlling the mixing ratio of the individual
building blocks. For example, the co-assembly of FF and FFF
can be tuned to obtain nanorods, spherical nanovesicles, hollow
nanotubes and toroid-like nanostructures (Guo et al., 2016).
The disruptive co-assembly of the FF motif with its capped
version Boc-FF allowed for the precise control of the nanotube
length from 12 to 8 µm by changing the mixing ratio from 20:1
to 5:1, respectively (Adler-Abramovich et al., 2016). The
cooperative co-assembly of dendrimeric poly (lysine)
hydrophilic heads with linear poly (leucine) hydrophobic
tails allowed the morphology control of the formed
peptidosomes by alternating the ratio of dendrimeric to
linear component. When the ratio changed from 10:1 to 1:5,
the size of the nanoparticles increased from 300 to 800 nm and
their morphology changed from spherical to fusiform (Xu et al.,
2012). The ability to achieve dimensional control constitutes a

promising tool for the design of peptide supramolecular
materials where specific morphologies or dimensions are
required. However, the co-assembly of peptide-based
nanomaterials has not been researched extensively and
constitutes an opportunity to improve the future design of
peptide materials (Sasselli et al., 2017).

VIRAL MIMETICS

Recently, the concept of mimicking viral capsids by creating their
simplified versions through molecular self-assembly following the
bottom-up strategy has emerged. Peptide self-assembly is a
powerful tool to create biocompatible, tunable, low-cost
supramolecular materials. It allows the conversion of chemically
simple building blocks into a wide range of supramolecular
architectures featuring modularity, functional diversity,
adaptability and responsiveness to stimuli (Lampel, 2020).
Peptides are versatile molecules for the design of virus mimetics
as they can act as structural components as well as functional
domains that favor selective binding, cell entry, endosomal escape
or possess a specific activity (e.g., antimicrobial or catalytic). Short

TABLE 1 | (Continued) Examples of peptide-based viral mimetic design strategies.

Strategy Peptidic component /
sequence

Role (structural (s) /
functional (f))

Supramolecular
Morphology

Development
Stage

Ref.

Cocoon-like viral
mimics based on
β-sheet forming
sequences (C6 � alkyl
linker)

K3
i-C6-WLVFFAQQii-Giii-SPDiv i) cationic, DNA binding

region (f)
Nanoribbons for peptidic component Biophysical data Ni and Chau,

(2014)
ii) amyloid / β-sheet
segment (s)

Nanococoons via condensation
with DNA

K3
i-C6-X

ii-Giii-SPDiv where X ∈
{L8, L6, L4, A8, A6, (L2A2)2}

iii) glycine linker (s) Nanofibers for peptidic component Cell assays
(gene
transfection)

Ni and Chau,
(2017)iv) hydrophilic segment (s) Nanococoons via condensation with

DNA for L8, L6, L4, (L2A2)2

Tat–LK15 conjugate (RKKRRQRRRGGGi-KLLKLLLKLLLKLLKii)iii i) Cell penetrating (f) Peptide-DNA complex (morphology
not determined)

Cells assays
(gene
transfection)

Saleh et al.
(2010)ii) Membrane lytic,

amphipathic (f)
iii) DNA binding (f)

Multicomponent K6
i-GGFLGii-

FWRGENGRKTRSAYERMCNILKGKiii
i) DNA binding (f)
ii) Enzyme cleavable (s/f)
iii) Influenza-derived epitope (f)

Dimer formation through disulphide
linkage for peptide component

Cells assays
(gene
transfection)

Haines et al.
(2001)

Spherical aggregates in presence
of DNA

Multicomponent,
bola-amphiphile

RGDi-GPLGLAGii-I3
iii-G-R8

iv i) Integrin binding (f) Nanospheres for peptidic component only Cells assays
(gene
transfection)

Wang et al.
(2020)ii) enzyme cleavable

(hydrophobic) (s/f)
Rod-like or spherical shapes in
presence of DNA

iii) structural (hydrophobic) (s)
iv) Cell penetrating, DNA
binding (f)

Bi-functional bola-
amphiphile with
hydrocarbon (C12)
core

RGDi-C12-R8
ii i) Integrin binding (f) Spherical nanoparticles via

condensation with DNA
Cells assays
(gene
transfection)

Chen et al.,
(2013)ii) Cell penetrating, DNA

binding (f)
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peptides offer the possibility to use minimal recognition modules
for the design of functional materials and offer unique platforms
for mimicking complex systems (Levin et al., 2020).

In this review, we distinguish the role of peptidic
components used for the fabrication of virus mimetics into
structural and functional modules (table 1). The structural
modules are based on patterns that drive the formation of
ordered supramolecular nanostructures having spherical or
fibrillar morphologies (Figure 1D, F), dictated by the
sequence, as described in section 2. In addition, trigonal
cores (peptidic or organic), linkers (glycine or alkyl),
cysteine residues serving as conjugation points, coiled coil,
α-helical or β-annulus segments contribute to the design of
structural modules. On the other hand, functional modules,
related to the inherent biological signaling typical for peptides,
are based on sequences with known activities such as cell
penetration, integrin binding, DNA condensation and
antimicrobial activity. Accordingly, peptide-based viral
mimetic designs are divided into: i) capsid reconstruction
strategies where structural modules contribute to the final
supramolecular morphology and ii) simplified virus-like
complexes where structural and functional peptidic modules
are complexed with DNA or RNA fragments.

Capsid-Like Nanomaterials
Viral capsids with icosahedral symmetry formed through the
assembly of multiple protein subunits have inspired the design of
artificial, peptide-based nanostructures for applications in gene
delivery and cancer immunotherapy (Matsuura, 2018; Cai et al.,
2020). In capsid reconstruction, it is important to maintain the
n-fold rotational symmetry with n ∈ {3,5}. The C3 assembly can
be achieved at the molecular level by designing trigonal
conjugates or through folding-assembly pathways of peptides
with helical conformations or β-annulus segments found on
capsid-forming proteins (Figure 1E).

Trigonal designs induce the symmetry through the
manipulation of the tripodal core (organic or peptidic)
conjugated to peptidic structural modules that favor β-sheet-
like self-assembly including the WTW tryptophane zipper and
the FKFE-based binary alternating pattern. Examples are
trymesoyl conjugates bearing three β-sheet-forming
sequences (CFKFEFKFE or CKTWTWTE) attached through
the C-terminal cysteine, that assemble into spherical
morphologies (Matsuura et al., 2005, 2011). Similarly, a
wheel-like trigonal design where the same core is conjugated
to FKFECKFE through the central cysteine residue, self-
assembled into fibers (Murasato et al., 2008). A clathrin
triskelion-inspired conjugate, having a tris(2-aminoethyl)
amine core linked to three aromatic di-tryptophan modules,
self-assembled into nanospheres. In contrast, the conjugate
containing the FF motif linked to the same core resulted in
the formation of nanotubes, indicating that the morphology of
the assemblies could be tuned through the dipeptide sequence
(Ghosh et al., 2007). Furthermore, the choice of the core
molecule can influence the properties of the obtained
assemblies. For glutathione (γECG) attached to two different
cores, the 1,3,5-tris(aminomethyl)-2,4,6-triethyl benzene

showed improved conformational rigidity compared to the
trimesoyl, giving rise to nanospheres with narrow size
distribution (Matsuura et al., 2009; Matsuura et al., 2010a).

A purely peptidic triskelion, designed by conjugating each
amino acid of the core sequence βAKK to the antimicrobial
RRWTWE peptide containing the virus-derived tryptophane
zipper, self-assembled into nanocapsules with dual function
consisting of siRNA delivery and intrinsic antimicrobial activity
(Castelletto et al., 2016). In this case, the RRWTWE sequence
contains both the structural (β-sheet-forming) and functional
(antimicrobial) modules. In another example, the core
KβAKβAK sequence was conjugated to a positively charged
antimicrobial (KIAKLKQKIQKLKAKIAKLKQ) peptide to form
a trigonal conjugate, that upon addition of a complementary
anionic sequence (CβAEISALEQEIASLEQEISALEQ), assembled
in a coiled-coil hetero dimer. The resulting C3 subunit gave rise to
capsid-like nanomaterials with antimicrobial activity (De Santis
et al., 2017).

The reconstruction of capsid morphology based on the
assembly of β-annulus peptide segments from Tomato bushy
stunt virus (INHVGGTGGAIMAPVAVTRQLVG) and Sesbania
mosaic virus (GISMAPSAQGAM) is able to maintain the C3

symmetry while allowing for introduction of surface
modifications (Matsuura et al., 2010b; Matsuura et al., 2016).
Among others, these include coating with gold nanoparticles to
enhance the imaging efficiency (Matsuura et al., 2015) or with
albumin to confer greater serum stability without eliciting
immune response or toxicity (Matsuura and Honjo, 2019).

At the sequence level, the β-annulus segments can be modified
with β-sheet promoting sequences (FKFE) to improve their assembly
propensity into spherical morphologies (Matsuura et al., 2016).
Moreover, with the intention of mimicking spike-bearing viruses
such as Influenza and SARS-CoV-2, the β-annulus segment
covalently linked to a cationic, coiled-coil-forming sequence at
the C-terminus (CGGGKIAALKKKNAALKQKIAALKQ) gives
rise to nanospheres. In the presence of a complementary anionic
peptide (EIAALEKENAALEQEIAALEQ) and depending on the
ratio of the cationic to anionic component, spherical (4:1) or
fibrillar (1:1) assemblies with surface-exposed dimeric coiled coils
are obtained (Fujita and Matsuura, 2017).

Another strategy is the use of a tecto-dendrimeric architecture
as template to achieve C3 assembly into spherical particles for
gene delivery. The design is based on structural coiled-coil
subunits (CGG-EIARLEQEIARLEQEIARLEYEIARLE)
configured into helical wheels, containing a GG spacer motif
adjacent to a cysteine residue allowing for disulfide crosslinking
(Noble et al., 2016).

Multicomponent Peptide-DNA Complexes
Virus-mimicking nanostructures can be formed through the
complexation of peptides with DNA or RNA (Figure 1E),
simulating the co-assembly of capsid proteins with viral genomes.
Predominantly positively charged peptides have the tendency to
condense negatively charged gene fragments making the resulting
virus mimicking nanostructures ideal candidates for gene delivery
(Miyata et al., 2012). Compared to conventional, cytotoxic DNA
condensation agents such as polyelectrolytes and lipidic surfactants,
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short peptides have higher biocompatibility and consequently lower
toxicity. Moreover, their structure can easily be modified to obtain
high affinity DNA binders (Wang et al., 2020). Furthermore, the
condensation with the peptidic vector confers protection from
DNases. Several peptide-DNA/RNA co-assemblies have been
reported containing structural or functional modules or their
combination resulting in multicomponent designs.

Peptide-DNA condensates composed of lysine modified
surfactant-like, binary alternating or amyloid-like structural
modules, have been reported. While the cationic region drives
the binding to DNA or RNA through electrostatic attraction,
peptide self-assembly and β-sheet formation takes place via
hydrogen bonds and hydrophobic interactions. Surfactant-
like sequences, obtained by varying the position of aliphatic
amino acids (A, G, I, and L) as well as the position of the
cationic (K3) region from N- to C- terminus, including cone-
like (G3A3V3I3K3, K3I3V3A3G3), dumbbell-like (I3V3A3G3K3,
K3G3A3V3I3) and irregular shaped sequences (V3G3I3A3K3,
K3A3I3G3V3) gave rise to nanorods, nanosheets and
nanofibrils, respectively. The I3V3A3G3K3 was the most
efficient one in inducing DNA condensation showing high
content of ordered domains (Cao et al., 2018). This example
shows that the supramolecular morphology and content of
ordered domains could be fine-tuned through sequence
engineering. Furthermore, a glucose-peptide conjugate
[Glucose-GSGSGS-K8-GGSGGS-(WKWE)3WG] containing
a functional, cationic segment (K8) for siRNA binding
positioned between two linkers (GSGSGS and GGSGGS)
and a binary alternating structural motif (WKWE)3,
assembled into bilayered β-nanoribbons. The carbohydrate
ligand exhibited the dual function of maintaining the
β-nanoribbons neutrally charged while enhancing the cell
binding through glucose transporters (Lim et al., 2008).
Therefore, this design offers the formation of a
controllable filamentous morphology able to bind RNA
while presenting surface functionalization that yields high
transfection efficiency.

Another example is the design of the cocoon-like virus
mimetics based on a sequence (K3-C6-WLVFFAQQGSPD)
containing the cationic, DNA binding region (K3) at the
N-terminus, followed by the alkyl linker (C6) and three
structural components, namely, the amyloid-like motif
(LVFFA), the glycine linker and the hydrophilic (SPD) region
(Ni and Chau, 2014). The β-sheet forming segment can be
modified from amyloid to aliphatic (L8, L6, L4, and L2A2L2A2)
while maintaining the self-assembly propensity of the whole
sequence. The peptides alone self-assemble into fibrillar
aggregates, while their interaction with DNA in various ratios
induces condensation into nanococoons (Ni and Chau, 2017).

Cell penetrating peptides including the arginine-rich, R8 and
the HIV-1 derived, Tat (RKKRRQRRRGGG) constitute the main
functional modules used for the design of DNA condensates
(Kalafatovic and Giralt, 2017). The covalent conjugation of Tat to
the amphipathic LK15 sequence (KLLKLLLKLLLKLLK) resulted
in improved cellular uptake and transfection efficiency, compared
to Tat or LK15 alone (Saleh et al., 2010). CL22 (K6-GGFLG-
FWRGENGRKTRSAYERMCNILKGK) is an example of purely

peptidic design containing an enzyme cleavable segment adjacent
to the DNA binding region at the N-terminus and the Influenza
nucleoprotein-derived sequence at the C-terminus. It assembles
into spherical aggregates in the presence of DNA and attains
maximum gene transfection efficiency upon spontaneous
dimerization through the disulfide bond between cysteines at
the C-terminus (Haines et al., 2001). Bola amphiphiles, composed
of a central hydrophobic segment flanked by two hydrophilic
ones, have the ability to self-assemble into fibrillar or spherical
nanostructures depending on the sequence design (Chen et al.,
2013). Examples are the purely peptidic RGD-GPLGLAG-I3-G-
R8 (Wang et al. 2020) and the fatty acid containing RGD-C12-R8

(Chen et al., 2013) that accommodate both functional and
structural motifs, where RGD is crucial for integrin-binding
and R8 for cell penetration. Additionally, the PLGLA sequence
serves as an enzyme-cleavable segment, while I3 confers
hydrophobicity. The main drawback of peptide-DNA/RNA co-
assemblies, mainly based on functional modules, is that
oppositely charged polyions often form heterogeneous
aggregates. The challenges resulting from the lack of control
over their morphology, degree of order and size, often hamper the
efficiency of gene transfection or delivery.

The DNA fragment length and composition can affect the
formation of peptide-DNA complexes but also their morphology.
The mechanism of formation depends on the peptides’ intrinsic
ability to self-assemble. Self-assembling peptide sequences
condense the DNA by reorganizing to a final morphology
that is often different from the one formed by the peptide
alone. On the other hand, predominantly cationic and/or cell-
penetrating peptides, unable to self-assemble, tend to form
irregular aggregates in the presence of DNA. Moreover, the
size of the complex can be controlled by varying the length of
the DNA fragment. For example, the I3V3A3G3K3–DNA
complex size decreased from 122 to 85 nm by shortening
the DNA fragment from 2000 to 300 bp (base pairs).
Even though most examples use λ-DNA (∼4.8 kbp), shorter
DNA fragments (2000—300 bp) were explored with the
intention to improve the DNA delivery efficiency (Cao et al.,
2018).

However, the key factor influencing the morphology of
peptide-DNA complexes is the R + / − ratio of the positively
charged peptide residues to the negatively charged DNA
fragments. A stable peptide-DNA complex is formed when all
the negative charges are successfully neutralized. For example,
RGD-GPLGLAG-I3-G-R8 that self-assembles into spheres, upon
the interaction with DNA and depending on the R + / - values
forms thread-like (R + / - � 0.5) complexes or highly condensed
rod-like or spherical (R + / - � 3) nanostructures (Wang et al.,
2020). In another example, the R + / - of 10 is the minimum
requirement for DNA condensation with K3C6SPD, where the
peptide alone self-assembles into nanoribbons. However, upon
DNA addition, the electrostatic interactions drive the self-
assembly into amorphous aggregates (R + / - � 5), or
agglomerations with small striped nanococoons (R + / - � 10).
The R + / - � 20 presents the optimal ratio for nanococoon
formation, while at R + / - of 25 and 50 both nanococoons and
filamentous nanoribbons are formed (Ni and Chau, 2014).
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FUTURE PERSPECTIVES

The idea of exploiting known principles of peptide self-assembly
to obtain spherical or fibrillar nanostructures by including
important features such as cell penetration, antimicrobial
activity or viral transfection is conceptually attractive. Such
systems are promising as they can be easily engineered and
modified to include specific sequences found on the receptor
binding domains of spike proteins. In addition, they can be
designed as vehicles able to deliver cargo into cells. So far,
morphology rather than functionality has been mimicked and it
constitutes an advantage from the point of view of easy
production compared to VLPs. A step towards functionality
of peptide materials is their ability to enhance viral transfection
by increasing the β-sheet content of supramolecular
nanostructures (Sieste et al., 2021). However, efforts are
needed to achieve controllable and complex functions such as
self-replication and catalysis in the future. Although largely
unexplored for clinical use, because of the multiscale and
multiparameter optimization challenges of supramolecular
nanostructures (Sieste et al., 2021), we envision that peptides
have great potential in becoming future nanotechnological
solutions in covid-19 therapy and diagnostics.

The intention of this review is to emphasize the increasing
importance of peptide self-assembly in the design and fabrication
of minimalistic, synthetic models applicable to a variety of viral
infections. We expect that future research in this field will deliver
simple and cost-effective viral mimetics composed of peptide
modules found on the surface of specific viruses, rationally
designed to assemble into multivalent and multifunctional
nanostructures able to selectively bind receptors of interest,
penetrate cells and carry cargos. In addition to mimicking the
viral morphology, such systems would partly resemble basic

functionality through the display of known functional modules
and their combinations aiming for possible synergistic effects.
Such an approach could lead to the development of efficient and
safe platforms to study viral infections without the need of
complicated genetic manipulations. Moreover, the developed
models will provide screening platforms that can be rationally
designed, allowing for rapid discovery of potential inhibitors or
surface protein binders. Therefore, they could be used as safe
alternatives for antiviral drug discovery or as vehicles for mRNA
vaccines.
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