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Solar energy–driven carbon dioxide (CO2) reduction to valuable solar fuels/chemicals (e.g.,
methane, ethanol, and carbon monoxide) using particulate photocatalysts is regarded as
one of the promising and effective approaches to deal with energy scarcity and global
warming. The growth of nanotechnology plays an eminent role in improving CO2 reduction
(CO2R) efficiencies by means of offering opportunities to tailor the morphology of
photocatalysts at a nanoscale regime to achieve enhanced surface reactivity, solar light
absorption, and charge separation, which are decisive factors for high CO2R efficiency.
Notably, quantum dots (QDs), tiny pieces of semiconductors with sizes below 20 nm,
offering a myriad of advantages including maximum surface atoms, very short charge
migration lengths, size-dependent energy band positions, multiple exciton generation
effect, and unique optical properties, have recently become a rising star in the CO2R
application. In this review, we briefly summarized the progress so far achieved in QD-
assisted CO2 photoreduction, highlighting the advantages of QDs prepared with diverse
chemical compositions such as metal oxides, metal chalcogenides, carbon, metal halide
perovskites, and MXenes.
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INTRODUCTION

Carbon dioxide (CO2) is the major constituent of the global warming gases that are destroying the
ozone layer of the Earth. Many researchers have been trying to capture and convert greenhouse
gases, especially CO2, to make it as a pollution-free and recyclable energy source. In the present era,
CO2 has been captured (Ibrahim et al., 2018; Fu et al., 2019; Omodolor et al., 2020; Dhoke et al.,
2021; Lau et al., 2021), converted (Fu et al., 2019; Omodolor et al., 2020) and stored (Lau et al.,
2021) by using different technologies. There are many methods and techniques that are studied for
the conversion of CO2 into renewable energy sources; among them, photocatalytic CO2 reduction
(CO2R) (Sorcar et al., 2018; Sorcar et al., 2019; Albero et al., 2020; Li et al., 2021), electrochemical
CO2R (Jia et al., 2019; Liang et al., 2020), photo-biochemical CO2R (Kim et al., 2018), photo-
electrochemical CO2R (Roy et al., 2016), and thermochemical CO2R (Maiti et al., 2018; Pullar et al.,
2019) are well-known (He and Janáky, 2020). The photocatalysis process promotes the conversion
reactions using clean solar energy, which is an eco-friendly CO2 conversion technology (shown in
Figure 1A).
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The photocatalytic CO2R reaction comprises three primary
steps: 1) the semiconductor photocatalyst absorbs the solar light
energy and generates photocharge carriers, 2) photogenerated
charge carriers were separated and transported to the surface of
the semiconductor photocatalyst, and 3) oxidation and reduction
reactions mediated by holes and electrons take place at the active
sites on the photocatalyst surface, that is, electrons for CO2R and
holes for oxidation of sacrificial agent or water, respectively (Xie
et al., 2016; Wu et al., 2019) (Figure 1B). However, to exhibit the
CO2 photoreduction, the photocatalyst should have the ability to
adsorb CO2 and must possess its valence band (VB) at more
positive potential than the water oxidation potential and
conduction band (CB) at more negative potential than the
CO2R potential (Xie et al., 2016). It should be noted that
CO2R into CO2

.─ radicals through single electrons transfer is
unfavorable to occur because of the required high negative
potential for the electrons in the CB of photocatalyst (−1.9 V
vs NHE) (Shit et al., 2020). However, owing to relatively lower
negative potential required for the conversion of CO2 into
hydrocarbons, the proton-assisted multielectron transfer
process is more favorable (Shit et al., 2020). Depending on the
number of participated electrons, various gas and liquid phase
hydrocarbons, such as carbon monoxide (CO), formic acid

(CH2O2), oxalic acid (C2H2O4), formaldehyde (CH2O),
acetaldehyde (C2H4O), methanol (CH3OH), methane (CH4),
ethylene (C2H4), and ethanol (C2H5OH), are produced in the
CO2R reaction (Shit et al., 2020) (Figure 1B). Major concerns
existing for the efficient photocatalytic CO2R are 1) photocatalyst
materials’ limited light absorption ability, 2) quick recombination
of photogenerated charge carriers, and 3) poor adsorption of CO2

molecules on the photocatalyst surface. It was realized that
crystalline phases, size, shape, and exposed facets of
photocatalyst are crucially influencing the CO2R. Maneuvering
semiconductors into distinct nanostructures results in
significantly altered surfaces and electronic structures, which
affect the surface reactivity and positions of energy bands,
respectively (Figure 1C). Furthermore, the morphological
features are also pivotal for the transfer of photocharge
carriers. For instance, 2D nanosheet morphology having one
dimension in the atomic thickness level facilitates shorter charge
migration lengths, which is beneficial to avoid the quick
recombination kinetics. Furthermore, their flat surface allows
the facile heterojunction formation with other 2D, 1D, and 0D
nanostructures. However, the quantum confinement in three
dimension leaves 0D quantum dots (QDs) with very short
charge migration lengths and maximum surface-exposed

FIGURE 1 | Schematic illustration of the (A) photocatalytic CO2 conversion method, (B) CO2 conversion by semiconducting photocatalyst, (C) density of states
modification under different degrees of quantum confinement, and (D) the advantages of the QDs for the photocatalytic reduction of CO2.

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7341082

Park et al. Quantum Dots for CO2 Photoreduction

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


atoms (Figure 1C). The higher sensitivity of energy band
positions to the size of QDs allows the precise tailoring of
their VB and CB to the required positions in order to initiate
the reduction of CO2 into selective hydrocarbons. Furthermore,
the tiny size allows their easy grafting on other 2D and 1D
nanostructures to frame the heterojunctions. Hence, QDs of a
variety of semiconductors having several advantages garnered
significant attention for the photocatalytic CO2R applications
(Figure 1D).

Metal Oxide Quantum Dots
Metal oxide semiconductor materials such as MgO (Kohno et al.,
2001), ZrO2 (Hengne et al., 2018; Miao et al., 2019), ZnO (Gokon
et al., 2003), WO3 (Jin et al., 2015), and TiO2 (Kočí et al., 2009; Yu
et al., 2014) have been studied as catalysts and co-catalysts for the
photocatalytic reduction of CO2. In order to enhance the
photocatalytic reduction of CO2, 0D metal oxide QDs (MOQDs)
have been studied apart from their bulk counterparts due to their
advantages like economical, eco-friendly, high surface area, good
dispersibility, and well-maintained light absorption ability. For
instance, the activity of CuO QDs is in good compatibility with
Ti in the metal organic framework (MOF) MIL-125 coupled with
g-C3N4 toward the efficient photocatalytic CO2R to form CO,
CH3OH, CH3CHO, and C2H5OH (Li et al., 2020). The good
compatibility between CuO QDs and active sites of Ti in MIL-
125 the electrons generated by photocatalytic activity will easily
transfer to CuO from MIL-125/g-C3N4. The combination of
g-C3N4/CuO on MIL-125 has drastically improved the yield of
CO, CH3OH, CH3CHO, and C2H5OH in the presence of water.
However, most of the MOQDs have some unresolved technical
issues such as the low yield of available electrons and large intrinsic
bandgaps that are restricting the wide range applicability under
visible light irradiation (Heng et al., 2021). Introduction of defects,
doping, and heterojunction formation are the commonly practicing
strategies to improve the CO2R efficiency of MOQDs.

Transition Metal Chalcogenide Quantum
Dots
Transition metal chalcogenide (TMC) materials are formed
by the combination of IV-VII transition metal elements (Mo,
W, V, Nb, Ta, Ti, Zr, Hf, Tc, or Re) and chalcogens (S, Se, or Te).
By the controlled synthesis of the TMCs from bulk to 2D
nanosheets or 0D QDs, the bandgaps in TMCs can be tuned
with respect to size and shape (Yao et al., 2019; Pandey et al.,
2020). There are more than 40 kinds of TMCs available till date,
which can be synthesized in large quantities by using synthesis
techniques such as the CVD method (Bosi, 2015; Severs Millard
et al., 2020), hydrothermal method (Chen and Fan, 2001), and
Langmuir–Schaefer deposition method (Kalosi et al., 2019).

The TMCQDs and their composites such as CdS (Kuehnel
et al., 2017), CdS/Ni (Wang et al., 2010), CdSe/TiO2 (Sarkar et al.,
2016), PbS (Wang et al., 2011), ZnS/CuInS2 (Lian et al., 2018),
and Mn:CdS/CdSeTe/TiO2 (Nie et al., 2018) have proven to be
effective performing photocatalysts. Wang et al. reported the
heterostructured catalyst CdSe/Pt/TiO2 for the photoreduction of
CO2 under visible light in the presence of water (Wang et al.,

2010). CdSe QD-sensitized TiO2 heterostructure materials are
capable of catalyzing CO2R under visible light illumination (λ >
420 nm). The CdSe QD’s surface was modified by removing
surfactant caps through annealing and using a hydrazine
reducing agent, which enhanced the direct contact between
CdSe QDs and TiO2. Although TMCQDs show good
performance, they slowly become inactive after continuous
exposure to the visible light illumination, which is a
commonly observed issue in TMC(QD)s due to gradual
oxidation of TMCs. The surface stoichiometry of the
TMCQDs influences the exciton kinetics such as in CdSe QDs,
the presence of a higher surface ratio of Se increases the possibility
of electron–hole recombination at trap sites. The surface
stoichiometry manipulation drives effective ways to improve
the photocatalytic performance of TMCQDs.

Carbon Quantum Dots
Carbon QDs (CQDs), with their sizes in the range of 20 nm, have
attracted much attention for their photoluminescence properties
and co-catalyst role in different photocatalytic reactions. They
exhibit low toxicity, good chemical stability, and exceptional
water solubility compared to widely used semiconductor
photocatalysts (CdS, TiO2, etc) (Murali et al., 2021).
Importantly, CQDs possess upconversion photoluminescence
property that allows the utilization of NIR light. All the
aforementioned features and the high CO2 adsorption
characteristics make CQDs an auspicious candidate for the
photocatalytic CO2R application. Furthermore, surface
functionalization with different organic functional groups
tailors the semiconducting property and bandgap of CQDs to
make them most suitable for CO2R. The functionalization of
CQDs with 1,1′-bi(2-naphthylamine) enables the formation of
intramolecular Z-scheme with a narrow bandgap for the efficient
CO2R under visible light (Yan et al., 2018). Combining CQDs
with other semiconductors is reported to enhance the CO2R
efficiency by utilizing broad range of solar energy, where CQDs
absorb visible light that enables the transfer of photogenerated
charge carriers through the interface for efficient charge separation
and improved CO2R. Specifically, heteroatom (N, B, S, Cl, etc.)-
doped CQDs are more suitable to form the heterojunction owing
to their enhanced light absorption, electron transport, chemical
activity, and specific surface area properties. For instance, the
N-rich CQDs/TiO2 composite showed an enhanced performance
for the CO2R with CH4 and CO yield of 7.79 and 7.61 times higher
than that of pristine TiO2 (Li et al., 2018).

Perovskite Quantum Dots
Metal halide perovskites are a class of semiconductors having
ABX3 chemical stoichiometry, where A represents the alkali (e.g.,
Cs) or organic (e.g., formamidinium or methylammonium)
cation; B denotes the divalent metal cation such as Pb, Bi, or
Sn; and X stands for halide anions such as Cl, Br, or I. QDs of
these materials are familiar for their excellent optical and
electrical properties including strong light absorption, charge
carrier’s high mobility and long diffusion lengths, and
prolonged charge carrier lifetimes. The tuning of the cation/
anion composition could facilitate the tailoring of the perovskite
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QD (PQD) absorption from UV to the NIR region (Shyamal and
Pradhan, 2020). Furthermore, the favorable VB and CB positions
of these CQDs enable the utilization of photogenerated charge
carriers for CO2R prior to their recombination. However,
selection of appropriate solvent for the photocatalytic CO2R
over PQDs is a difficult task due to their instability upon
exposure to polar solvents. Solvents like ethyl acetate have
been selected because their mild polarity protects PQDs and
CO2 is highly soluble in them (Xu et al., 2017). The addition of
water to this solvent has been demonstrated to increase the
selectivity of CO2R by minimizing H2 production (Shyamal
and Pradhan, 2020). But an excessive amount of water
addition will have negative impact on the stability of PQDs (Hou
et al., 2017). However, the careful surface protection of cobalt-doped
CsPbBr3/Cs4PbBr6 QDs with hexafluorobutyl methacrylate enabled
the use of aqueous medium for the CO2R (Mu et al., 2019).
Furthermore, to protect PQDs from contamination and to hinder

their erosion by organic solvents, PQDs were encapsulated with
metal oxides andMOFswhile applying for CO2R (Zhang et al., 2016;
Xu et al., 2018). The size optimization of PQDs is significant to
accomplish the enhanced photocatalytic CO2R. The large size of
PQDs decreases the surface area, while the smaller size leads to the
aggregation, which will affect the optical absorption and charge
carrier’s separation and transport properties. The CO2R
performance of four different size (3.8, 6.1, 8.5, and 11.6 nm)
CsPbBr3 PQDs in ethyl acetate/water medium under the solar
illumination for 8 h concluded that PQDs with 8.5 nm size
yielded more CH4, CO, and H2 products (Hou et al., 2017)
(Figures 2A–F). The crystalline phase of PQDs influence the
CO2R performance such as CsPbBr3 PQDs with the cubic phase
are more active than the orthorhombic phase counterparts (Guo
et al., 2019). The sluggish catalytic reaction dynamics of PQDs are
dealt by employing a conducting material with high electron
extraction efficiency (Xu et al., 2017; Pan et al., 2019).

FIGURE 2 | TEM images of CsPbBr3 QDs with particle sizes of (A) 3.8 nm, (B) 6.1 nm, (C) 8.5 nm, and (D) 11.6 nm (inset crystal structures). Photocatalytic CO2R
for QDs with (E) 8.5 nm CsPbBr3 QDs and (F) CsPbBr3 QDs of different sizes (reproduced with permission from (Hou et al., 2017)). (G) Schematic illustration for
synthesis of Ti3C2 QDs and Ti3C2 QDs/Cu2O NWs/Cu heterostructure, FE-SEM images of (H)Cu2O NWs/Cu, (i) Ti3C2 QDs/Cu2ONWs/Cu heterostructures, (J)CH3OH
yield as a function of time, and (K) energy level diagram of Ti3C2 QDs/Cu2O NWs/Cu and Ti3C2 sheets/Cu2O NWs/Cu heterostructures (reproduced with
permission from (Zeng et al., 2019)).
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MXene Quantum Dots
MXenes, a set of 2Dmaterials represented by a general formula of
Mn+1XnTx (n � 1–4; X � C, N, and C/N; Tx � -O, -F, -OH, etc.),
have exhibited a great potential in various applications owing to
their exceptional electrical conductivity, metal-terminated
surfaces, and hydrophilic characteristics (Lim et al., 2020;
Tang et al., 2021). DFT calculations predicted that the
chemisorption of CO2 is favorable compared to water on the
MXene surface and higher electrical conductivity of MXene could
cause the photocatalytic CO2R (Tahir et al., 2021). MXenes can be
synthesized by the selective chemical etching of “A” layers from
their sandwich-like parent MAX phase precursors, consisting of a
stacked MXene nanosheets separated by the layers of A group
elements. Recently, it has been demonstrated that appropriate
experimental conditions could fragment the 2D MXenes into
tiny pieces (≤10 nm), known as MXene QDs (MQDs). MQDs
inherit all characteristics of their 2D counterparts and exhibit
additional unique properties emanating from their high surface
area and quantum size effects. MQDs absorb light in the range of
UV to NIR and capable of effectively transforming the absorbed
light energy into other forms, including chemical energy.
Furthermore, the smaller size and hydrophilic/reactive surface
functional groups permit easy grafting on other semiconductor
nanostructures to make heterostructures. Recently, a facile
incorporation of Ti3C2 MQDs onto Cu2O nanowires (NWs)/Cu
mesh (Ti3C2 MQDs/Cu2O/Cu heterostructure) through a self-
assembly approach was demonstrated to improve the CO2R
(Zeng et al., 2019) (Figures 2G–K). The grafting of MQDs has
improved the stability Cu2O NWs and led to significant
enhancement in CO2R performance by improving light
absorption and inhibiting the charge recombination.
Furthermore, the CH3OH yield obtained with the Ti3C2 MQDs/
Cu2O NWs/Cu photocatalyst is 8.25 and 2.15 times higher than
Cu2O NWs/Cu and Ti3C2 sheets/Cu2O NWs/Cu photocatalysts,
respectively. As the Fermi level (EF) of Ti3C2 MQDs is less negative
than the CB of Cu2O, photogenerated charge carriers migrate from
Cu2O to Ti3C2 MQDs and accumulate. The EF of MQDs is
sufficiently negative to perform the reduction of CO2 to
CH3OH, with accumulated electrons accelerating the CO2R. On
the other hand, the EF of MXene nanosheets is positive, which is
not suitable for accelerating the CO2R.

CONCLUSIONS AND PERSPECTIVES

Photochemical CO2R is one of the efficient methods for the
conversion of solar to fuel without releasing any toxic wastes into
the environment. An ideal photocatalyst should have the
qualities like a high surface area, more active sites, long-term
stability, low cost, and easy to produce in industrial scale to
commercialize. Several kinds of QDs such asMOQDs, TMCQDs,
CQDs, PQDs, and MQDs have been studied so far for the
photocatalytic CO2R. Overall, the research on QDs for CO2R
is still in its infancy, and following aspects need to be addressed to
reach further growth for the ease in applicability. The size control
of most QDs involves complicated synthesis procedures.
Developing a simple, cost-effective, size-controlled, and highly

efficient synthesis approaches will lead to wide utilization of QDs
for CO2R. Most of the TMCQDs and PQDs for CO2R are based
on Cd- and Pb-containing compositions, respectively, which are
not ideal in the perspective of safety and eco-friendliness. Hence,
more research is needed for improving the stability and CO2R
efficiency of Cd- and Pb-free QDs (such as InP, ZnSe, and ZnS)
(Wang et al., 2019). The poor oxidation stability of the TMCQDs,
PQDs, and MQDs in the presence of water and light are the
major challenging aspects to be addressed immediately. The
QD-based hybrids are mostly achieved by simple blending of
QDs with other semiconductors, which does not generate a
strong chemical interaction at the interfaces for efficient
charge transfer process. Hence, in situ growth methodologies
and/or external functionalization with different functional
groups/molecules should be adopted to fully exploit the
advantages of QDs. The full spectrum of solar light utilization
by QDs for CO2R is not yet accomplished. More innovative
technologies like making QDs comprising upconversion material
as core should be investigated. At present, formic acid and CO
are the main products of CO2R via two electron reduction.
Hence, CO2R via four-, six-, and eight-electron reduction
needs significant attention. Especially, methane production by
eight-electron reduction can make a vital change in the
application of QDs for CO2R. The H2 production via proton
reduction that reduces the CO2R efficiency is another critical
concern for the QD-based systems. Although the efficient
properties of CQDs depends on the size, shape, surface
defects, and heteroatom doping concentrations, a well-
established method(s) for precise tuning is needed.
Furthermore, the functional groups of CQDs are known to be
reduced with the prolonged exposure of light during the
photocatalytic reactions, which may influence their CO2R
activity. Hence, improving the stability is a bottleneck concern
in CQD-based CO2R research. The advancement in QDs stability
under light, highly interactive interface with other materials,
morphological control, and quick adoptability to the reaction
environment will make them as futuristic materials for not only
in CO2R but also in other interdisciplinary fields.
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