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The CO2 electrochemical reduction reaction (CO2RR) has been a promising conversion
method for CO2 utilization. Currently, the lack of electrocatalysts with favorable stability and
high efficiency hindered the development of CO2RR. Nitrogen-doped graphene
nanocarbons have great promise in replacing metal catalysts for catalyzing CO2RR. By
using the density functional theory (DFT) method, the catalytic mechanism and activity of
CO2RR on 11 types of nitrogen-doped graphene have been explored. The free energy
analysis reveals that the zigzag pyridinic N- and zigzag graphitic N-doped graphene
possess outstanding catalytic activity and selectivity for HCOOH production with an
energy barrier of 0.38 and 0.39 eV, respectively. CO is a competitive product since its
free energy lies only about 0.20 eV above HCOOH. The minor product is CH3OH and CH4

for the zigzag pyridinic N-doped graphene and HCHO for zigzag graphitic N-doped
graphene, respectively. However, for Z-pyN, CO2RR is passivated by too strong HER.
Meanwhile, by modifying the pH value of the electrolyte, Z-GN could be selected as a
promising nonmetal electrocatalyst for CO2RR in generating HCOOH.

Keywords: density functional theory, N-doped graphene, CO2 reduction reaction, catalytic activity, Gibbs free
energy

INTRODUCTION

As one of the greenhouse gases, the continual accumulation of CO2 causes global warming, which
significantly hinders the sustainable development of human society (Thomas et al., 2004; Lewis et al.,
2006; Cook et al., 2010). The unbalanced CO2 emission and consumption is becoming a pressing
issue (Kondratenko et al., 2013; Appel et al., 2013). In this aspect, CO2 electrochemical reduction
reaction (CO2RR) by using the renewable energy sources (Yi et al., 2019; Wang et al., 2020; Lu et al.,
2021) offers a promising way to produce fuels and value-added chemicals. Up to now, the major
obstacle for CO2RR is the lack of electrocatalysts with high stability and efficiency. Particularly, the
cathode electrocatalyst materials play a key role in the complicated product distribution of CO2RR
(Lim et al., 2014; Zhu et al., 2016). Therefore, searching for suitable electrocatalysts for CO2RR is one
of the hot topics in recent years. Till now, a lot of electrocatalysts for CO2RR have been studied,
including noble metals (Zhu et al., 2013; Kang et al., 2014; Gao et al., 2015; Kim et al., 2015), base
metals (Hori et al., 1985; Hori et al., 1986; Nie et al., 2013; Zhang et al., 2014a), alloys (Kim et al., 2014;
Bai et al., 2017), and metal oxides (Lee et al., 2015; Ren et al., 2015). It is well known that Ag and Au
are prone to produce CO via the two-electron reaction pathway (Zhu et al., 2013; Kim et al., 2015). In
addition, Cu is recognized as a state-of-the-art CO2RR catalyst for generating multi-electron
products, such as CO, HCOOH, CH3OH, and CH4 (Hori et al., 1985; Hori et al., 1986; Nie
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et al., 2013). However, the high cost, low efficiency due to the
competitive hydrogen evolution reaction (HER), and high
overpotential restrict their practical implementation and
industrial-scale development in CO2RR (Lim et al., 2014).

To solve the above issues, metal-free electrocatalysts based on
carbon materials have been studied, owing to their low cost, high
stability, outstanding mechanical flexibility, and superior
structural durability. The introduction of heteroatoms (such as
N, B, and S) could not only modify the electronic structure of
carbon materials but also contribute to take advantage of the
existing defects appropriately (Wang X. et al., 2014). For N-doped
carbon nanofibers (NCNFs), it shows negligible overpotential
(0.17 V) and 13 times higher current density than bulk Ag catalyst
for CO2RR (Kumar et al., 2013). In addition, N-doped carbon
nanotubes (NCNTs) (Sharma et al., 2015), N-doped nanoporous
carbon–carbon nanotube composite membrane (HNCM/CNT)
(Wang et al., 2017), and polyethylenimine functionalized NCNTs
have been proven to be highly active and stable electrocatalysts
for CO2RR (Zhang et al., 2014b). Remarkably, N-doped graphene
possesses excellent durability in the CO2RR process, achieving a
maximum faradaic efficiency (FE) of 73% for formate with
overpotential of 0.84 V (Wang et al., 2016). N-doped graphene
quantum dots (NGQDs) could catalyze carbon dioxide into
multicarbon hydrocarbons and oxygenates at high FE (up to
90%), with excellent selectivity (45% for ethylene and ethanol
conversions) (Wu et al., 2016).

With respect to the active sites of nitrogen-doped carbon
materials for CO2RR, it is a controversial issue among the
pyridinic N, pyrrolic N, graphitic N, and the C adjacent to N.
Generally, these potential active sites coexist in the carbon
materials, which adds to the difficulty in identifying the active
site. A theoretical study indicates that for CO2 electroreduction to
CO on NCNTs, the optimal active site is pyridinic N, followed by
pyrrolic N and graphitic N (Wu et al., 2015). Another study about
CO2RR on NCNTs emphasizes that the presence of graphitic and
pyridinic N defects remarkably increases the selectivity toward
CO formation and decreases the absolute overpotential (Sharma
et al., 2015). For N-doped graphene-like material/carbon paper
electrodes (NGM/CP), the FE is as high as 93.5% in producing
CH4, which is ascribed to the reactive pyridinic and pyrrolic N
sites (Sun et al., 2016). A theoretical study suggested that COOH
production on pyrrolic N3 is downhill by −0.21 eV, while it is
uphill for pyridinic and graphitic N (Liu et al., 2016). Overall,
both the experimental and theoretical studies indicate that
N-doped carbon materials show significant catalytic
performance of CO2RR.

Inspired by these studies, we studied CO2RR on N-doped
graphene from the perspective of theoretical calculation in this
work. To make a systematic comparison, N was doped into
graphene at in-plane, zigzag edge, armchair edge, and pyrrolic
edge sites, respectively. It would contribute to identifying the
most dominant structure and providing a valuable design strategy
for further activity enhancement in the experiment. In this study,
the first-principle calculation has been performed to uncover the
CO2RR reaction pathways and electrocatalytic activity on
different edges of N-doped (zigzag edge, armchair edge, and

pyrrolic edge) graphene structures within a unified
thermodynamic reaction scheme.

COMPUTATIONAL METHODS AND
MODELS

Methods
The geometry optimization and energy calculations were
performed within the density functional theory (DFT)
framework (Kohn and Sham, 1965) by using the Vienna ab
initio simulation package (VASP) (Kresse and Furthmüller,
1996a). The ion–electron interaction was described by the
projector-augmented wave (PAW) potentials (Blöchl, 1994).
The generalized gradient approximation parameterized by
Perdew, Burke, and Ernzerhof was utilized as the exchange-
correlation functional (Perdew et al., 1996). The kinetic energy
cutoff of 400 eV was adopted for the plane-wave expansion. The
armchair-edged ribbon, zigzag-edged ribbon, and periodic
graphene slab were sampled with 4 × 1 × 1, 1 × 4×1, and 4 ×
4 × 1 Monkhorst−Pack k-point grids (Delley, 2000), respectively.
During the geometry optimization, all atoms were relaxed until
the total energy was converged to 1.0 × 10–5 eV/atom, and the
force was converged to 0.01 eV/Å. In addition, we considered the
van der Waals (vdW) interactions by employing the
semiempirical DFT-D2 forcefield approach (Grimme, 2006).

Models
The lattice parameters of 8.52 Å × 24.6 Å and 25.6 Å × 9.84 Å
were set to model the armchair-edged graphene nanoribbon
(including pyrrolic edge) and zigzag-edged graphene
nanoribbon, respectively. The lattice parameters of 9.84 ×
9.84Å were adopted to model the periodic graphene slab.
Perpendicular to all graphene structures, a vacuum layer of
15 Å was set, which was sufficiently large to minimize the
image interactions.

The adsorption energy(ΔEads)of adsorbates was defined as
follows:

ΔEads � Esubstrate+adsorbate − (Esubstrate + Eadsorbate), (1)

where Esubstrate+adsorbate is the total energy of the substrate with
adsorbed molecules. Esubstrate and Eadsorbate are the energy of the
isolated substrate and free molecule, respectively.

Reaction Free Energy
The computational hydrogen electrode (CHE) model (Norskov
et al., 2004) was adopted to evaluate the free energy change during
the CO2RR process. In the CHE model, the hydrogen atom is in
equilibrium with the proton/electron pair at 298.15 K and 1 atm
of pressure. In other words, the half chemical potential of gas-
phase H2 is equal to that of a proton/electron pair at 0 V in an
aqueous solution.

The Gibbs free energy change (ΔG) for each elementary
CO2RR step involving proton/electron pair transfer was
calculated by the expression (Norskov et al., 2004; Zuluaga
and Stolbov, 2011):
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ΔG � ΔE + ΔZPE − TΔS + ΔGu + ΔGpH, (2)

where ΔE is the change of reaction energy based on DFT
calculations. ΔZPE and ΔS are the change of zero-point energy
and entropy, respectively. T refers to the temperature (298.15 K).
The zero-point energy (ZPE) of adsorbates has been calculated
from the vibrational frequencies. For the free molecules (CO2,
CO, HCOOH, CH4, CH3OH, etc.) the vibrational frequencies and
entropies are obtained from the NIST database (http://webbook.
nist.gov/chemistry/). ΔGU � -neU, where n is the number of
transferred electrons, e is the elementary charge of an electron,
and U is the electrode potential vs. RHE. ΔGpH� 2.303 kBT *pH,
kB is the Boltzmann constant. In this work, the value of pHwas set
as 0 for the acid medium (Faccio et al., 2010; Shang et al., 2010).
Approximate solvation corrections with a dielectric constant of
ε � 80 are applied for the simulation of an aqueous environment
(Mathew et al., 2019).

RESULT AND DISCUSSION

Adsorption of the Key Intermediates
In previous reports, the N-doped graphene materials have
been widely studied as ORR electrocatalysts, which showed

better stability and tolerance to methanol crossover effect than
commercial Pt/C catalyst (Geng et al., 2011; Lin et al., 2013;
Gong et al., 2009; Qu et al., 2010). Under different
temperatures, the synthesizability of each type of the
N-doped graphene materials is different. It is relatively easy
to synthesize different types of N-doped graphene by
controlling the temperature (Lin et al., 2013). The studied
structures include five N-doped armchair graphene types, four
N-doped zigzag graphene types, in-plane graphitic N (GN),
and pyrrolic edge N (PyrroN)-doped graphene. For N-doped
armchair graphene, it includes graphitic N (A-GN), pyridinic
N (A-pyN), hydrogenated pyridinic N (A-pyN-H), oxidized
pyridinic N (A-pyN-O), and pyridinic N hydroxide (A-pyN-
OH), as shown in Figure 1. For N-doped zigzag graphene, four
structures are considered, i.e., graphitic N (Z-GN), pyridinic N
(Z-pyN), hydrogenated pyridinic N (Z-pyN-H), and oxidized
pyridinic N (Z-pyN-O). These doped structures could be
generated at high temperatures in the pyrolysis process of
N-containing compounds (Wu et al., 2011; Li et al., 2012;
Wang Q. et al., 2014; Holby et al., 2014).

During the CO2RR process on the studied compounds, the
intermediates mainly include CO2, COOH, HCOO, HCOOH,
CO + H2O, COHOH, H2COO, and COH + H2O. By exploring
different adsorption sites (N and its adjacent carbon atoms),

FIGURE 1 | The structures of N-doped graphene. The gray, blue, white, and red balls represent C, N, H, and O atoms, respectively.
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the most favorable adsorption configurations and sites are
obtained (Supplementary Figures 1–8). Since the two main
reactions on various N-doped graphene are HCOOH and
CO generation pathways, we focus on the adsorption
energies of CO2, COOH, HCOO, HCOOH, and CO as
listed in Table 1, together with the bond distance
between the adsorbed intermediates and catalyst surface.
It is seen that the adsorption of CO2 molecule is weak all the
time (-0.06 eV∼ -0.13 eV), and linear structure is
maintained above the surface. To achieve high selectivity
for HCOOH or CO, COOH (or HCOO) should be adsorbed
strongly, but HCOOH or CO should be adsorbed weakly for
desorption. Therefore, strong COOH (HCOO) binding but
weak HCOOH (CO) adsorption is essential for the
formation of HCOOH or (CO) (Sharma et al., 2015; Wu
et al., 2015).

As shown in Supplementary Figures 2, 3, COOH could not
be absorbed on GN and PyrroN, and is weakly adsorbed on
A-pyN-H (-0.20 eV), Z-pyN-H (-0.43 eV), and Z-pyN-O
(−0.59 eV) (Table 1). For the remaining structures, the
adsorption of COOH is relatively strong, with the
adsorption energy ranging from −0.95 to −2.48 eV.
However, HCOO exists only on four N-doped graphene
structures, that is, A-pyN, A-pyN-O, A-pyN-OH, and
Z-GN. The adsorption energies for the four structures are
in the range of −1.87 eV∼ −0.84 eV (Table 1).

For HCOOH, the adsorption energies for the studied
compounds are in the range of −0.43 ∼ −0.06 eV, which are
relatively weak and facilitate its desorption from the catalyst
surface. Similar to the HCOOHmolecule, the adsorption energies
of CO are in the range of −0.26 ∼ −0.03 eV (Table 1).

Reaction Mechanism
The possible reaction pathways for the studied compounds are
summarized in Figure 2. Based on the computational hydrogen
electrode (CHE) model (Norskov et al., 2004), the limiting
potential is obtained by UL � −ΔGMAX/e, where ΔGMAX

denotes the maximum free energy difference between the two
successive reaction steps. The reduction step corresponding to the
limiting potential is defined as the potential determining
step (PDS).

N-Doped Armchair Graphene Nanoribbons
As shown in Figures 2A–E, the energy of CO2 increases by
0.25–0.37 eV from the free molecule to the adsorbed state. After
CO2 is adsorbed on the catalyst surface, it would be hydrogenated
by (H+ + e−) pair. The formation of an O-H bond would produce
COOH, while the formation of the C-H bond would generate the
HCOO intermediate.

The reaction of CO2+H
++e−→*COOH on A-GN, A-pyN,

A-pyN-H, A-pyN-O, and A-pyN-OH is uphill by 1.16, 0.84,
2.14, 1.38, and 1.41 eV, respectively. For CO2+ H++e−→*HCOO,
the energy increases by 1.73, 1.38, and 1.81 eV for A-pyN, A-pyN-
O, and A-pyN-OH, respectively.

The hydrogenation of COOH would generate COHOH,
HCOOH, and CO + H2O. Due to the large energy increase for
producing COHOH, that is, 1.55, 0.96, and 1.26 eV for A-GN,
A-pyN, and A-pyN-OH, respectively, further discussion is
omitted. In COOH, if the OH moiety binds (H++e−), it would
produce CO + H2O. If the carbon atom in COOH binds (H++e−),
it would produce HCOOH. The production of HCOOH and CO
is all thermodynamically downhill.

Similarly, the hydrogenation of HCOO may produce H2COO
and HCOOH. As *HCOO→*H2COO step is endothermic with a
large free energy increase (0.88 eV for A-pyN, 0.93 eV for A-pyN-
O, and 1.86 eV for A-pyN-OH), further discussion is not
provided. Thus, the final product from HCOO is HCOOH.

As illustrated in Figures 2A–E, the COOH intermediate has
better performance in producing HCOOH than HCOO. For
CO2→ *CO2→*COOH→*HCOOH/*CO, the PDS is
*CO2→*COOH (Table 2), which is in agreement with the
previous study (Wu et al., 2015). According to the free energy
barrier (Figures 2A–E), A-pyN exhibits the highest catalytic
activity toward HCOOH with a free energy barrier of 0.84 eV
(Figure 2B). The order of catalytic activity for COOH to
HCOOH/CO is A-pyN > A-GN > A-pyN-O > A-pyN-OH >
A-pyN-H. In addition, CO2→ *CO2→*COOH→*CO+*H2O is
the secondary pathway with slightly larger endothermic energy
than CO2→ *CO2→*COOH→*HCOOH.

N-Doped Zigzag Graphene Nanoribbons
The reaction pathways on N-doped zigzag graphene nanoribbons
(Figures 2F–I) are similar to those on N-doped armchair

TABLE 1 | The calculated adsorption energies (Eads, eV) and the shortest distances (d, Å) between the intermediate and N-doped graphene.

*CO2 *COOH *HCOO *HCOOH *CO

Eads D Eads d Eads d Eads d Eads d

A-GN −0.13 3.14 −1.26 1.57 __ __ −0.12 2.23 −0.13 3.12
A-pyN −0.10 3.08 −1.51 1.42 −0.92 1.52 −0.33 1.73 −0.04 3.22
A-pyN-H −0.10 3.10 −0.20 1.53 __ __ −0.05 1.92 −0.03 3.17
A-pyN-O −0.11 3.32 −0.95 1.56 −1.29 1.50 −0.40 1.62 −0.08 3.26
A-pyN-OH −0.11 3.12 −0.96 1.40 −0.84 1.54 −0.24 1.63 −0.07 3.19
Z-GN −0.10 3.25 −1.99 1.58 −1.87 1.50 −0.16 2.02 −0.10 3.14
Z-pyN −0.09 3.36 −2.48 1.41 __ __ −0.43 1.64 −0.26 1.37
Z-pyN-H −0.09 3.19 −0.43 1.58 __ __ −0.13 2.00 −0.09 3.17
Z-pyN-O −0.08 3.19 −0.59 1.55 __ __ −0.06 2.39 −0.10 3.20
GN −0.06 3.11 0.34 1.61 __ __ −0.10 2.22 −0.12 3.14
PyrroN −0.10 3.03 __ __ __ __ __ __ __ __

The “*” denotes the adsorption state of the species.
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FIGURE 2 | The free energy change for reaction pathways of CO2RR on various N-doped graphene. (A) A-GN, (B) A-pyN, (C) A-pyN-H, (D) A-pyN-O, (E) A-pyN-
OH, (F) Z-GN, (G) Z-pyN, (H) Z-pyN-H, (I) Z-pyN-O, (J) GN.
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graphene nanoribbons. The HCOO intermediate could only
stably exist on Z-GN among these N-doped zigzag graphene
nanoribbons. To produce HCOOH, the
CO2→*CO2→*COOH→*HCOOH pathway is more favorable
than the CO2→*CO2→*HCOO→*HCOOH pathway
(Figure 2F). In particular, on Z-GN, the hydrogenation of
HCOO generates not only HCOOH but also O + HCHO with
an energy barrier of 0.40 eV (Figure 2F). As illustrated in
Figure 3, after the formation of O + HCOO, the remaining O
atom could be easily hydrogenated into water due to the downhill
process. The PDS for producing HCHO is the HCOO formation
step with UL � -0.81 V.

For the *CO2→*COOH step, it occurred on Z-GN and Z-pyN
most easily, in which the energy is uphill by 0.39 eV for Z-GN and
downhill by -0.11 eV for Z-pyN, respectively (Figures 2F,G). While
for the other two structures, large uphill energy barriers are required,
that is, 1.88 eV for Z-pyN-H and 1.72 eV for Z-pyN-O, respectively.
After the formation of COOH, its hydrogenation may generate
HCOOH, CO + H2O, or COHOH, in which the formation of
HCOOH is the most favorable, followed by CO + H2O and
COHOH. Our calculations indicated that the COOH intermediate

on Z-pyN needs an energy barrier of 0.83 eV to form COHOH
(Figure 4). After the formation of COHOH, an energy increase of
0.41 eV is required to produce COH + H2O. The further
hydrogenation of COH is relatively easy due to the downhill
energy process to release the two competitive final products, that
is, CH3OH and CH4. A previous study indicated that the formation of
CH4 and CH3OH is through CO intermediate (Hori et al., 2008),
which is different from our results.

GN and PyrroN-Doped Graphene
As mentioned above, the pyrrolic N-doped structure has no
catalytic activity for CO2RR. For GN, the free energy increase
is the largest among all the N-doped graphene structures
(2.55 eV). Thus, the catalytic activity of GN is omitted.

In aword, for the studied structures, themost favorable product is
HCOOH, followed by CO and COHOH. In particular, the
formation of HCOOH and CO is competitive since the free
energy of CO is more thermodynamically favorable by only
about 0.20 eV than that of HCOOH. This energy difference is
similar to the value of 0.28 eV reported earlier (Liu et al., 2016).
In a word, Z-pyN and Z-GN possess the highest catalytic activity
toward HCOOH due to the smallest limiting potential of −0.38 and
−0.39 V, respectively (Table 2), which is lower than −0.44 for
PyrroN3 (Liu et al., 2016).

Hydrogen Evolution Reactions
Hydrogen evolution reaction (HER) is the competitive reaction
for CO2RR since the evolution of H would consume the
proton–electron pair (H++e−) and passivate the catalytic
activity of CO2RR. For the studied structures, the results
showed that Z-pyN-O and Z-pyN have large energetic
downhill for the adsorption of H*, indicating the enhanced
HER in thermodynamic (Figure 5). For Z-GN and A-pyN,
they have a negligible free energy barrier (0.03 and 0.04 eV) of
H*. For the remaining structures, HER is hindered by large free
energy barriers. Therefore, for the most favorable Z-pyN and

TABLE 2 | Potential determining steps (PDSs), limiting potentials (UL/V), and
overpotentials (ƞ/V) for CO2RR on Z-GN and Z-pyN. U0 is the equilibrium
potential. Comparison has been made with previous studies. UL, U0, and ƞ are all
vs. the RHE.

PDS UL U0 ƞ Product

Z-GN *CO2+H
+ + e−→*COOH −0.39 −0.25 0.14 HCOOH

Z-GN *CO2+H
+ + e−→*COOH −0.39 −0.11 0.28 CO

Z-GN *CO2+H
+ + e−→*HCOO −0.81 −0.07 0.74 HCHO

Z-pyN CO2+H
+ + e−→*CO2 −0.38 −0.25 0.13 HCOOH

Z-pyN CO2+H
+ + e−→*CO2 −0.38 −0.11 0.27 CO

Z-pyN *COOH + H+ + e−→*COHOH −0.83 0.02 0.81 CH3OH
Z-pyN *COOH + H+ + e−→*COHOH −0.83 0.17 0.66 CH4

PyrroN3 *COOH + H+ + e−→HOOH −0.44 __ __ HCOOH
Edge-2gN CO2+H

+ + e−→*COOH −0.52 __ __ CO

The “*” denotes the adsorption state of the species.

FIGURE 3 | The free energy change for the reaction of CO2 + 4H+ + 4e−→ HCHO + H2O on Z-GN.
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Z-GN, CO2RR would be suppressed by HER. However, by
choosing a suitable electrolyte, the activation energy of HER
would be increased. For instance, according to the expression
ΔGpH� 2.303kBT pH, in which pH � 0 is selected in the above
study, ΔGpH � 0.42 eV is obtained for pH � 7.0. Thus, the
activation energy of HER on Z-GN would be increased from
−0.03 to 0.39 eV, comparable to the free energy barrier of 0.38 eV
in the CO2RR process. Thus, the HER could be suppressed by
increasing the pH value for Z-GN. While for Z-pyN, CO2RR is
passivated by too strong HER. In a word, Z-GN could be selected

as a promising nonmetal electrocatalyst for CO2RR in generating
HCOOH.

CONCLUSION

We have performed the DFT method to elucidate the reaction
mechanism and activity of CO2RR on 11 types of N-doped
graphene catalysts. It indicates that for all the studied structures,
the formation of HCOOH is the most favorable, followed by CO.

FIGURE 4 | The free energy change for the reaction of CO2 + 8H+ + 8e−→ CH4 + H2O and CO2 + 6H+ + 6e−→ CH3OH + H2O on Z-pyN.

FIGURE 5 | The free energy changes for hydrogen evolution reaction (HER) on various N-doped graphene.
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Among these structures, Z-pyN- and Z-GN-doped graphene exhibit
the best catalytic activity for producing HCOOH with free energy
barriers of 0.38 and 0.39 eV, respectively. The potential determining
step (PDS) is CO2→*CO2 for Z-pyN and *CO2→*COOH for Z-GN,
respectively. Meanwhile, CO is the competitive product which lies
0.20 eV above HCOOH. For the zigzag pyridinic N-doped graphene,
it could also produce CH3OH and CH4 as the minor products which
need to overcome an energy barrier of 0.83 eV. Theminor product for
the zigzag graphitic N-doped graphene is HCHO, with an energy
barrier of 0.81 eV. However, for Z-pyN, CO2RR is passivated by too
strong HER. Meanwhile, by modifying the pH value of electrolyte,
Z-GN could be selected as a promising nonmetal electrocatalyst for
CO2RR in generating HCOOH.
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